
ISSN 2223-2966

M TEXHUMECKUE HAYKU

№ 9 2025 (CEHTЯБРЬ)

Учредитель журнала Общество с ограниченной ответственностью

«НАУЧНЫЕ ТЕХНОЛОГИИ»

Журнал издается с 2011 года.

Редакция:

Главный редактор **А.В. Царегородцев** Выпускающий редактор **Ю.Б. Миндлин** Верстка **М.А. Комарова**

Подписной индекс издания в каталоге агентства «Пресса России» — 80016 В течение года можно произвести подписку на журнал непосредственно в редакции.

Издатель:

Общество с ограниченной ответственностью

«Научные технологии»

Адрес редакции и издателя: 109443, Москва, Волгоградский пр-т, 116-1-10 Тел/факс: 8(495) 142-8681 E-mail: redaktor@nauteh.ru http://www.nauteh-journal.ru


Журнал зарегистрирован Федеральной службой по надзору в сфере массовых коммуникаций, связи и охраны культурного наследия.

Свидетельство о регистрации ПИ № ФС 77-44912 от 04.05.2011 г.

Научно-практический журнал

Scientific and practical journal

(BAK - 1.1.2, 1.5.x, 2.3.x, 3.1.x)

B HOMEPE:

ОБЩАЯ БИОЛОГИЯ, ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ, КЛИНИЧЕСКАЯ МЕДИЦИНА

Авторы статей несут полную ответственность за точность приведенных сведений, данных и дат.

При перепечатке ссылка на журнал «Современная наука:

Актуальные проблемы теории и практики» обязательна.

Журнал отпечатан в типографии ООО «КОПИ-ПРИНТ» тел./факс: (495) 973-8296

Подписано в печать 15.09.2025 г. Формат 84х108 1/16 Печать цифровая Заказ № 0000 Тираж 2000 экз.

Редакционный совет

Атаев Алевдин Рашитханович — д.м.н., профессор, Дагестанский государственный медицинский университет

Безруких Марьям Моисеевна — д.б.н., профессор, Институт возрастной физиологии РАО

Бекетов Сергей Валериевич — д.б.н., ФГБНУ НИИ Пушного звероводства и кролиководства имени В.А. Афанасьева

Белых Владимир Иванович — Д.м.н., доцент, Алтайский государственный медицинский университет Министерства здравоохранения Российской Федерации

Грачев Николай Николаевич — доктор высшей ступени в области технических наук (DoctorHabilitatus), профессор, Московский государственный институт электроники и математики НИУ ВШЭ (технический университет)

Гусева Анна Ивановна — д.т.н., профессор, Национальный исследовательский ядерный университет «МИФИ»

Зубкова Валентина Михайловна — д.б.н., профессор, Российский государственный социальный университет

Каллаев Нажмудин Омаркадиевич — д.м.н., профессор, Дагестанский государственный медицинский университет

Квасов Андрей Иванович — д.т.н., профессор, Восточно-Казахстанский государственный технический университет им. Д. Серикбаева

Корнеев Андрей Мастиславович — д.т.н., профессор, Липецкий государственный технический университет

Корягина Наталья Александровна — д.м.н., доцент, Пермский государственный медицинский университет им. ак. Е.А.Вагнера Министерства здравоохранения Российской Федерации

Кравец Бронислава Борисовна — д.м.н., профессор, Воронежский государственный медицинский университет им. Н.Н. Бурденко Министерства здравоохранения Российской Федерации

Кулик Сергей Дмитриевич — д.т.н., доцент, Национальный исследовательский ядерный университет «МИФИ»

Матвеев Всеволод Борисович — д.м.н., профессор, ФГБУ РОНЦ им. Н.Н. Блохина, член-корреспондент РАН

Миндлин Юрий Борисович — к.э.н., доцент, Московская государственная академия ветеринарной медицины и биотехнологии им. К.И. Скрябина

Надежкин Сергей Михайлович — д.б.н., профессор, Всероссийский НИИ селекции и семеноводства овощных культур Россельхозакадемии

Овезов Алексей Мурадович — д.м.н., доцент, ГБУЗ МО Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского

Олейникова Светлана Александровна — д.т.н., доцент, Воронежский государственный технический университет

Рахимов Ильгизар Ильясович — д.б.н., профессор, Казанский (Приволжский) федеральный университет

Ромашкова Оксана Николаевна — д.т.н., профессор, Московский городской педагогический университет

Симаков Юрий Георгиевич — д.б.н., профессор, Московский государственный университет им. К.Г. Разумовского (ПКУ)

Симоненков Алексей Павлович — д.м.н., профессор, независимый эксперт

Трапезов Олег Васильевич — д.б.н., в.н.с., ФИЦ «Институт цитологии и генетики СО РАН»

Федорова Оксана Ивановна — д.б.н., доцент, Московская государственная академия ветеринарной медицины и биотехнологии им. К.И. Скрябина

Харитонов Михаил Анатольевич — д.м.н., профессор, Военно-медицинская академия имени С.М. Кирова

Царегородцев Анатолий Валерьевич — д.т.н., профессор, Московский государственный лингвистический университет redaktor3@nauteh.ru

COVEDXXAHNE

CONTENTS

Обшая биология	Litvinova M., Kozhukhova E., Makarevich E., Garbul A. —
	Study of hydrocarbon-oxidizing properties of
Алиева З.А., Даудова Р.Д., Рашкуева З.И. —	microorganisms isolated from aquatic ecosystems of
Экологические и медико-биологические	the Kola North38
оследствия накопления твёрдых бытовых	

Грибанова Е.А. — Влияние состава питательной среды на спектральный профиль каротиноидов у дрожжей родов Rhodotorula, Sporobolomyces, Cystobasidium

Исрапилова А.И., Адиева А.А., Бекшокова П.А., Магомедова А.Г., Алиева З.А., Исаев А.Б. —

Сравнительная характеристика процессов подавления роста бактерий при дезинфекции воды различными способами

Литвинова М.Ю., Кожухова Е.В., Макаревич Е.В., Гарбуль А.В. — Изучение углеводородокисляющих свойств микроорганизмов, выделенных из водных экосистем Кольского Севера

Филимонова Д.А., Воробьева И.Г. —

Информатика, вычислительная техника и управление

Баканов А.С. — Моделирование процессов человеко-компьютерного взаимодействия в системе электронного документооборота *Bakanov A.* — Modeling of processes human-computer interaction in the electronic document management system50

Богомолов А.С., Шнайдер И.А. — Метод локализации источника атмосферного загрязнения

Горячкин Б.С., Гришин К.П. — Системный анализ коммуникантов интеллектуального контура управления

Коченков А.А. — Динамический метод защиты клиентской части ВЕБ-сайтов от неправомерного копирования данных

Kochenkov A. — Dynamic method of protecting the client side of websites from illegal data parsing.....69

Мансуров А.В., Минакова Н.Н., Салита Д.С., Дмитриев А.А., Журавлева В.В. — Организация лабораторного практикума для подготовки специалистов по информационной безопасности с использованием расширенных возможностей гибридных виртуальных лабораторных сред

Mansurov A., Minakova N., Salita D., Dmitriev A., Zhuravleva V. — Enhancing the lab practicum for	Тымчук А.И., Дубенко Ю.В. — Сравнительная многокритериальная оценка существующих
training of information security specialists with the hybrid virtual lab environments	методов контроля достоверности данных электропотребления в АИИС КУЭ
Плотников Г.Г., Елин В.М., Царегородцев А.В. —	Timchuk A., Dubenko Yu. — Comparative multi-criteria assessment of existing data reliability of power
Противодействие беспилотным летальным	consumption monitoring methods in AIIS KUE 115
аппаратам для обеспечения задач общественной безопасности	Шаронов П.А. — Разработка алгоритмов оценки
Plotnikov G., Elin V., Tsaregorodtsev A. — Counteraction to unmanned aerial vehicles to ensure public	неопределенности измерения и программного обеспечения, реализующего создание алгоритмов
safety	с помощью метода Монте-Карло Sharonov P. — Development of algorithms for
Поляков Н.А. — Совершенствование методов интеграции онтологий в архитектуру управления организационными системами интернетпровайдера	estimating measurement uncertainty and software implementing the creation of algorithms using the Monte Carlo method
Polyakov N. — Improving methods for integrating ontologies into the management architecture of an internet service provider's organizational systems	Шибиченко М.И., Павлов В.А. — Модели прогнозирования и алгоритмы анализа временных рядов для управления бизнес-процессами в сфере розничных продаж
systems	Shibichenko M., Pavlov V. — Forecasting models and
Солобуто А.В., Павлов В.А. — Сингулярное разложение и линейная регрессия в задаче	time series analysis algorithms for business process management in retail sales
прогнозирования динамики поведения ценных бумаг	Клиническая медицина
Calabuta A Dayloy V Singular value decomposition	
Solobuto A., Pavlov V. — Singular value decomposition and linear regression in the task of predicting stock market dinamics	Богатырева В.А., Морова Н.А. — Нарушение ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота
and linear regression in the task of predicting stock market dinamics92	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска <i>Bogatyreva V., Morova N.</i> — Rhythm and
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Викентьев В.В., Сапунова Д.А. — Клинический случай: инфекционный панкардит у потребителя
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Викентьев В.В., Сапунова Д.А. — Клинический случай: инфекционный панкардит у потребителя инъекционных наркотиков
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Викентьев В.В., Сапунова Д.А. — Клинический случай: инфекционный панкардит у потребителя инъекционных наркотиков Vikentev V., Sapunova D. — Clinical case: infectious
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Викентьев В.В., Сапунова Д.А. — Клинический случай: инфекционный панкардит у потребителя инъекционных наркотиков
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Викентьев В.В., Сапунова Д.А. — Клинический случай: инфекционный панкардит у потребителя инъекционных наркотиков Vikentev V., Sapunova D. — Clinical case: infectious pancarditis in an injecting drug user
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Викентьев В.В., Сапунова Д.А. — Клинический случай: инфекционный панкардит у потребителя инъекционных наркотиков Vikentev V., Sapunova D. — Clinical case: infectious pancarditis in an injecting drug user
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Викентьев В.В., Сапунова Д.А. — Клинический случай: инфекционный панкардит у потребителя инъекционных наркотиков Vikentev V., Sapunova D. — Clinical case: infectious pancarditis in an injecting drug user
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Викентьев В.В., Сапунова Д.А. — Клинический случай: инфекционный панкардит у потребителя инъекционных наркотиков Vikentev V., Sapunova D. — Clinical case: infectious pancarditis in an injecting drug user
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Викентьев В.В., Сапунова Д.А. — Клинический случай: инфекционный панкардит у потребителя инъекционных наркотиков Vikentev V., Sapunova D. — Clinical case: infectious pancarditis in an injecting drug user
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Bukehmbeb B.B., Canyhoba Д.A. — Клинический случай: инфекционный панкардит у потребителя инъекционных наркотиков Vikentev V., Sapunova D. — Clinical case: infectious pancarditis in an injecting drug user
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Викентьев В.В., Сапунова Д.А. — Клинический случай: инфекционный панкардит у потребителя инъекционных наркотиков Vikentev V., Sapunova D. — Clinical case: infectious pancarditis in an injecting drug user
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Викентьев В.В., Сапунова Д.А. — Клинический случай: инфекционный панкардит у потребителя инъекционных наркотиков Vikentev V., Sapunova D. — Clinical case: infectious pancarditis in an injecting drug user 137 Волков К.А., Петрунькин Р.П., Полиданов М.А., Долгова Е.М., Кравченя А.Р., Капралов С.В. — Возможности прогнозирования возникновения рецидивов в послеоперационном периоде при раке щитовидной железы с помощью искусственного интеллекта Volkov K., Petrunkin R., Polidanov M., Dolgova E.,
and linear regression in the task of predicting stock market dinamics	ритма и проводимости сердца у больных с серонегативными спондилоартритами. Частота встречаемости, факторы риска Bogatyreva V., Morova N. — Rhythm and conduction disorders in patients with seronegative spondylarthritides. Incidence and risk factors 131 Викентьев В.В., Сапунова Д.А. — Клинический случай: инфекционный панкардит у потребителя инъекционных наркотиков Vikentev V., Sapunova D. — Clinical case: infectious pancarditis in an injecting drug user

Гильфанова Р.А., Афанасьева З.А. — Лабораторная и инструментальная диагностика злокачественных опухолей предстательной железы: сравнительный анализ Gilfanova R., Afanasyeva Z. — Laboratory and instrumental diagnostics of malignant prostate tumors: comparative analysis
Гулей Ю.В., Сидорова Ю.Д., Давидян Л.Ю. — Анализ микробного пула миомных узлов и эндометрия у пациенток с различным клиническим вариантом течения миомы матки в менопаузе Guley Yu., Sidorova Yu., Davidyan L. — Analysis of the microbial pool of myomatous nodes and endometrium in patients with different clinical variants of uterine fibroid course in menopause
Гуревич Ю.Ю., Прохорова В.О. — Реконструкция дефекта переднего отдела верхней челюсти с использованием аутологичного зуба: клинический случай Gurevich Yu., Prohorova V. — Reconstruction of an anterior maxillary defect using an autologous tooth: a clinical case
Жаворонкова М.Д., Улитовский С.Б., Ермолаева Л.А. — Исторические и современные аспекты биологического метода лечения пульпы зуба (обзор литературы) Zhavoronkova M., Ulitovskiy S., Ermolaeva L. — The evolution and current state of the biological method for dental pulp therapy (review)
Климова А.Р. — Санаторно-курортное лечение детей с патологией опорно-двигательного аппарата Klimova A. — Sanatorium-resort treatment of children with musculoskeletal pathology
Лобанов Ю.С., Шаповалов К.Г., Лобанов С.Л., Терешков П.П., Лобанов Л.С. — Влияние внутриполостной гипертензии на уровень D-димера при эндохирургических операциях в забрюшинном пространстве Lobanov Yu., Shapovalov K., Lobanov S., Tereshkov P., Lobanov L. — Influence of intracavity hypertension on D-dimer level during endosurgical operations in the retroperitoneal space

Сахно В.А. — Современная методика массажа в восстановительном лечении постинсультных нарушений

Sakhno V. — Modern massage technique in rehabilitation treatment of post-stroke disorders . 201

Терентьева С.А. — Эритематозная инфекция кожи у пациенток с онкологическими заболеваниями молочной железы: эпидемиология, клиника, диагностика и лечение рожистого воспаления *Terentyeva S.* — Erythematous skin infection in patients with breast cancer: epidemiology, clinical features, diagnosis, and treatment of erysipelas . . 212

Трифонов Ф.А., Иванов С.А., Кучеров В.В., Петросян А.П., Надинский Д.О., Игольников И.Б., Стехова А.Т. — Гемато- и нефротоксичность химиоэмболизации маточных артерий при местнораспространённом раке шейки матки: оценка безопасности и прогностические маркеры

Trifonov F., Ivanov S., Kucherov V., Petrosyan A., Nadinsky D., Igolnikov I., Stekhova A. — Hemato- and nephrotoxicity of uterine artery chemoembolization in locally advanced cervical cancer: safety assessment and prognostic markers	Khmara A., Polidanov M., Kapralov S., Petrunkin R., Mayorov R., Prokhnitskaya A. — Experimental substantiation of the method of sonodynamic stimulation of adhesions in the pleural cavity in laboratory animals
Ханалиев В.Ю., Абакаров Т.А., Омарова С.М., Мусалов ХМ.Г., Будайчиев Г.МА. — Эффективность регулярного проветривания стоматологического кабинета в снижении микробной аэрозольной нагрузки воздуха и профилактике респираторных инфекций Кhanaliev V., Abakarov T., Omarova S., Musalov KhM., Budaichiev G. — Effectiveness of regular ventilation in dental operatories for reducing airborne aerosol load and preventing respiratory infections	Чернядьев С.А., Кубасов К.А., Жиляков А.В., Бородихина В.А., Сивкова Н.И. — Применение кластерного анализа для прогнозирования угнетения перистальтической активности кишечника на основе данных видеофиксации у лабораторных животных Chernyadyev S., Kubasov K., Zhilyakov A., Borodikhina V., Sivkova N. — Application of cluster analysis to predict intestinal peristaltic inhibition based on video recording peristalsis data in laboratory animals 232
Хмара А.Д., Полиданов М.А., Капралов С.В., Петрунькин Р.П., Майоров Р.В., Прохницкая А.А. — Экспериментальное обоснование способа сонодинамической стимуляции спаечного процесса в плевральной полости у лабораторных животных	Якубив Е.В. — Эффективность применения различных методик отбеливания зубов: обзор литературы Yakubiv E. — The effectiveness of various tooth whitening techniques: a literature review

DOI 10.37882/2223-2966.2025.09.01

ЭКОЛОГИЧЕСКИЕ И МЕДИКО-БИОЛОГИЧЕСКИЕ ПОСЛЕДСТВИЯ НАКОПЛЕНИЯ ТВЁРДЫХ БЫТОВЫХ ОТХОДОВ В МАЛЫХ ГОРОДАХ: ПУТИ ПЕРЕХОДА К УСТОЙЧИВЫМ МОДЕЛЯМ ОБРАЩЕНИЯ С ТКО

ENVIRONMENTAL AND BIOMEDICAL CONSEQUENCES OF MUNICIPAL SOLID WASTE ACCUMULATION IN SMALL TOWNS: TRANSITION PATHWAYS TOWARD SUSTAINABLE WASTE MANAGEMENT MODELS

Z. Alieva R. Daudova Z. Rashkueva

Summary. The article examines the environmental and biomedical consequences of municipal solid waste (MSW) accumulation in small towns of the Russian Federation. Based on field studies, environmental quality assessments, public health statistics, and sociological surveys, the authors identify key ecological risks and threats to human health associated with ineffective waste management. The study reveals that the absence of modern infrastructure, inadequate sanitary control, and low public participation contribute to increased soil, water, and air pollution, as well as higher incidence rates of respiratory, infectious, and oncological diseases. The need for a transition to sustainable MSW management models is substantiated, including waste sorting, recycling, sanitary monitoring, and environmental education. The article presents recommendations for integrating ecological and biomedical approaches into local waste management systems in small municipalities.

Keywords: municipal solid waste (MSW), small towns, environmental safety, public health, environmental pollution, sustainable development, sanitary risks, waste recycling, biomedical consequences.

Алиева Заира Абдурахмановна

Кандидат биологических наук, доцент, Дагестанский государственный педагогический университет им. Р. Гамзатова (Махачкала) Alza67@mail.ru

Даудова Рабият Далгатовна

Кандидат биологических наук, доцент, Дагестанский государственный педагогический университет им Р. Гамзатова (Махачкала) daudova1@mail.ru

Рашкуева Заира Исмаиловна

Кандидат биологических наук, доцент, Дагестанский государственный педагогический университет им Р. Гамзатова (Махачкала) rashkueva_afg@mail.ru

Аннотация. В статье рассматриваются экологические и медико-биологические последствия накопления твёрдых коммунальных отходов (ТКО) в малых городах Российской Федерации. На основе полевых исследований, анализа состояния окружающей среды, статистических данных по заболеваемости населения и социологических опросов выявлены ключевые экологические риски и угрозы общественному здоровью, связанные с неэффективным управлением отходами. Показано, что отсутствие современной инфраструктуры, санитарного контроля и участия населения приводит к росту загрязнения почвы, воды и воздуха, а также к увеличению заболеваемости органов дыхания, инфекционными и онкологическими заболеваниями. Обоснована необходимость перехода к устойчивым моделям обращения с ТКО, включающим сортировку, переработку, санитарный мониторинг и экологическое просвещение. Представлены рекомендации по интеграции экологических и медико-санитарных подходов в систему управления отходами в малых населённых пунктах.

Ключевые слова: твёрдые коммунальные отходы (ТКО), малые города, экологическая безопасность, здоровье населения, загрязнение окружающей среды, устойчивое развитие, санитарные риски, переработка отходов, медико-биологические последствия.

Введение

Всё большую актуальность, особенно в условиях развития и жизнеобеспечения малых городов, где ограниченные ресурсы и инфраструктурные возможности значительно осложняют реализацию эффективной си-

стемы обращения с отходами. Устойчивый рост объемов ТКО, обусловленный как урбанизацией, так и изменением потребительского поведения населения, приводит к ряду острых экологических и медико-биологических последствий, которые затрагивают все компоненты окружающей среды и напрямую влияют на здоровье человека [13]. Накопление отходов на несанкционированных или перегруженных полигонах сопровождается

загрязнением почв, водоёмов и атмосферного воздуха токсичными веществами, включая диоксины, тяжёлые металлы и микропластик. Такие условия способствуют увеличению заболеваемости среди населения — прежде всего, болезнями дыхательной системы, онкологическими и инфекционными заболеваниями, нарушениями репродуктивного здоровья [12, с. 98].

Актуальность исследования обусловлена необходимостью разработки и внедрения устойчивых моделей обращения с ТКО, ориентированных на экологическую безопасность, защиту здоровья населения и рациональное использование ресурсов, что требует комплексного подхода, включающего экологическую, медицинскую, социальную и экономическую составляющие. Особое значение приобретает интеграция современных технологий, развитие «зелёной» инфраструктуры и вовлечение населения в процессы раздельного сбора и переработки отходов.

Настоящее исследование направлено на выявление ключевых экологических и медико-биологических рисков, связанных с неэффективным управлением ТКО в малых городах, а также на обоснование практических рекомендаций по переходу к устойчивым и безопасным моделям обращения с отходами в рамках концепции устойчивого развития.

Обзор литературы

В научной литературе отмечается, что устойчивое обращение с ТКО требует комплексного подхода, включающего мониторинг экологических последствий, оценку санитарно-гигиенических рисков, развитие нормативной базы и внедрение инновационных технологических решений [1, с. 475]. Экологическая деградация, вызванная неправильным управлением отходами, может опосредованно влиять на усиление антимикробной устойчивости [8, с. 90]. Места длительного скопления бытовых отходов — особенно органического происхождения — становятся потенциальными резервуарами патогенной микрофлоры и антибиотикорезистентных штаммов [11, с. 36].

Согласно ряду исследований, значительное влияние на эффективность системы управления отходами оказывает территориальный фактор: в малых городах и сельских поселениях проблемы утилизации отходов проявляются острее по сравнению с мегаполисами. Причины этого включают в себя: ограниченность бюджетных ресурсов, низкий уровень экологической грамотности населения и отсутствие современных полигонов и предприятий по переработке отходов [9, с. 24].

Отдельные исследования акцентируют внимание на воздействии несанкционированных и переполнен-

ных свалок на окружающую среду. В частности, сообщается о проникновении тяжёлых металлов и токсичных органических соединений в почвы и грунтовые воды [15, с. 44], что приводит к биологической аккумуляции загрязнителей в организмах животных и человека [5, с. 879]. Также указывается на загрязнение атмосферы метаном, диоксинами и другими продуктами анаэробного разложения, что усугубляет ситуацию с климатическими изменениями [16, с. 69].

Медико-биологические аспекты накопления ТКО подробно рассматриваются в работах отечественных и зарубежных исследователей. Отмечено, что проживание вблизи свалок и полигонов достоверно связано с повышенной заболеваемостью бронхолёгочными заболеваниями, дерматитами, нарушениями репродуктивной функции, а также с увеличением риска онкопатологий [6, с. 3]. Кроме того, микробиологические исследования выявили высокую концентрацию патогенных микроорганизмов в местах несанкционированного размещения отходов, что создаёт угрозу распространения инфекционных заболеваний [14, с. 195]. В наших предыдущих исследованиях, посвящённых оценке влияния неблагоприятных экологических факторов на физическое развитие подростков, результаты показали, что под действием вредных факторов — в том числе загрязнения воздуха, почвы и воды — наблюдаются достоверные изменения в антропометрических показателях: снижение массы тела, роста и нарушения в темпах биологического созревания [2, с. 32; 4, с. 292]. Кроме того, мы отмечали рост заболеваемости в регионах с недостаточным санитарным контролем, плохим состоянием водоснабжения и отсутствием систематического вывоза бытовых отходов, что создаёт условия для распространения патогенных микроорганизмов, что особенно актуально для малых городов и сельских территорий, где часто отсутствует централизованная инфраструктура [3, с. 499].

Наши исследования подтверждаются исследованиями других российских ученых, например Б.А. Склярова, который указывает, что взаимодействия между различными видами микроорганизмов в условиях человеческого организма и загрязненной окружающей среды могут привести к нарушению баланса микрофлоры и способствуют усилению патогенности отдельных микробных агентов и росту заболеваемости [10, с. 31].

На международном уровне реализуются различные модели устойчивого обращения с отходами, включающие принципы «нулевых отходов» (Zero Waste), расширенной ответственности производителей (EPR) и циркулярной экономики. Эффективность таких подходов подтверждена практиками стран ЕС, Японии и Южной Кореи [17, с. 8578; 18, с. 60; 19]. В российском контексте, несмотря на наличие нормативно-правовой базы (включая федеральный проект «Чистая страна» и националь-

ный проект «Экология»), многие регионы, особенно с малым населением, сталкиваются с трудностями на этапе реализации реформы ТКО [7].

Материалы и методы исследования

В рамках настоящего исследования была использована совокупность методов, направленных на комплексную оценку экологических и медико-биологических последствий накопления твёрдых коммунальных отходов (ТКО) в условиях малых городов. Объектом исследования послужили населённые пункты с численностью населения менее 50 тысяч человек, расположенные в Республике Дагестан.

На территории выбранных муниципалитетов были проведены обследования существующих мест накопления и размещения ТКО (санкционированные и несанкционированные свалки, контейнерные площадки, полигоны). Отбор проб почвы, поверхностных и подземных вод, а также атмосферного воздуха осуществлялся с соблюдением методических указаний Минприроды РФ. Анализ проб проводился с использованием следующих методик:

- Почва определение содержания тяжёлых металлов (Pb, Cd, Hg, Zn) методом атомно-абсорбционной спектрометрии;
- Вода выявление микробиологического загрязнения (ОКБ, ТКБ, патогенные микроорганизмы) и химического состава (нитраты, фосфаты, нефтепродукты);
- Воздух оценка концентраций аммиака, сероводорода, метана и взвешенных частиц (РМ2.5 и РМ10) с использованием портативных газоанализаторов.

Была проведена ретроспективная оценка заболеваемости населения, проживающего вблизи объектов накопления ТКО, на основе официальных данных территориальных органов Роспотребнадзора и медико-санитарных учреждений за период 2015–2024 гг. Особое внимание уделялось следующим группам заболеваний:

- Болезни органов дыхания (J00–J99 по МКБ-10);
- Онкологические заболевания (С00-D48);
- Инфекционные и паразитарные болезни (A00– B99);
- Болезни кожи и подкожной клетчатки (L00–L99).

Полученные данные были обработаны с использованием методов корреляционного анализа и вычисления относительного риска (RR) при сопоставлении с контрольными территориями, не подвергавшимися отходному воздействию.

В рамках социологического блока проведён опрос среди местных жителей (n = 350) с целью выявления

уровня экологической осведомлённости, отношения к раздельному сбору отходов, а также фиксировались жалобы на состояние здоровья и санитарные условия проживания. Анкетирование проводилось в полуформализованной форме с использованием сервиса Yandex Forms и бумажных опросников.

Осуществлён анализ стратегий обращения с отходами, утверждённых на региональном и муниципальном уровнях, в том числе паспортов территориальных схем ТКО, программ «Чистая страна», проектов модернизации полигонов и объектов переработки. Проведена оценка соответствия этих документов принципам устойчивого развития и международным стандартам.

Результаты

В ходе проведённого исследования были получены количественные и качественные данные, позволяющие оценить масштабы экологического загрязнения, степень медико-биологического воздействия ТКО, а также уровень готовности малых городов к переходу на устойчивые модели обращения с отходами.

- 1. Экологическое состояние территорий накопления ТКО. Обследование объектов размещения отходов выявило следующее:
- В 100 % обследованных полигонов отсутствовала надлежащая гидроизоляция и системы сбора фильтрата, что способствует инфильтрации загрязняющих веществ в почвенно-грунтовые слои.
- В 72 % случаев зафиксированы несанкционированные свалки вблизи жилой застройки (менее 500 м от границ населённых пунктов), не включённые в региональные схемы обращения с ТКО. Пробы почвы, отобранные в радиусе 1 км от полигонов, показали превышение предельно допустимых концентраций (ПДК) тяжёлых металлов: свинец в 4,6 раза, кадмий в 2,8 раза, ртуть в 1,9 раза.
- В поверхностных водоёмах, расположенных в низинах около свалок, обнаружено превышение ПДК по нитратам (в 3,2 раза), фосфатам (в 2,5 раза) и нефтепродуктам (в 2,1 раза), что свидетельствует о дренажном поступлении загрязнителей с тел свалок.
- 2. *Качество атмосферного воздуха*. Мониторинг атмосферного воздуха в зоне влияния ТКО выявил:
- Превышение санитарных норм по метану (до 18 мг/м³), сероводороду (до 0,09 мг/м³) и аммиаку (до 0,25 мг/м³) на границах полигонов.
- Повышенные концентрации взвешенных частиц PM2.5 и PM10 в сухую и жаркую погоду, особенно в зоне открытого сжигания отходов, что представляет риск для дыхательной системы населения.

- 3. *Медико-биологические последствия*. Анализ статистики заболеваемости в районах, прилегающих к местам размещения отходов, показал устойчивую отрицательную динамику:
- Уровень заболеваемости бронхиальной астмой среди детей на 100 тыс. населения выше среднего по региону на 35 %.
- Частота онкологических заболеваний (в первую очередь злокачественные новообразования органов ЖКТ и дыхательных путей) выше на 22 % по сравнению с контрольными территориями.
- Зарегистрировано увеличение числа кожных аллергических реакций и инфекций, связанных с плохими санитарно-гигиеническими условиями, особенно в летний период.
- 4. Общественное восприятие и экологическая культура. По результатам социологического опроса:
- Лишь 18 % респондентов сообщили, что в их городе реализован раздельный сбор отходов.
- 62 % опрошенных считают ситуацию с мусором критической или угрожающей.
- 54 % заявили о готовности участвовать в экологических инициативах при наличии соответствующей инфраструктуры и информационной поддержки.
- 5. *Состояние системы управления отходами*. Анализ нормативных документов и муниципальных программ показал:
- Недостаточную интеграцию принципов устойчивого развития и ресурсосбережения в действующие планы.
- Доминирование схем захоронения отходов (до 90 % ТКО), при отсутствии полноценной сортировки и переработки.

Выводы

В результате проведённого исследования установлено, что система обращения с твёрдыми коммунальными отходами (ТКО) в малых городах характеризуется высокой степенью экологической и санитарно-эпидемиологической напряжённости. Выявленные факты подтверждают, что накопление и неэффективное управление ТКО ведут к деградации природной среды, формированию очагов химического и микробиологического загрязне-

ния, а также способствуют росту заболеваемости среди местного населения.

Основные выводы можно сформулировать следующим образом:

- На территории малых городов наблюдается систематическое превышение предельно допустимых концентраций загрязняющих веществ в почве, воде и воздухе в зонах воздействия полигонов и несанкционированных свалок. Особенно выражено загрязнение тяжёлыми металлами и биогенными соединениями.
- Зафиксирована устойчивая связь между проживанием вблизи объектов накопления ТКО и повышенным уровнем заболеваний органов дыхания, кожи, а также онкопатологий. Полученные данные свидетельствуют о наличии реальных угроз здоровью населения.
- Население малых городов в целом осознаёт экологические проблемы, однако ограниченность инфраструктуры, слабая информационная поддержка и низкий уровень вовлечённости граждан в процессы раздельного сбора отходов тормозят переход к устойчивым моделям обращения с ТКО.
- Анализ муниципальной и региональной нормативной документации выявил дефицит системного подхода к управлению отходами. В большинстве случаев отсутствуют чёткие ориентиры на сокращение захоронения, переработку и повторное использование отходов.
- Повсеместное внедрение принципов циркулярной экономики, расширенной ответственности производителя, экологического просвещения и технологической модернизации должно стать приоритетным направлением реформы ТКО в малых городах.

Таким образом, для минимизации экологических и медико-биологических последствий накопления ТКО в малых населённых пунктах требуется комплексное вмешательство: модернизация инфраструктуры, усиление надзорных функций, стимулирование раздельного сбора и переработки, а также активизация участия местного сообщества в решении мусорной проблемы.

ЛИТЕРАТУРА

- 1. Бондаренко, О.А. Проблема утилизации твердых коммунальных отходов в Российской Федерации в рамках национального проекта «Экология» / О.А. Бондаренко, А.О. Гомалеев // Актуальные вопросы современной экономики. 2022. № 10. С. 475—478. EDN CPVZCV.
- 2. Даудова, Р.Д. Влияние неблагоприятных факторов окружающей среды на антропометрические показатели подростков / Р. Д. Даудова, З.И. Рашкуева, У.А. Гаджиева // Известия Дагестанского государственного педагогического университета. Психолого-педагогические науки. 2021. Т. 15, № 2. С. 32—38. DOI 10.31161/1995-0675-2021-15-2-32-38. EDN UOKOLA.
- 3. Даудова, Р.Д. Динамика заболеваемости острых кишечных инфекций в Дагестане / Р.Д. Даудова, Т.М. Джамалутдинова, З.И. Рашкуева // Наука и образование состояние, проблемы, перспективы развития: материалы научной сессии профессорско-преподавательского состава Дагестанского государственного педагогического университета, посвященной Году образования в Республике Дагестан, Махачкала, 19—20 мая 2022 года. Махачкала: Дагестанский государственный педагогический университет, 2022. С. 499—502. EDN GNUUGW.

- 4. Даудова, Р.Д. Нарушение экологии и здоровье современного ребенка / Р.Д. Даудова, К.М. Магдиева // Биоразнообразие и рациональное использование природных ресурсов: материалы докладов XI Всероссийской научно-практической конференции с международным участием, Махачкала, 27—28 апреля 2023 года. Махачкала: Дагестанский государственный педагогический университет им. Р. Гамзатова, 2023. С. 292—296. EDN ZOQZBY.
- 5. Климова, Е.В. Экологическая опасность мест складирования отходов производства и потребления / Е.В. Климова // Экологическая безопасность в АПК. Реферативный журнал. 2008. № 4. С. 879. EDN JVJGGX.
- 6. Манжуров, И.Л. Многофакторная оценка влияния окружающей среды на развитие онкологических заболеваний / И.Л. Манжуров, В.Л. Лежнин // Экология человека. 2015. № 1. С. 3–9. EDN TIAGPV.
- 7. Минприроды России. Паспорт федерального проекта «Чистая страна» // Национальный проект «Экология» [Электронный ресурс]. URL: https://www.mnr.gov.ru (дата обращения: 25.06.2025).
- 8. Николаев, Н.В. Влияние несанкционированных свалок на состояние окружающей среды / Н.В. Николаев, Н.С. Самарская // Труды Ростовского государственного университета путей сообщения. 2021. № 2(55). С. 90–93. EDN SZPLSU.
- 9. Роздольская, И.В. Развитие процессов эколого-экономического взаимодействия в процессе использования земельных ресурсов в региональном формате / И.В. Роздольская, Ю.А. Мозговая, Д.Н. Черкасова // Государственное и муниципальное управление в XXI веке: теория, методология, практика. 2016. № 25. С. 24—29. EDN WTPTSV.
- 10. Скляров, Б.А. Актуальные проблемы интерференции микроорганизмов в патогенезе инфекционных заболеваний / Б.А. Скляров // Научное сообщество студентов XXI столетия. Естественные науки: Сборник статей по материалам СХХIV студенческой международной научно-практической конференции, Новосибирск, 29 мая 2023 года. Том 5 (120). Новосибирск: Общество с ограниченной ответственностью «Сибирская академическая книга», 2023. С. 31—33. EDN QICORY.
- 11. Скляров, Б.А. Оценка стратегий предотвращения и контроля распространения антимикробной устойчивости в медицинских учреждениях / Б.А. Скляров // Вопросы экспертизы и качества медицинской помощи. 2023. № 6. С. 36—37. EDN MGMAMO.
- 12. Скляров, Б.А. Распространение множественных лекарственных резистентных бактерий: факторы риска и меры контроля / Б.А. Скляров, А.А. Нетронин // Научный аспект. 2023. Т. 1, № 9. С. 98—102. EDN VEQXXJ.
- 13. Соколов, Л.И. Управление отходами (waste management) / Л.И. Соколов. Москва: Общество с ограниченной ответственностью «Издательство «Инфра-Инженерия», 2018. 208 с. ISBN 978-5-9729-0246-0. EDN ZDKSVV.
- 14. Степанцов, С.С. Несанкционированное размещение мусорных отходов как источник распространения инфекций / С.С. Степанцов // Наука молодых будущее России: сборник научных статей 8-й Международной научной конференции перспективных разработок молодых ученых, Курск, 12—13 декабря 2023 года. Курск: Университетская книга, 2023. С. 195—197. EDN SMOTJQ.
- 15. Шулепова, О.В. О влиянии твёрдых бытовых отходов на почву: региональный аспект / О.В. Шулепова, А. Смирнова // Агропродовольственная политика России. 2019. № 2(86). С. 44–47. EDN DZWCGD.
- 16. Юганова, Т.И. Продукты механико-биологической обработки твердых коммунальных отходов: состав, Сравнение биоактивности с захороненными ТКО, тяжелые металлы / Т.И. Юганова // Геоэкология. Инженерная геология, гидрогеология, геокриология. 2022. № 3. С. 69–81. DOI 10.31857/ S0869780922030092. EDN GZFKOR.
- 17. Kasassi A., Rakimbei P., Zarkadas C. et al. Soil contamination by heavy metals: measurements from a closed unlined landfill // Bioresource Technology. 2008. Vol. 99(18). P. 8578–8584.
- 18. Porta D., Milani S., Lazzarino A.I. et al. Systematic review of epidemiological studies on health effects associated with management of solid waste // Environmental Health. 2009. Vol. 8. P. 60.
- 19. UNEP. Global Waste Management Outlook. United Nations Environment Programme, 2015. 342 p.

© Алиева Заира Абдурахмановна (Alza67@mail.ru); Даудова Рабият Далгатовна (daudova1@mail.ru); Рашкуева Заира Исмаиловна (rashkueva_afg@mail.ru)
Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.09

ВЛИЯНИЕ СОСТАВА ПИТАТЕЛЬНОЙ СРЕДЫ НА СПЕКТРАЛЬНЫЙ ПРОФИЛЬ КАРОТИНОИДОВ У ДРОЖЖЕЙ РОДОВ RHODOTORULA, SPOROBOLOMYCES, CYSTOBASIDIUM¹

INFLUENCE OF NUTRIENT MEDIUM COMPOSITION ON THE SPECTRAL PROFILE OF CAROTENOIDS IN YEASTS OF THE GENERA RHODOTORULA, SPOROBOLOMYCES, CYSTOBASIDIUM

E. Gribanova

Summary. In the presented study, the spectral profile of carotenoid pigments produced by psychrotolerant yeasts of the genera *Rhodotorula* (3 strains), *Sporobolomyces* (6 strains), and *Cystobasidium* (2 strains) was studied. The analysis showed that the composition of the nutrient medium affects not only the amount of synthesized pigments, but also their profile. It was noted that the total yield of carotenoids during growth in a medium with the addition of corn flour was 1,6–2,2 times more than in Sabouraud's medium and 2,0–6,1 times more than during growth in TSB broth.

Keywords: yeast, spectrophotometry, carotenoids, psychrophiles, torulene, carotene, torularhodin, Antarctica.

Грибанова Екатерина Александровна

Acnupaнm, старший преподаватель, Белорусский Государственный Университет, г. Минск, Беларусь lika-den98@mail.ru

Аннотация. В приведенном исследовании изучали спектральный профиль каротиноидных пигментов продуцируемых психротолерантными дрожжами родов Rhodotorula (3 штамма), Sporobolomyces (6 штаммов), Cystobasidium (2 штамма). Анализ показал, что состав питательной среды оказывает влияние не только на количество синтезируемых пигментов, но и на их профиль. Было отмечено, что суммарный выход каротиноидов при росте в среде с добавлением кукурузной муки было в 1,6—2,2 раза больше, чем в среде Сабуро и в 2,0—6,1 раза больше, чем при росте в TSB-бульоне.

Ключевые слова: дрожжи, спектрофотомерия, каротиноиды, психрофилы, торулен, каротин, торулародин, Антарктида.

Введение

рожжи класса базидиомицетов преобладают среди грибов в полярных регионах [25], и, по оценкам, на сегодняшний день распознано не более 5 % видов, существующих в природе (приблизительно 50 родов и 250 видов). Имея важное сельскохозяйственное и медицинское значение, эта группа микроорганизмов вызывает все больший интерес у ученых как с точки зрения их биоразнообразия и экологической роли, так и с экономической точки зрения. Кроме того, некоторые базидиомицетовые дрожжи производят пигменты, в основном каротиноиды (также называемые тетратерпеноидами), такие как γ- и β-каротин, торулен и торулародин (Rhodotorula spp. и Sporobolomyces roseus) или астаксантин (Phaffia rhodozyma) [8, 15]. Натуральные пигменты составляют около 30 % рынка красящих веществ [24]. Они широко используются в пищевой, фармацевтической, косметической и пищевой промышленности. Каротиноиды не только полезны в качестве красителей, но и играют важную роль в защите организма человека и животных от фотоокислительного повреждения, включая катаракту, а также в защите кожи и профилактике рака [8, 11, 23]. Некоторые из них являются предшественниками витамина А и поэтому считаются высокоценными питательными веществами.

Хотя микробное производство каротиноидов давно и активно изучается, их промышленное производство остаётся нерентабельным. Для снижения себестоимости производства целесообразно использовать сельскохозяйственные отходы, например, лигноцеллюлозу и сыворотку. Однако это непростая задача, поскольку эти отходы вряд ли будут ферментированы микроорганизмами и требуют предварительной обработки и гидролиза перед ферментацией. Это влечет за собой дополнительные затраты, которые можно было бы снизить, применяя микроорганизмы, способные не только продуцировать большое количество каротиноидов, но и секретировать внеклеточные гидролазы. Кроме того,

¹ Данная работа была выполнена при поддержке проекта, финансируемого Белорусским республиканским фондом фундаментальных исследований № 20231168 («Продукция биологически активных веществ психрофильными дрожжами, выделенными из образцов почв Восточной Антарктиды»).

сельскохозяйственные отходы богаты источниками углерода, например, ксилозой, целлобиозой или лактозой, которые обычно не ферментируются дрожжами. Хотя сообщалось, что несколько видов дрожжей-базидиомицетов производят гидролазы (например, полисахаразы, липазы) [20] или лигнолитические ферменты [19], мы до сих пор очень мало знаем об их применении в биопроцессах, например, для преобразования органических отходов в каротиноиды.

Среди базидиомицетов наименее изученную группу дрожжей составляют представители рода *Cystobasidium*. Поиск разнообразия в природе недавно привел к признанию новых видов дрожжей в пределах рода *Cystobasidium*, таких как *Cystobasidium oligophagum*, *Cystobasidium laryngis*, *Cystobasidium iriomotense*. Они, повидимому, способны перерабатывать побочные продукты агропромышленного комплекса и были предложены в качестве продуцентов масла или ферментов [8]. Таким образом, представляет большой интерес дальнейшее изучение этой области и поиск новых дрожжей-базидиомицетов и изучение их биотехнологического потенциала.

Ранее в исследованиях авторами было определено, что психротолерантные дрожжи родов *Rhodotorula, Sporobolomyces* и *Cystobasidium* способны синтезировать различные комплексы каротиноидных пигментов, что приводило к окрашиванию колоний дрожжей в кораллово-красный, светло-розовый или оранжевый цвета [3, 12].

Целью данного исследования являлось определение влияния состава питательной среды на профиль синтезируемых пигментов дрожжами.

Материалы и методы

Штаммы дрожжей. Rhodotorula glutinis БИМ Y-375, Rh. glutinis БИМ Y-376, Rh. glutinis БИМ Y-369, Sporobolomyces phaffii БИМ Y-378, Sp. phaffii БИМ Y-367, Sp. phaffii БИМ Y-374, Sp. phaffii БИМ Y-370, Sp. phaffii БИМ Y-371, Sp. phaffii БИМ Y-372, Cystobasidium ritchiei БИМ Y-366, C. ritchiei БИМ Y-368. Дрожжи были выделены [13] из образцов мелкозёма Восточной Антарктиды, собранных на территории Земли Эндерби, станции Молодежная, полевой базе Гора Вечерняя, а также гор Принс-Чарльз [1, 3].

Культивирование дрожжей. Штаммы дрожжей были инокулированы в бульонную среду Сабуро (30 мл) в колбы Эрленмейера при аэрации 140 об/мин до достижения середины экспоненциальной фазы роста при температуре 18 °C [2]. После чего осуществлен засев дрожжей до ОП₆₀₀=0,1 А в следующие жидкие среды: Сабуро (панкреатический гидролизат рыбной муки 10,0 г/л, пан-

креатический гидролизат казеина 10,0 г/л, дрожжевой экстракт 2,0 г/л, NaH_2PO_4 2,0 г/л, Д–глюкоза 40,0 г/л), TSB («Trypticasein soy broth» — панкреатический гидролизат казеина 17 г/л, NaCl 5 г/л, папаиновый гидролизат соевых бобов 3 г/л, K_2HPO_4 2,5 г/л, моногидрат глюкозы 2,5 г/л), Сабуро с добавлением кукурузной муки 20 г/л и NH_4NO_3 3 г/л. После засева культивировали до достижения стационарной фазы роста.

Экстракция каротиноидов. С целью идентификации продуцируемых пигментов и обеспечения максимального выхода биомассы дрожжевых клеток, всю накопленную биомассу отделяли от культуральной жидкости, промывали и подвергали анализу пигментного состава. Извлечение пигментов проводили кислотным методом с использованием 96 % этилового спирта [14].

Спектрофотометрическое исследование пигментов. Исследования спектров поглощения экстрактов проводили в видимом диапазоне длин волн с применением спектрофотометра Solar PV 1251C («Солар», Москва). Количество пигментов рассчитывали по величине максимума поглощения с использованием уравнения Келли и Хармона [17, 22]. Типичной характеристикой каротиноидов является наличие трех пиков поглощения в видимом спектре [17, 21].

Статистический анализ результатов был выполнен в программном обеспечении Microsoft office Excel 2016. Расчеты были произведены в трех биологических повторах с учетом стандартного отклонения. Полученные данные были представлены в виде средних арифметических значений со стандартным отклонением.

Результаты и их обсуждение

В предварительных исследованиях было определено, что психротолерантные дрожжи родов *Rhodotorula, Sporobolomyces* и *Cystobasidium*, выделенные из образцов почв Восточной Антарктиды, способны синтезировать комплексы пигментов, включающие торулен, торулародин, ζ -каротин, β -каротин, γ -каротин и δ -каротин в различных соотношениях [3, 12].

Исследование влияния состава питательной среды на рост и синтез пигментов антарктическими дрожжами позволит выявить оптимальные условия синтеза пигментов для каждого исследуемого штамма [5].

Одними из основных компонентов питательной среды Сабуро являются панкреатический гидролизат рыбной муки и дрожжевой экстракт. Эти продукты получают путем ферментативного гидролиза рыбной муки и биомассы дрожжей, в результате которого образуются пептиды, аминокислоты и другие биологически активные вещества, в том числе и витамины. В гидролизате при-

сутствуют все 20 основных аминокислот, включая незаменимые, а также соли Na, Ca, K, Mg, P и другие, которые необходимы для роста и развития микроорганизмов.

Результаты гравиметрических исследований зависимости роста психротолерантных дрожжей от состава питательной среды для культивирования показали, что среда Сабуро содержит оптимальные компоненты среды и их соотношение для увеличения выхода влажной биомассы для большинства исследуемых штаммов психротолерантных дрожжей родов *Rhodotorula* и *Sporobolomyces* (рисунок 1). При этом наибольший выход биомассы среди представителей данных родов был зафиксирован у штаммов *Rh. glutinis* БИМ Y-375 и *Sp. phaffii* БИМ Y-378 и составил 1,93 г и 1,61 г соответственно.

Кукурузную муку, используемую в микробиологических исследованиях в качестве источника азотистых веществ (40–50 % от сухого веса), получают в крахмалопаточном производстве в результате гидротермической обработки кукурузного зерна. В состав входит 65–75 % крахмала и до 10 % других углеводов (клетчатка, пентозаны), 10–12 % белка, до 4 % жира, 0,8–1 % минеральных веществ [6].

Добавление в питательную среду Сабуро кукурузной муки и нитрата аммония, обеспечило увеличение выхода влажной биомассы у штаммов *Rh. glutinis* БИМ Y-376, *Sp. phaffii* БИМ Y-374, *C. ritchiei* БИМ Y-366 и *C. ritchiei* БИМ Y-368 и составило 2,31 г, 1,07 г, 1,94 г и 1,63 г соответственно (рисунок 1).

Триптиказеиновый соевый бульон (TSB-бульон) содержит в своем составе папаиновый гидролизат соевых бобов, который представляет собой смесь аминокислот, пептидов и других азотистых соединений, полученных в результате ферментативного гидролиза соевых бобов с помощью папаина. Данный гидролизат служит источником азота и других питательных веществ для роста микроорганизмов.

При росте в TSB-бульоне выход влажной биомассы значительно снизился. Для штаммов рода *Rhodotorula* прирост снизился на 65,9–72,4 % от максимального, для штаммов рода *Sporobolomyces* — на 44,15–68,7 %, для штаммов рода *Cystobasidium* — на 74,04–77,03 %. Полученные данные свидетельствуют о том, что компоненты гидролизата соевых бобов плохо метаболизируются исследуемыми штаммами антарктических дрожжей, что сказывается на заметном снижении их темпов роста.

Спектрофотометрическое исследование пигментов

Профили синтезируемых каротиноидов дрожжей родов *Rhodotorula* и *Sporobolomyces* были исследованы с использованием высокоэффективной жидкостной хроматографии (ВЭЖХ) и спектрофотометрического анализа [7, 9, 10, 18]. В исследованиях было показано, что эти дрожжи способны синтезировать такие каротиноиды как торулен, торулародин, β-каротин и γ-каротин в различных соотношениях. Также, в работе Кудрицкой С.Е. [4] были описаны и охарактеризованы спектральные профили всех известных каротиноидов различного происхождения, что дает возможность использовать спектрофотометрический анализ экстрактов из клеток дрожжей в идентификации каротиноидных пигментов.

Спектрофотометрические профили экстрактов из клеток антарктических дрожжей родов *Rhodotorula,*

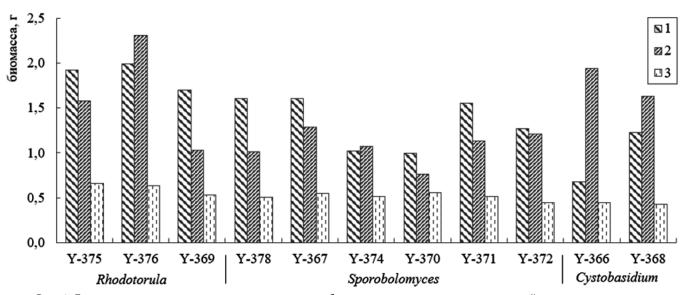


Рис. 1. Гравиметрические исследования прироста биомассы антарктических дрожжей при росте в средах различного состава: Сабуро (1), Сабуро с кукурузной мукой и $\mathrm{NH_4NO_3}(2)$, TSB (3)

Sporobolomyces и Cystobasidium показали наличие комплексов пигментов с характерными для каротиноидов максимумами поглощения (рисунок 2). Полученные данные пиковых значений соотносили с известными [4], что позволило провести их идентификацию (таблица 1).

Проведенный спектральный анализ показал, что состав питательной среды оказывал влияние не только на количество синтезируемых пигментов, но и на их профиль (рисунок 2).

Штаммы рода *Rhodotorula* при росте в среде Сабуро способны синтезировать преимущественно либо комплекс ζ -каротин и торулародин, либо ζ -каротин и торулен. При изменении состава среды наблюдали смещение спектрального профиля в сторону каротинов (ζ -, β - и у-каротина) (рисунок 2A).

Представители рода *Sporobolomyces* при росте в среде с добавлением кукурузной муки синтезировали преимущественно комплекс каротинов (ζ - и γ -каротин), в среде Сабуро и TSB-бульоне спектральный профиль менялся либо в сторону каротинов (ζ - и β -каротина), либо торулена (комплекс с ζ -каротином) (рисунок 2Б).

Спектральный профиль пигментов штаммов рода *Cystobasidium* отличался наличием только каротинов (преимущественно комплекс ζ - и δ -каротинов), при этом в присутствии кукурузной муки в среде происходил синтез ζ -каротина, без выраженного дополнительного пика сопутствующих пигментов (рисунок 2B).

В 2018 году в исследованиях М. Кот [15] был предложен путь биосинтеза торулена и торулародина в дрожжевых клетках. В процессе синтеза молекула ζ-каротина выступает предшественником для биосинтеза γ-каротина,

который в свою очередь является предшественником для синтеза β-каротина и торулена. Последний, в ходе реакций гидроксилирования и окисления, трансформируется до торулародина.

Наличие в спектральном профиле исследуемых экстрактов преимущественно каротинов в различных соотношениях свидетельствует о том, что процессов их последующей трансформации с образованием торулена и торулародина практически не происходит. Исключение составили штаммы рода *Rhodotorula*, штамм *Sp. phaffii* Y-374 (при росте в Среде Сабуро), а также штамм *Sp. phaffii* Y-372 (при росте в TSB-бульоне) способные синтезировать торулен и торулародин.

При анализе особенностей синтеза пигментов клетками дрожжей при росте в средах различного состава было определено, что суммарный выход каротиноидных пигментов уменьшался в следующем порядке: рост в среде Сабуро с добавлением кукурузной муку и нитрата аммония > в среде Сабуро > в TSB-бульоне. При этом содержание пигментов при росте в среде с добавлением кукурузной муки было в 1,6–2,2 раза больше, чем в среде Сабуро и в 2,0–6,1 раза больше, чем при росте в TSBбульоне (таблица 1).

Исключение составили штаммы Rh. glutinis БИМ Y-375 и C. ritchiei БИМ Y-366, наибольший суммарный выход пигментов которых был определен при росте в TSB-бульоне и составил 128,8 μ г/г и 104,9 μ г/г соответственно. Также у штаммов Rh. glutinis БИМ Y-376 и C. ritchiei БИМ Y-368 — при росте в среде Сабуро, с общим выходом пигментов 239,1 μ г/г и 138,5 μ г/г соответственно (таблица 1).

В ходе проведенного исследования наибольший суммарный выход пигментов был определен у штамма

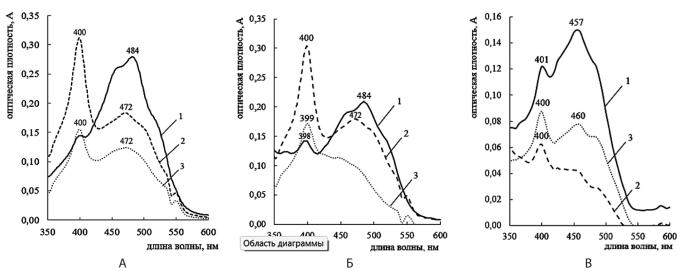


Рис. 2. Спектрофотометрические исследования этанольных экстрактов из клеток *Rh. glutinis* БИМ Y-369 (A), *Sp. phaffii* БИМ Y-374 (Б), *C. ritchiei* БИМ Y-368 (В) при росте в средах различного состава: Сабуро (1), Сабуро с кукурузной мукой и NH₄NO₃ (2), TSB (3)

Таблица 1. Влияние состава питательной среды для культивирования на синтез каротиноидов штаммами дрожжей родов Rhodotorula, Sporobolomyces, Cystobasidium

			Сабуро		Сабуро +кукурузная мука+NH4NO3			TSB		
штаммы	БИМ	пигмент	N, %	С, µг/г	пигмент	пигмент N,%		пигмент	N, %	С, µг/г
	V 275	ζ-каротин	38,3	55,85±0,42	7	100.0		ζ-каротин	50,9	120.02 : 0.50
	Y-375	торулародин	61,7	33,03±0,42 Ç-карі	ζ-каротин	100,0	113,51±0,75	β-каротин	49,1	128,82±0,58
Rhodotorula	Y-376	ζ-каротин	26,1	239,11±1,45	7 vana z iui	100.0	86,40±0,69	ζ-каротин	50,6	123,24±1,05
glutinis	1-3/0	торулародин	73,9		100,0	00,40±0,09	ү-каротин	49,4	123,24±1,03	
	Y-369	ζ-каротин	35,8	217,32±1,45 	64,9	451,86±2,73	ζ-каротин	58,2	126,69±0,83	
	1-307	торулен	64,2	217,32±1,43	ү-каротин	35,1	451,00±2,75	ү-каротин	41,8	120,09±0,63
	Y-378	ζ-каротин	39,4	163,10±1,25	ζ-каротин	ζ-каротин 55,8	296,47±2,53	ζ-каротин	56,2	117,16±0,77
	1-570	β-каротин	60,6	103,10±1,23	ү-каротин <i>ч</i>	44,2	290,47 ±2,33	β-каротин	43,8	117,10±0,77
	Y-367	ζ-каротин	38,4	\	65,5	307,72±1,70 (-каротин	57,5	94,55±0,81		
	יטכיו	торулен	61,6	104,30 ± 1,07	γ-каротин 34,5	34,5		β-каротин	42,6	94,33±0,61
	Y-374	ζ-каротин	37,5	318,00±1,80	ζ-каротин	65,0	504,99±2,93 С -каротин	100,0	83,32±0,57	
Sporobolomyces	1-3/4	торулен	62,5	310,00±1,00	ү-каротин	35,0		у-каротин тос	100,0	0 03,32±0,3/
phaffii	Y-370	ζ-каротин	46,9	230,90±1,98	ζ-каротин	62,3	373,73±2,29	ζ-каротин	51,9	184,09±1,11
	1-370	ү-каротин	53,1	230,30±1,30	ү-каротин	37,7		β-каротин	48,1	
	Y-371	ζ-каротин	39,2	216,20±1,63	ζ-каротин	62,4	438,39±3,57	ζ-каротин	54,3	164.05 + 1.20
	ו /נ-ו	β-каротин	60,8	210,20±1,03	ү-каротин	37,6	430,37±3,37	β-каротин	45,7	164,95±1,29
	Y-372	ζ-каротин	56,4	78,30±0,74	ζ-каротин	100.0	100,0 169,07±1,14	ζ-каротин	56,3	74,99±0,56
	1-372	β-каротин	43,6	/0,30±0,/4	у-каротин	100,0		торулен	43,7	74,99±0,50
	Y-366	ζ-каротин	43,9	80,50±0,38	7 Kanotuu	100.0	,0 86,60±0,46	ζ-каротин	60,1	104,98±0,71
Cystobasidium	1-300	δ-каротин	56,1	00,3U±U,30	ζ-каротин	100,0		δ-каротин	39,9	1U4,70±U,/ I
ritchiei	Y-368	ζ-каротин	53,9	138,50±0,77	7 Kanotuu	100.0	34,83±0,26	ζ-каротин	61,9	90,74±0,89
	1-300	δ-каротин	46,1	130,30±0,77	у-карогин	ζ-каротин 100,0		δ-каротин	38,1	₹₩±0,0₹

Примечание: «С» — общее содержание пигментов, «N» — состав пигментов, выраженный в процентном соотношении

Sp. phaffii БИМ Y-374 при росте в среде Сабуро с добавлением кукурузной муки и составил 504,9 μ г/г. Более того, у данного штамма был определен наибольший выход торулена (при росте в среде Сабуро), ζ — и γ -каротина (при добавлении кукурузной муки в среду), который составил 198,7±1,59 μ г/г, 328,39±1,64 μ г/г и 176,60±0,88 μ г/г соответственно. Наибольший выход торулародина определен у штамма *Rh. glutinis* БИМ Y-376 (в среде Сабуро) — 176,76±1,04 μ г/г, β -каротина — 131,4±1,05 μ г/г у штамма *Sp. phaffii* БИМ Y-371 (в среде Сабуро), δ -каротина — 63,9±0,45 μ г/г у штамма *C. ritchiei* БИМ Y-368 (в среде Сабуро).

Заключение

Таким образом, идентификация каротиноидных пигментов посредством спектрофотометрического анализа позволяет определить профиль и количество синтезируемых пигментов клетками дрожжей. В свою очередь, психротолерантные дрожжи, выделенные из образцов мелкозема Восточной Антарктиды, способны продуцировать различные формы каротинов, а также торулен и торулародин.

Экспериментально установлено, что добавление кукурузной муки в среду для культивирования приво-

дит к увеличению содержания пигментов в экстракте в 1,6–2,2 раза. В свою очередь папаиновый гидролизат соевых бобов не оказывает стимулирующего эффекта ни на количество биомассы, ни на синтез пигментов клетками дрожжей.

Полученные данные подчеркивают важность исследований влияния химических факторов среды на состав каротиноидных комплексов дрожжей, перспективных для применения в различных отраслях биотехнологии.

ЛИТЕРАТУРА

- 1. Грибанова, Е.А. Разнообразие и биотехнологический потенциал дрожжей, выделенных из различных экосистем Восточной Антарктиды / Е.А. Грибанова, В.Е. Мямин // Современная микология в Росси. 2024. № 2. С. 55—58.
- 2. Грибанова, Е.А. Особенности утилизации углеводов у психротолерантных дрожжей / Е.А. Грибанова // Современная наука: актуальные проблемы теории и практики: Серия «Естественные и Технические науки». 2025. № 5. С. 7–16.
- 3. Грибанова Е.А., Косило А.Ю. Спектрофотометрическое определение каротиноидных пигментов в клетках психротолерантных дрожжей / Е.А. Грибанова, А.Ю. Косило // New trends in science, society and technology: Collection of articles II International Scientific and Practical Conference. Melbourne: ICSRD «Scientific View». 2025. C. 5–17.
- 4. Кудрицкая, С.Е. Каротиноиды плодов и ягод / С.Е. Кудрицкая, Киев: Выща школа. 1990. 210 с.
- 5. Савчик А.В., Новик Г.И. Каротиноидсинтезирующие дрожжевые грибы и их применение в биотехнологии / А.В. Савчик, Г.И. Новик // Пищевая промышленность: наука и технологии. 2020. Т. 13, № 3 С. 70–83.
- 6. Шульц Л.В., Красноштанова А.А. Оптимизация процесса экстракции белка из кукурузной муки / Л.В. Шульц, А.А. Красноштанова // Успехи в химии и химической технологии. 2020. Т. 34, № 11. С. 19—20.
- 7. Buzzini, P. Carotenoid profiles of yeasts belonging to the genera *Rhodotorula, Rhodosporidium, Sporobolomyces*, and *Sporidiobolus* / P. Buzzini, M. Innocenti, B. Turchetti [et all] // Canadian Journal of Microbiology. 2007. V. 53, № 8. P. 1024–1031.
- 8. Chreptowicz, K. Carotenoid-producing yeasts: identification and characteristics of environmental isolates with a valuable extracellular enzymatic activity / K. Chreptowicz, J. Mierzejewska, J. Tká*cová [et all] // Microorganisms. 2019. V. 7, № 12. P. 1–18.
- 9. Davoli, P. Carotenoids and fatty acids in red yeasts *Sporobolomyces roseus* and *Rhodotorula glutinis* / P. Davoli, V. Mierau, R. W. S. Weber // Applied Biochemistry and Microbiology. 2004. V. 40, № 4. P. 392–397.
- 10. Ferdes, M. The Influence of the carbon source on torularhodin pigment biosynthesis / M. Ferdes, C. Ungureanu, A. Mihalcea [et all] // REV. CHIM. 2011. V. 62, № 3. P. 339–343.
- 11. Fraser, P.D. The biosynthesis and nutritional uses of carotenoids / P.D. Fraser, P. M. Bramley // Progress in Lipid Research. 2004. V. 43, № 3. P. 228–265.
- 12. Gribanova, E.A. Effect of carbohydrate source on the synthesis of carotenoid pigments by psychrotolerant yeasts *Rhodotorula*, *Sporobolomyces* and *Cystobasidium /* E.A. Gribanova // Scientific research of the SCO countries: synergy and integration. 2025. P. 134—141.
- 13. Gribanova E.A., Miamin V.E. Physiological and biochemical traits of yeasts from soils of various ecosystems of East Antarctica / E.A. Gribanova, V.E. Miamin // Ukrainian Antarctic Journal. 2021. № 2. P. 106–116.
- 14. Holzapfel, N.P. The potential role of lycopene for the prevention and therapy of prostate cancer: from molecular mechanisms to clinical evidence / N.P. Holzapfel, B.M. Holzapfel, S. Champ [et all] // International Journal of Molecular Sciences. 2013. V. 14, № 7. P. 14620–14646.
- 15. Kot, A.M. Torulene and torularhodin: "new" fungal carotenoids for industry? / A.M. Kot, St. Błażejak, I. Gientka [et all] // Microbial Cell Factories. 2018. V. 17, № 1. P. 1–14.
- 16. Liu, C. Study on the wall-breaking method of carotenoids producing yeast *Sporidiobolus pararoseus* and the antioxidant effect of four carotenoids on SK-HEP-1 cells / C. Liu, Y. Cheng, Ch. Du [et all] // Preparative Biochemistry and Biotechnology. 2019. V. 49, № 8. P. 767–774.
- 17. Maldonade, I.R. Carotenoids of yeasts isolated from the Brazilian ecosystem / I.R. Maldonade, D.B. Rodriguez-Amaya, A.R.P. Scamparini // Food Chemistry. 2008. V. 107, № 1. P. 145–150.
- 18. Matselyukh, B.P. Isolation of *Phaffia rhodozyma* yeasts mutants under increased carotenoid content / B.P. Matselyukh, D.Ya. Matselyukh, S.L. Golembiovska [et all] // Biotechnologia Acta. 2014. V. 7, № 4. P. 49–53.
- 19. Mendonça Maciel, M.J. Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review / M.J. Mendonça Maciel, A. Castro E Silva, H.C. Telles Ribeiro // Electronic Journal of Biotechnology. 2010. V. 13, № 6. P. 1–13.
- 20. Peralta, R.M. Enzymes from Basidiomycetes—peculiar and efficient tools for biotechnology, Elsevier. Academic Press, 2017. P. 119–149.
- 21. Sakaki, H. Torularhodin as a potent scavenger against peroxyl radicals isolated from a soil yeast, *Rhodotorula glutinis* / H. Sakaki, T. Nakanishi, S. Komemushi, [et all] // Journal of Clinical Biochemistry and Nutrition. 2001. V. 30. P. 1–10.
- 22. Schmidt, I. Biotechnological production of astaxanthin with *Phaffia rhodozyma/Xanthophyllomyces dendrorhous /* I. Schmidt, H. Schewe, S. Gassel [et all] // Applied Microbiology and Biotechnology. 2011. V. 89, № 3. P. 555–571.
- 23. Stahl, W. Carotenoids and protection against solar UV radiation / W. Stahl, H. Sies // Skin Pharmacology and Physiology. 2002. V. 15, № 5. P. 291–296.
- 24. Stolarzewicz, I. Mikrobiologiczne źródła barwników w technologii żywności / I. Stolarzewicz, A. Kapturowska, E. Bialecka-Florjanczyk //Postępy Mikrobiologii. 2012. V. 51, № 3. P. 167–176.
- 25. Tsuji, M. *Cystobasidium tubakii* and *Cystobasidium ongulense*, new basidiomycetous yeast species isolated from East Ongul Island, East Antarctica / M. Tsuji, M. Tsujimoto, S. Imura // Mycoscience. 2017. V. 58, № 2. P. 103—110.

© Грибанова Екатерина Александровна (lika-den98@mail.ru) Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.13

ПРИРОДНЫЕ И ИСКУССТВЕННЫЕ РАДИОНУКЛИДЫ В ЛАНДШАФТЕ ДУДЕРГОФСКИХ ВЫСОТ

NATURAL AND TECHNOGENIC RADIONUCLIDES IN THE DUDERHOF HEIGHTS LANDSCAPE

E. Ivanov

Summary. As a result of analyses of soil samples and samples of dry fungi fruit bodies carried out by gamma-spectrometry and beta-radiometry, it was found that that the total activity of beta-emitting radionuclides in the Dudergof Heights landscape (Saint-Petersburg and Leningrad Region) is due to the natural isotope potassium-40. The contribution of caesium-137 to the total activity is insignificant, and it is confined only in the upper part of the soil profile to a depth of 15 cm. Isotopes of radium-226 and thorium-232 have been identified, and the distribution of the latter is uniform. The total activity of beta-emitting radionuclides in the fruiting bodies of fungi is also caused by potassium-40, and the accumulation coefficients on sod-carbonate soil are 1,5–2,0 times lower than on sod-podzolic soil, due to its acid-base properties.

Keywords: Duderhof Heights, landscape, natural and technogenic radionuclides, fungal fruiting bodies, accumulation.

Иванов Евгений Дмитриевич

Аспирант,

Санкт-Петербургский государственный университет evgeniy_ivanov2000@mail.ru

Аннотация. В результате анализов почвенных проб и образцов сухих плодовых тел грибов, проведенных методами гамма-спектрометрии и бетарадиометрии было установлено, что в ландшафте Дудергофские высоты (Санкт-Петербург и Ленинградская обл.) суммарная активность бета-излучающих радионуклидов обусловлена природным изотопом калий-40. Вклад цезия-137 в суммарную активность незначительный, причем он приурочен только в верхней части почвенного профиля до глубины 15 см. Идентифицированы изотопы радий-226 и торий-232, причем распределение последнего носит равномерный характер. Суммарная активность бетаизлучающих радионуклидов в плодовых телах грибов также вызвана калием-40, причем коэффициенты накопления на дерново-карбонатной почве в 1,5—2 раза ниже, чем на дерново-подзолистой почве, что обусловлено ее кислотно-основными свойствами.

Ключевые слова: Дудергофские высоты, ландшафт, природные и техногенные радионуклиды, плодовые тела грибов, накопление.

Введение

ля защиты здоровья населения и окружающей среды актуальной является задача мониторинга искусственных радионуклидов техногенного происхождения. Активность цезия-137 в различных ландшафтах связана прежде всего с авариями на объектах атомной энергетики и испытаниями ядерного оружия [1].

Активность радионуклидов антропогенного происхождения первоначально была обусловлена их выпадением из атмосферных аэрозолей. Вторичное перераспределение произошло за счет смыва с крон древесной растительности на поверхность почвы в лесных экосистемах и процессов вертикальной и горизонтальной миграции в болотных экосистемах [2].

В тоже время активность естественных радионуклидов радия-226, тория-232, урана-238 зависит от их концентрации в тех породах, на базе которых почва сформировалась. Кроме того, происходит их перераспределение в результате естественных геологических процессов, например в ландшафте Дудергофских высот происходит эмманирование радона [3]. Мониторинг активности природных и антропогенных радионуклидов в различных ландшафтах является актуальным, поскольку необходим для защиты и сохранения здоровья населения. В настоящее время возможно поступление радионуклидов в продукты, которые потенциально могут быть использованы населением в качестве дополнительного источника питания. Прежде всего, это дикорастущие съедобных грибы — группа организмов, накапливающая радионуклиды антропогенного происхождения в большой степени [4] и традиционно использующаяся для приготовления различных блюд, имеющих свои региональные особенности.

В Ленинградской области преобладают подзолистые почвы [5]. При этом почвы Ижорской возвышенности — дерново-карбонатные, поскольку образовались на известковых горных породах ордовикского периода. Они более благоприятны для ведения сельского хозяйства. Поэтому их называют «нечерноземные черноземы» или «северные черноземы».

Ижорская возвышенность находится на территории Ломоносовского, Гатчинского и Волосовского районов Ленинградской области и Красносельского р-на Санкт-Петербурга. Площадь Ижорской возвышенности существенная, она составляет около 8 % территории

Ленинградской области [6], причем это лучшие земли для ведения сельского хозяйства. Нам необходимо знать распределение радионуклидов антропогенного происхождения в дерново-карбонатных почвах Ижорской возвышенности поскольку их интенсивно используют для производства сельскохозяйственной продукции.

Уникальным ландшафтом Ижорской возвышенности являются Дудергофские высоты. Памятник природы Дудергофские высоты образован тремя горами. Горы Воронья и Ореховая расположены у ж.д. станции Дудергоф, а гора Кирхгоф отстоит от них на два километра восточнее. Дудергофские высоты — группа холмов ледникового происхождения, которые на основе геологических данных рассматривают как единый ландшафт, сформировавшийся в результате деятельности ледника последнего валдайского оледенения.

На территории Ижорской возвышенности в ландшафте Дудергофских высот проводятся исследования источников природного излучения [3], [7]. Повышенная природная радиоактивность на Дудергофских высотах обусловлена выносом на поверхность, в результате ледникового подпора, нижележащих пород, богатых известнякам. Одним из существенных источников природных радионуклидов являются диктионемовые сланцы [8].

При этом, распределение радионуклидов искусственного происхождения, поступивших с атмосферными аэрозолями в ландшафт Дудергофских высот, нуждается в более детальном анализе. В Ленинградской обл. выпадения чернобыльского следа с плотностью загрязнения 1 Ки/км² (37000 Бк/м²) приурочены как к верховым торфяным сфагновым болотам, торфяным почвам с кислой реакцией среды, так и к дерново-карбонатным почвам. На карте загрязнения Ленинградской области цезием-137 на Ижорской возвышенности указана протяженная область загрязнения с плотностью 1 Ки/км² (37000 Бк/м²) от Большого Тешково до Котлов, Караваево и Раннолово [9].

Для изучения распределения природных и антропогенных радионуклидов был выбран ландшафт Дудергофских высот вследствие сочетания следующих факторов: холмистый рельеф местности, дерново-карбонатные почвы, наличие природных источников излучения и данные о выпадении цезия-137 в районе проведения исследований [9] на основании которых можно высказать предположение его присутствии в почве и природных объектах.

Цель работы. Проанализировать распределение радионуклидов в профиле дерново-карбонатной почвы ландшафта Дудергофские высоты (Санкт-Петербург и Ленинградская обл.), установить вклад цезия-137 в суммарную активность бета-излучающих радионуклидов и оценить его накопление в плодовых телах грибов.

Материалы и методы исследования

На Вороньей горе (Красносельский район Санкт-Петербурга) по маршруту, пролегающему с запада на восток через точки с координатами (N 59°42.161′, E030°07.384′, H 134 м), (N 59°42.125′, E030°07.849′, H 128 м), (N 59°42.051′, E030°08.045′, H 137 м) 09.09.2021 было отобрано 5 почвенных проб до глубины 0–10 см. Почва дерново-карбонатная типичная эродированная суглинистая сильнощебнистая. В метах отбора почвенных проб собирали находящиеся рядом плодовые тела грибов.

На втором этапе проведения исследований почвенные разрезы, глубина которых варьировала из-за особенностей рельефа и почвы, были заложены на Вороньей горе и горе Кирхгоф 20.09.2022.

Суммарную активность бета-излучающих радионуклидов измеряли на радиометре «Бета» с газоразрядным счетчиком торцевого типа СБТ-10. Время измерения 2000 с. Измерение фона проводили каждые 2 часа. Масса навески определялась объемом измерительной кюветы. Для измерения использовали образцы высушенные в потоке теплого воздуха до воздушно-сухой массы. Навеска почвы для измерения составляла 40 г, а для подовых тел грибов 4 г.

Идентификацию радионуклидного состава пробы проводили на сцинтилляционном гамма-спектрометре МКГБ-01 «РАДЕК» производства НТЦ «Радиационная экология», позволяющем выявить в пробе содержание следующих изотопов: калий-40, цезий-137, радий-226, торий-232.

Результаты и их обсуждение

При проведении первого этапа данного исследования был применен следующий подход. Известно, что одними из организмов, максимально накапливающих цезий-137 являются грибы из группы образующих облигатную эктотрофную микоризу с корнями древесных пород [10]. Подход основан на том, что выбор мест для отбора почвенных проб проводится после обнаружения плодовых тел грибов, которые затем также собирают, высушивают и готовят из них образцы для последующего измерения изотопов. Предложенный подход к отбору почвенных проб позволяет дополнительно к распределению активности в профиле почвы анализировать их накопление плодовыми телами грибов.

Таким образом, на первом этапе исследований был проведен мониторинг суммарной активности бета-из-лучающих радионуклидов в прикопках, отобранных маршрутным методом в местах плодоношения грибов, образующих эктотрофную микоризу. Результаты пилотного мониторинга суммарной активности бета-излучаю-

щих радионуклидов калия-40 и цезия-137 в прикопках, выполненных на Вороньей горе по маршруту (см. раздел материалы и методы) следующие (Бк/кг): 449 ± 13 , 356 ± 10 , 413±16, 459±5, 369±7. Коэффициент вариации составляет 11,3 % что характеризует изменчивость суммарной активности как среднюю, причем ближе к незначительной (до 10 %). Активность дерново-карбонатной почвы, отобранной по маршруту на Вороньей горе, в 1,6-2,9 раза выше, чем активность дерново-подзолистой почвы в окрестностях чернобыльского следа (Гатчинский р-н, Ленинградская обл.), варьирующей от 160 до 220 Бк/кг. При этом, анализ радионуклидного состава проб методом гамма-спектрометрии показал, что в активность дерново-карбонатной почвы на Вороньей горе она обусловлена калием-40, в то время как в случае дерновоподзолистой почвы — цезием-137.

Анализ суммарной удельной активности радионуклидов, излучающих бета частицы, был проведен в плодовых телах грибов, собранных на маршруте, величина коэффициента накопления (КН) была определена по отношению к активности в почве (см. таблицу 1). Методом гамма-спектрометрии было установлено, что активность обусловлена природным изотопом калий-40.

Таблица 1. Коэффициенты накопления бета-излучающих радионуклидов грибами из дерново-карбонатной почвы

Nº	Вид	Гриб Ō±∆Q*, Бк/кг	Почва Ō±∆Q*, Бк/кг	КН
1	Lactarius vellereus (Fr.) Fr.	1553±65	356±10	4,4±0,3
2	Suillus luteus (L.) Gray	1776±72	413±16	4,3±0,3
3	Amanita fulva (Schaeff.) Fr.	2158±113	413±16	5,2±0,5
4	Lactarius torminosus (Schaeff.) Pers.	978±103	459±5	2,1±0,2
5	Russula emetica (Schaeff.) Pers.	1854±98	369±7	5,0±0,4

Примечание: * — расчёт доверительного интервала средней активности проведён при уровне значимости p<0,05

Источник: измерения автора

Коэффициенты накопления (КН) грибами по отношению к дерново-карбонатной почве имеют более низкие значения, чем на дерново-подзолистой. Это связано с тем, что в условиях слабощелочной среды бета-излучающие радионуклиды с одной стороны менее подвижны, а с другой могут фиксироваться в межпакетном пространстве глинистых алюмо-силикатных минералов.

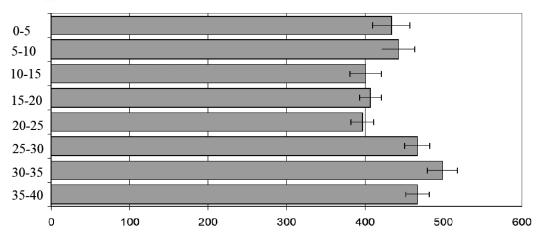
На следующем этапе исследования в месте массового плодоношения грибов, был выполнен почвенный

разрез на глубину 40 см. В образцах почвы, отобранных с шагом 5 см, были проведены анализ суммарной активности бета-излучающих радионуклидов и идентификация радионуклидного состава методом гамма-спектрометрии с измерением их активности. Полученные результаты представлены в табл. 2. На рис. 1 приведена гистограмма распределения суммарной активности бета-излучающих радионуклидов в профиле почвы, которая показывает, она носит равномерный характер, коэффициент вариации составляет 8,4 %. Это характеризует изменчивость распределения суммарной активности радионуклидов как незначительную (до 10 %). Распределение радионуклидов в профиле дерново-карбонатной почвы на Вороньей горе отличается от регрессивного типа распределения для которого характерен максимум активности в верхней части почвенного профиля, приуроченный к подстилке, с резким снижением активности в минеральной части профиля, что наблюдается для дерново-подзолистых почв, в Гатчинском и Лужском районах Ленинградской области [2].

Таблица 2. Активность радионуклидов в профиле дерново-карбонатной почвы Вороньей горы по данным бета-радиометрии и гамма-спектрометрии

Н, см	⁴⁰ К и ¹³⁷ Cs*, Бк/кг	¹³⁷ Cs**, Бк/кг	⁴⁰ К**, Бк/кг	²²⁶ Ra**, Бк/кг	²³² Th**, Бк/кг
0-5	434±24	н п/о	н п/о	75±36	82±15
5-10	443±21	27±10	347±100	н п/о	86±15
10–15	401±20	19±9	423±88	н п/о	89±14
15-20	407±14	н п/о	353±79	47±22	70±12
20–25	397±15	н п/о	н п/о	н п/о	75±34
25-30	467±16	н п/о	496±140	79±39	68±17
30–35	499±19	н п/о	560±150	83±41	75±18
35-40	467±15	н п/о	604±200	н п/о	89±23

Примечания:


Источник: измерения автора

Анализ радионуклидного состава почвенных проб методом гамма-спектрометрии показывает (см. таблицу 2), что активность бета-излучающих радионуклидов обусловлена изотопом калий-40, в то время как цезий-137 отмечен в небольших количествах только в образцах на глубине от 5 до 15 см. При этом установлено,

^{* —} суммарная бета-активность по результатам бетарадиометрии, доверительный интервал определен при уровне значимости p<0,05;

^{** —} активность радионуклида по данным гамма-спектрометрии, указана абсолютная погрешность; н п/о активность ниже предела обнаружения прибора, т.е. не наблюдается

Глубина, см

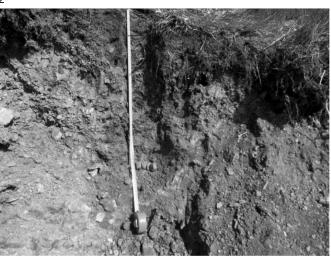

Суммарная активность бета-излучающих радионуклидов Бк/кг

Рис. 1. Гистограмма распределения удельной активности бета излучающих радионуклидов в профиле дерново-карбонатной почвы на Вороньей горе

Источник: составлено автором на основе данных таблицы 2

А. Вид на северо-западный склон горы Кирхгоф

В. Почвенный разрез на северо-западном склоне горы Кирхгоф I

С. Вид на юго-восточный склон горы Кирхгоф

D. Почвенный разрез на юго-восточном склоне горы Кирхгоф II

Рис. 2. Места отбора проб на горе Кирхгоф и почвенные разрезы

Источник: фотографии автора

что почва содержит изотопы радий-226 и торий-232, причем распределение последнего носит равномерный характер.

Гора Кирхгоф является частью природного ландшафта Дудергофские высоты. Согласно административнотерриториальному делению, гора Кирхгоф находится в Ломоносовском районе Ленинградской области, а горы Ореховая и Воронья входят в состав Красносельского р-на Санкт-Петербурга, т.е. части единого ландшафта Дудергофские высоты находятся на территории разных субъектов Российской Федерации. Это обстоятельство необходимо учитывать, поскольку оно имеет значение для регулирования деятельности, направленной на сохранение уникального природного объекта.

На рисунке 2 представлены фотографии мест отбора почвенных проб и почвенные разрезы. Для представления результатов измерения активности бета-излучающих радионуклидов в таблице 3 почвенный разрез на северо-западном склоне горы (см. рисунок 2A) обозначен как Кирхгоф I (см. рисунок 2B), а на юго-восточном склоне (см. рисунок 2C), как Кирхгоф II (см. рисунок 2D).

Результаты анализа активности бета-излучающих радионуклидов представлены в таблице 3.

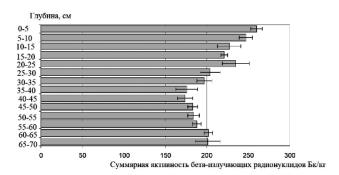
Таблица 3.

Активность радионуклидов в профиле дерново-карбонатной почвы горы Кирхгоф по данным бета-радиометрии

Nº	Н, см	Кирхгоф I $ar{\mathrm{Q}}\pm\Delta\mathrm{Q}^*$, Бк/кг	Кирхгоф II $ar{\mathrm{Q}}\pm\Delta\mathtt{Q}^*$ Бк/кг
1	0–5	248±10	260±7
2	5–10	189±11	247±8
3	10–15	214±17	227±14
4	15–20	190±14	221±4

Глуб	ина,	CM .						
-5								
10					-			
-15					<u> </u>	⊣		
5-20					-			
)-25]		i i				-		
5-30					F	-		
)-35								
5-40 J					I	4		
-45					-	-		
-50						, ·		
Ö		50	100	150	200	250	300	350
		C	ммарная а	*********	Sama von	***************************************		rran Er

А. Северо-западный склон Кирхгоф I


Nº Кирхгоф II $\overline{Q}\pm\Delta Q^*$ Бк/кг Н, см Кирхгоф I $\bar{Q}\pm\Delta Q^*$, Бк/кг 5 20-25 213±15 235±16 25-30 6 238±17 204±12 7 197±9 30-35 238±14 8 35-40 219±7 176±13 9 40-45 214±13 174±9 10 45-50 293+21 183±6 50-55 184±7 11 188±5 12 55-60 13 60-65 202±5 14 65-70 201±15

Примечание: * — расчёт доверительного интервала средней активности проведён при уровне значимости p<0,05

Источник: измерения автора

На рисунке 3 приведены гистограммы распределения суммарной бета-ативности в профиле почвы, построенные по данным таблицы 3, которая показывает, распределение носит равномерный характер, коэффициент вариации активности для почвы Кирхгоф I составляет 13,6 %, а для почвы Кирхгоф II 13 %. Это характеризует изменчивость распределения суммарной бета активности радионуклидов как среднюю (от 10 % до 20 %), причем ближе к несущественной. Главной характеристикой распределения активности в профиле почвы является то, что она не уменьшается с глубиной, что было бы характерно для регрессивного распределения, а носит более выраженный равномерный характер, о чем свидетельствуют коэффициенты вариации.

В центральной части горы Кирхгоф находятся выходы кембрийской глины, в которой также был заложен

В. Юго-восточный склон Кирхгоф II

Рис. 3. Гистограммы распределения суммарной активности бета излучающих радионуклидов в дерново-карбонатной почве горы Кирхгоф

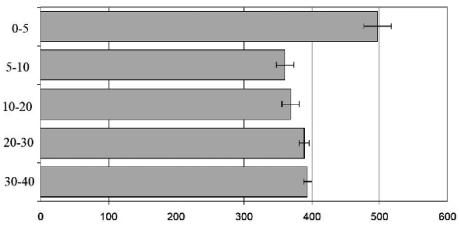
Источник: составлено автором на основе таблицы 3

А. Почвенный разрез в месте выхода кембрийской глины В. Плодовое тело Подосиновика красного Рис. 4. Отбор образцов в центральной части горы Крихгоф

Источник: собственные фотографии автора

почвенный разрез до глубины 40 см (см. рисунок 4A). Результаты проведенного анализа представлены в таблице 4. Суммарная активность бета-излучающих радионуклидов в полтора — два раза выше в кембрийской глине, чем в образцах дерново-карбонатной почвы (см. таблицу 3), но она также обусловлена присутствием калия-40. Коэффициент вариации активности в кембрийской глине на горе Кирхгоф составляет 13,6 %, что также характеризует изменчивость распределения суммарной активности радионуклидов как среднюю, причем ближе к несущественной.

В центральной части горы Кирхгоф было обнаружено плодовое тело Подосиновика красного — *Leccinum aurantiacum* (Bull.) Gray (см. рисунок 4В) под которым была выполнена прикопка на глубину 8 см. Результаты измерения активности для шляпки плодового тела со-


Таблица 4. Суммарная активность бета-излучающих радионуклидов в кембрийской глине

Nº	Н, см	Ō±ΔQ* Бк/кг
1	0–5	497±20
2	5–10	361±13
3	10–20	369±13
4	20–30	389±7
5	30–40	394±6

Примечание: * — расчёт доверительного интервала средней активности проведён при уровне значимости p<0,05

Источник: измерения автора

Суммарная активность бета-излучающих радионуклидов Бк/кг

Рис. 5. Гистограмма распределения суммарной активности бета-излучающих радионуклидов в кембрийской глине Источник: рисунок составлен на основании таблицы 4

ставили 1728±310 Бк/кг, методом гамма спектрометрии было установлено что основной вклад в активность вносит изотоп калий-40. Результат измерения активности верхней части почвенного профиля под грибом составил 370±7 Бк/кг. Коэффициент накопления КН плодовым телом гриба из почвы составляет 4,7±0,9, что ниже значений полученных для плодовых тел грибов, формирующихся на дерново-подзолистых почвах, для которых КН варьирует в диапазоне от 6 до 10, что обусловлено кислотностью почвы.

Заключение

Установлено, что распределение активности бетаизлучающих радионуклидов в экосистемах ландшафта Дудергофские высоты на 95 % обусловлено калием-40. Распределение калия-40 в профиле почвы носит равномерный характер. Вклад цезия-137 в суммарную бета активность незначительный, в профиле почвы его практически не наблюдается. В случае его присутствия он приурочен к верхней части почвенного профиля к горизонтам, расположенным до глубины 15 см. Установлено присутствие в профиле радия-226 и тория-232, причем распределение тория-232 носит равномерный характер.

Активность в плодовых телах грибов обусловлена присутствием калия-40, по цезию-137 она не превышает допустимых значений. Коэффициенты накопления бета-излучающих радионуклидов плодовыми телами грибов, варьируют в диапазоне от 2,1 до 5,2 (см таблицу 1), что ниже чем коэффициенты накопления из дерново-подзолистой почвы, поскольку дерново-карбонатная почва, благодаря значениям рН, близким к нейтральным, ограничивает подвижность ионов щелочных металлов, в том числе и изотопа цезий-137.

ЛИТЕРАТУРА

- 1. Ильин Л.А., Губанов В.А. Крупные радиационные аварии: последствия и защитные меры. М.: «ИздАТ». 2001. 752 с.
- 2. Ivanov E.D. Distribution of cesium-137 in peat soil of a high-bog depending on the microrelief // IOP Conference Series: Earth and Environmental Science, (2022), 981 (3), № 032042 DOI: 10.1088/1755-1315/981/3/032042
- 3. Лебедев С.В., Рубаник А.В., Климова Л.А. Дудергофские высоты, высокорадиоактивные геологические тела и экологический риск // Геология, геоэкология, эволюционная география: Коллективная монография / Под ред. Е.М. Нестерова, В.А. Снытко. Том XVII. Санкт-Петербург: Российский государственный педагогический университет им. А.И. Герцена, 2018. С. 153—161. EDN YUBRAT.
- 4. Шабалева М.А., Булко Н.И., Козлов А.К. Прогнозирование радиоактивной загрязненности лесной пищевой продукции 137Сs и средней дозы внутреннего облучения организма за счет ее употребления // Проблемы здоровья и экологии. 2014. № 2(40). С. 119—125. EDN TSLELB.
- 5. Пестряков В.К. (ред.) Почвы Ленинградской области Л.: Лениздат, 1973. 344 с.
- 6. Дужников Ю.А. По Ижорской возвышенности: Путеводитель для туристов. Л.: Лениздат, 1972. 216 с.
- 7. Белая А.К. Радиационная обстановка на территории памятника природы регионального значения «Дудергофские высоты» // Экологическая химия. 2024. Т. 33, № 5. С. 248—256. EDN KJKIFS.
- 8. Ефремова У.С. Радиоэкологический мониторинг участков выходов диктионемовых сланцев на дневную поверхность на территории Ленинградской области // Мониторинг состояния и загрязнения окружающей среды. Основные результаты и пути развития: тезисы докладов Всероссийской научной конференции, Москва, 20—22 марта 2017 года / ФГБУ «Институт глобального климата и экологии Росгидромета и РАН». Москва: Институт глобального климата и экологии Росгидромета и РАН, 2017. С. 629—630. EDN ZNIYTZ.
- 9. Ленинградская область. Карта радиоактивного загрязнения местности (цезием 137). 1: 200 000. СПб.: КПЦ «Ленлес». 1992. 30 листов карт.
- 10. Щеглов А.И., Цветнова О.Б. Грибы биоиндикаторы техногенного загрязнения // Природа. 2002. № 11. С. 39—6.

© Иванов Евгений Дмитриевич (evgeniy_ivanov2000@mail.ru) Журнал «Современная наука: актуальные проблемы теории и практики»

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПРОЦЕССОВ ПОДАВЛЕНИЯ РОСТА БАКТЕРИЙ ПРИ ДЕЗИНФЕКЦИИ ВОДЫ РАЗЛИЧНЫМИ СПОСОБАМИ¹

COMPARATIVE CHARACTERISTICS OF BACTERIAL GROWTH SUPPRESSION PROCESSES DURING DISINFECTION OF WATER IN VARIOUS METHODS

A. Israpilova A. Adieva P. Bekshokova A. Magomedova Z. Alieva A. Isaev

Summary. Introduction. Escherichia coli, Staphylococcus aureus and Salmonella spp. pose the greatest threat to human health due to their growing resistance to antibiotics. In Makhachkala, the largest water bodies are the October Revolution Canal (ORC), which is used for the central water supply of the city, and water treatment facilities — systems designed to purify wastewater.

Purpose of the study. Comparative assessment of the effect of hydrogen peroxide and hypochlorite on microorganisms of sanitary and epidemiological significance, as well as determining the effectiveness of ultraviolet (UV) disinfection in relation to bacterial contamination of drinking water.

Materials and methods. Three samples of drinking water were used: bottled drinking water, tap water (Makhachkala) and natural water from the ORC before delivery to consumers. Then the water samples were processed. Pure cultures of E. coli, Staph. aureus and Salmonella spp. bacteria were used for control in the work.

Results. When processing water samples using a modified method, a pronounced bactericidal effect was found, which is expressed in a decrease in CFU. The maximum antimicrobial effect was observed with a combination of UV with peroxide and UV with hypochlorite.

Limitations of the study. In tap water and natural water from KOR, pathogens of serious diseases were identified. Therefore, it is necessary to expand knowledge about water sources as reservoirs and distributors of these pathogens.

Conclusion. The proposed highly effective water treatment methods can be of practical importance for providing city residents with water purified from microorganisms.

Keywords: water purification, oxidizing agents, pathogenic microorganisms.

Исрапилова Ашура Исмаиловна

Аспирант, Прикаспийский институт биологических ресурсов Дагестанского Федерального Исследовательского центра Российской Академии Наук (Махачкала)

ms.israpilova98@bk.ru

Адиева Айна Ахмедовна

Доктор биологических наук, доцент, Прикаспийский институт биологических ресурсов Дагестанского Федерального Исследовательского центра Российской Академии Наук (Махачкала) adieva-m@mail.ru

Бекшокова Патимат Асадулламагомедовна

Кандидат биологических наук, доцент, Дагестанский государственный университет (Махачкала) patenka2009@mail.ru

Магомедова Асият Германовна

Кандидат химических наук, старший преподаватель, Дагестанский государственный университет (Махачкала)

asyat_g@mail.ru

Алиева Заира Абдурахмановна

кандидат биологических наук, доцент, Дагестанский государственный педагогический университет им. Р. Гамзатова (Махачкала) Alza67@mail.ru

Исаев Абдулгалим Будаевич

Кандидат химических наук, доцент, Дагестанский государственный университет (Махачкала) abdul-77@yandex.ru

Аннотация. Введение. Наибольшую угрозу для здоровья человека из-за их растущей устойчивости к антибиотикам, представляют Escherichia coli, Staphylococcus aureus и Salmonella spp. В г. Махачкала самыми крупными водными объектами является канал им. Октябрьской Революции (КОР), который используется для центрального водоснабжения города и водоочистительные сооружения—системы, предназначенные для очисткисточных вод. Цель исследования. Сравнительная оценка действия пероксида водорода и гипохлорита на микроорганизмы, имеющие санитарно-эпидемиологическое значение, а также, определение эффективности ультрафиолетового (УФ) обеззараживания в отношении бактериального загрязнения питьевой волы

Материалы и методы. Использовали три образца проб питьевой поды: бутилированная питьевая вода, водопроводная вода (г. Махачкала) и природная вода из КОРа до подачи потребителям. Далее проводили обработку проб воды. Для контроля в работе использовали чистые культуры бактерий E. coli, Staph. aureus и Salmonella spp.

¹ Работа выполнена при финансовой поддержке Гранта Главы РД № 16/2023 (руководитель Магомедова А.Г.)

Результаты. При обработке проб воды модифицированным методом был обнаружен ярко выраженный бактерицидный эффект, который выражается в уменьшении КОЕ. Максимальный противомикробный эффект наблюдался при сочетании УФ с перекисью и УФ с гипохлоритом.

Ограничения исследования. В водопроводной воде и природной воде из КОРа, были идентифицированы возбудители серьезных заболеваний. Поэтому необходимо расширить знания об источниках воды как резервуарах и распространителях данных патогенов.

Заключение. Предложенные высокоэффективные методы обработки воды могут иметь прикладное значение для обеспечения жителей городов очищенной от микроорганизмов водой.

Ключевые слова: очистка воды, окислители, патогенные микроорганизмы.

Введение

ефицит питьевой воды является одной из самых серьезных глобальных проблем современности [14; 28]. Необходимость в эффективных и экологически «чистых» способах обеззараживания питьевой воды с точки зрения устранения загрязнений и уничтожения бактерий будет расти, особенно в развивающихся странах, где в настоящее время практически отсутствует обработка питьевой воды для подачи населению [9; 10; 15; 26].

Обеззараживание воды является одним из необходимых способов устранения, передающихся через воду патогенов, и предотвращения инфекционных заболеваний. Патогенные микроорганизмы из различных источников при попадании в водную среду могут быстро распространяться через системы водоснабжения и приводят к росту опасных заболеваний у населения [2; 11; 15; 28]. Особую опасность для общественного здоровья представляют такие инфекционные агенты, как холерный вибрион (Vibrio cholerae), криптоспоридии (Cryptosporidium), шигеллы (Shiqella), кишечная палочка (Escherichia coli) и энтеровирусы [4; 19]. Поэтому в настоящее время для обеззараживания воды используют различные высокоэффективные способы дезинфекции, такие как хлорирование [36], озонирование [20], гипохлорит натрия [34] и ультрафиолетовое (УФ) излучение [15; 22].

Использование процессов обеззараживания питьевой воды позволяет эффективно контролировать содержание микробных патогенов в воде и предотвратить, таким образом, появление заболеваний у населения. В то же время, некоторые исследования показывают, что на здоровье населения могут влиять побочные продукты обеззараживания воды [29]. В частности, при хлорировании воды могут образоваться хлорорганические соединения, обладающие мутагенными, канцерогенными и генотоксическими свойствами [1; 7; 27]. Кроме того, для предотвращения повторного роста патогенов зача-

стую в некоторых случаях при хлорировании добавляют большое количество хлора, что приводит к значительным концентрациям остаточного хлора, для удаления которого используют процесс дехлорирования другими соединениями также оказывающим токсическое влияние [3; 24].

Из-за серьезных проблем безопасности при использовании хлорирования в качестве способа обеззараживания воды в настоящее время используется также ряд альтернативных методов [18; 27]. Например, озонирование является более эффективным способом и обладает сильными биоцидными свойствами [23]. Однако, приводятся данные, что при озонировании также возможно появление канцерогенных побочных продуктов, таких как альдегиды и бромированные соединения, которые могут вызвать рак почек [3; 21]. В случае обработки озоном повторный рост микроорганизмов не может быть предотвращен остаточным озоном, поскольку время жизни озона в воде небольшое. Среди альтернативных способов обеззараживания воды, которые не приводят к образованию токсичных побочных продуктов можно выделить использование УФ-облучения [15; 17]. Вместе с достоинствами использования УФ-излучения для обеззараживания воды существуют и потенциальны недостатки, к которым можно отнести влияние на эффективность обеззараживания наличия взвешенных частиц, а также возможность восстановления патогенов после незначительного повреждения [32]. Поврежденная УФизлучением ДНК патогенов может быть восстановлена с помощью процессов фотореактивации и/или темновой репарации [31].

В последнее время значительный интерес у исследователей вызывает использование пероксида водорода в качестве обеззараживающего агента при обработке питьевой воды [30]. Такие исследования показали эффективность использования пероксида водорода как для уничтожения органических соединений, так и для инактивации патогенных микроорганизмов. Одновременное использование пероксида водорода

и УФ-излучения приводит к образованию в воде высокоактивных гидроксильных радикалов, способствующих эффективному обеззараживанию питьевой воды [35]. Несмотря на то, что многочисленные исследования показали эффективность обеззараживания воды различными способами, отсутствуют сведения о сравнении методов дезинфекции для подавления роста бактерий. В данной работе продемонстрированы сравнительные характеристики подавления роста бактерий при использовании различных способов обеззараживания питьевой воды.

Материалы и методы

Отбор проб и реактивы. Для исследования использовали три образца проб питьевой поды: бутилированная питьевая вода, водопроводная вода (г. Махачкала) и природная вода из канала им. Октябрьской революции до подачи потребителям (г. Махачкала). Гипохлорит натрия с концентрацией 500 мг/л активного хлора — синтезировали электролизом поваренной соли. Пероксид водорода с концентрацией 0,18 ммоль/л — синтезировали электрохимическим восстановлением кислорода в водопроводной воде.

Обработку исследуемых образцов воды ультрафиолетом проводили с помощью ртутной лампы высокого давления мощностью 250 Вт с длиной волны 365 нм. Лампа располагалась над образцами на расстоянии 10 см при контролируемой температуре 26°C.

Штаммы. Для контроля в работе использовали чистые культуры бактерий Escherichia coli (ATCC 25922), Staphylococcus aureus (ATTC 6538p) и Salmonella spp. (A-225), полученные из ГКПМ — Оболенск. Инокулят был приготовлен методом прямого суспендирования. Затем суспензию разбавляли до концентрации 1-2x10⁵ КОЕ/мл. Суспензия была использована в течение 15 минут, инкубировали при 37°C в течение 48 часов и подсчитывали число КОЕ/мл.

Питательные среды. Посевы проводили с использованием специальных дифференциально-диагностических питательных сред — элективная солевая среда, предназначенная для селективного выделения и подсчета патогенных стафилококков, агар МакКонки для селективного выделения и идентификации энтеробактерий и кишечных грамотрицательных бактерий и среда СШ (Плоскирева) для выявления Salmonella и Shigella. Для подсчета общего микробного числа использовали трипказо-соевый агар, предназначенный для выделения неприхотливых микроорганизмов, не имеющих специфических ростовых потребностей. Эксперименты по дезинфекции воды проводились в 3-х кратных повторах при одинаковых условиях инкубации. Для оценки противомикробного действия были взяты пробы воды

из различных источников: вода из канала имени Октябрьской Революции (КОР), вода водопроводная и вода бутилированная. Каждая из данных проб подвергалась воздействию гипохлорита натрия и перекиси водорода, а также ультрафиолетовому облучению.

Определение общего микробного числа (ОМЧ) проводили в соответствии с методикой [8], для исследования были получены серии последовательных разведений. Вода из КОРа — в 1000 раз (10⁴), вода из водопровода — в 10 000 (10³), контроль (вода бутилированная) — в 1000 раз (10³). Определение класса качества воды исследуемых водных объектов по бактериальным показателям проводили в соответствии с данными таблицы 1.

Таблица 1. Классы качества воды водных объектов по бактериальным показателям

	Классы качества воды					
Показатель	предельно чистая	чистая	удовлетво- рительно чистая	загрязнен- ная	грязная	
Численность гетеротрофных бактерий, тыс. кл/мл	<0,1	0,1-1,0	1,1–5,0	5,1–10,0	> 10,0	

[13]

Для определения антибактериальной активности различных обработок воды, пробы были внесены на питательную среду по 100 мкл и после 24 часовой инкубации в термостате при 37°С оценивали наличие или отсутствие видимого роста. Эффективность подавления была рассчитана по формуле:

$$A = log B_0 - log \sum_{i=1}^{n} Bi, n$$

где B_0 — начальная концентрация суспензии, КОЕ/мл, Ві — концентрация суспензии после обработки, КОЕ/мл, nA — количество проведенных тестов.

Результаты

Согласно результатам нашего исследования, представленным в таблице 2, образцы воды исследуемых водных объектов по бактериальным показателям соответствуют классу качества воды «удовлетворительно чистая» и «загрязненная» (Рис. 1).

Численность гетеротрофных бактерий, проросших за время инкубации в чашках Петри, составила для образцов из водопровода — 4800 кл/мл (удовлетворительно чистая); для образцов из канала им. Октябрьской Революции — 9000 кл/мл (загрязненная); для контроля — 250 кл/мл (чистая).

Таблица 2. Оценка качества воды по бактериальным показателям

Объект исследования	Численность гетеротрофных бактерий, тыс. кл/мл	Класс качества воды
Водопроводная вода	4,8±0,5	удовлетворительно чистая
КОР	9,0±1,1	Загрязненная
контроль	0,25±0,1	Чистая

Метод определения общего микробного числа позволяет выявить колонии бактерий, образованных разными штаммами, поэтому по результатам данного метода нельзя делать однозначные выводы о наличии патогенной флоры в исследуемой пробе. Однако высокое микробное число свидетельствует об общей бактериологической загрязненности воды и высокой вероятности наличия патогенных организмов.

В следующей серии экспериментов посевы проводили на селективные диагностические среды для иден-

тификации бактерий с параллельным приготовлением и окрашиванием препаратов. В ходе эксперимента с селективными средами удалось идентифицировать стафилококк, кишечную палочку и сальмонеллу.

При обработке проб воды, в целом, был обнаружен ярко выраженный бактерицидный эффект, который выражается в уменьшении КОЕ. Результаты показаны на рисунках 2–4. Представлены данные по числу КОЕ/мл при посеве проб из водопровода и КОРа, так как в бутилированной воде было выявлено незначительное количество бактерий.

На первые сутки максимальное количество 25 КОЕ было обнаружено для кишечной палочки, для сальмонеллы и стафилококка в 2 раза меньше, 7–14 КОЕ/мл. При обработке УФ и перекисью достигается значительный эффект, но в чашках Петри можно было увидеть до 5 КОЕ/мл. При обработке гипохлоритом на 1 сутки в чашках Петри бактерии выявлены не были. Максимальный противомикробный эффект наблюдался при сочетании УФ с перекисью и УФ с гипохлоритом. Через 48 часов

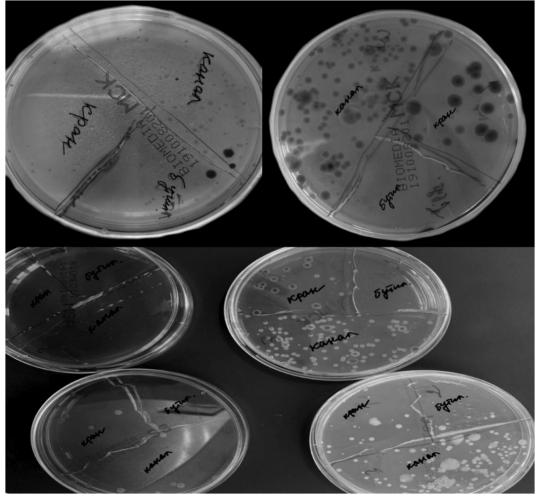


Рис. 1. Анализ бактериального роста в водопроводной воде, из канала имени Октябрьской Революции и бутилированной, без предварительной обработки

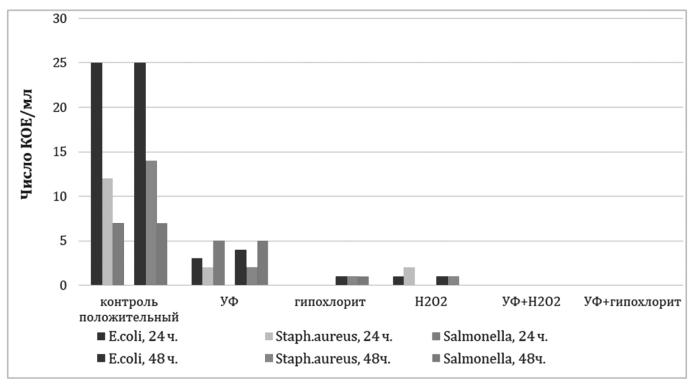


Рис. 2. Формирование колониеобразующих единиц в пробе водопроводной воды через 24 и 48 часов при различных способах обработки

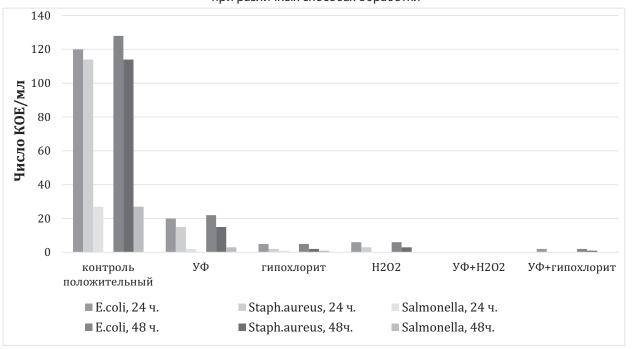


Рис. 3. Формирование колониеобразующих единиц в пробе воды из канала им. Октябрьской революции через 24 и 48 часов при различных способах обработки

наблюдения колонии имеющихся бактерий увеличились в размере и появилось несколько новых колоний в воде без обработки (K+), в водопроводной воде, обработанной гипохлоритом и обработанной ${\rm H_2O_2}$ без УФ.

На рисунке 3 приведены результаты исследования воды из канала им. Октябрьской революции, которую мы отнесли по количеству общего микробного числа к загрязненной.

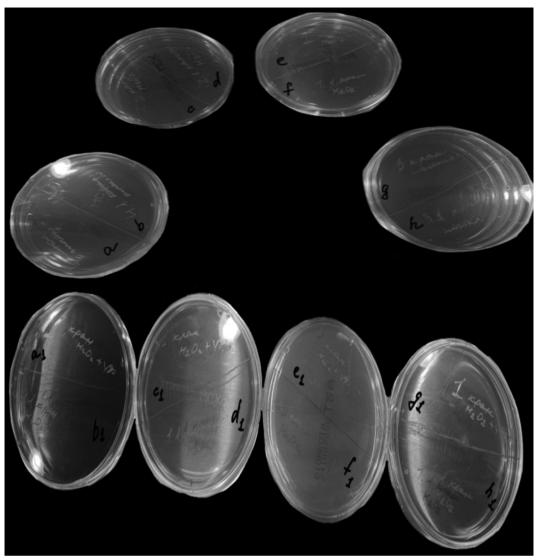


Рис. 4. Анализ бактериального роста в водопроводной воде, из канала имени Октябрьской Революции и бутилированной, с различными видами обработки.

а — вода из канала, обработанная гипохлоритом +УФ; b — вода из канала, обработанная гипохлоритом без УФизлучения; с — вода из канала, обработанная перекисью водорода +УФ-излучение; d — вода из канала, обработанная перекисью водорода без УФ; e, a1, c1, e1, g1 — вода из крана обработанная перекисью водорода +УФ; f, b1, d1, f1, h1— вода из крана обработанная перекисью водорода без УФ; g — вода из крана обработанная гипохлоритом +УФ; h — вода из крана обработанная гипохлоритом без УФ

В данной пробе воды число колониеобразующих единиц значительно превышало 100 КОЕ/мл для кишечной палочки и стафилококка, обсемененность сальмонеллами была невысокой — 22 КОЕ/мл. При обработке воды со средней загрязненностью сочетание УФ-излучения с пероксидом водорода и с гипохлоритом натрия приводит к полной дезинфекции воды, при высокой обсемененности более выраженный (100 %) антибактериальный эффект достигается при сочетании УФ-излучения и пероксида водорода. При низкой бактериальной нагрузке гипохлорит способен обеззараживать пробы воды на непродолжительное время (24 часа), но эффект нестойкий, потому что на 2 сутки был выявлен рост единичных бактериальных клеток. Сочетанное воздействие

гипохлорита и УФ обеспечивает длительное стойкое обеззараживание воды. При высокой обсемененности предпочтительным будет являться сочетание пероксида и УФ.

Обсуждение

Гибридные методы, основанные на процессах окисления гидроксильным радикалом и разрабатываемые в последнее время для использования как при обеззараживании воды, так и при удалении различных органических соединений привлекают большое внимание из-за их высокой окислительной способности [5]. По сравнению с другими процессами обеззараживания

воды использование УФ/ H_2O_2 не приводит к поступлению в питьевую воду дополнительных ионов, как в случае использования гипохлорита натрия или УФ/NaClO [33]. В процессе обеззараживания при использовании УФ/ H_2O_2 основную роль играют гидроксильные радикалы, образующиеся при разложении пероксида водорода по следующей схеме [25]

$$H_2O_2 + hv \rightarrow 2 \cdot OH$$

Наиболее быстрый рост колоний Escherichia coli, Staphylococcus aureus и Salmonella spp в контрольном образце наблюдалось при использовании воды из канала им. Октябрьской революции (120–130 КОЕ/мл Escherichia coli, 115–119 КОЕ/мл Staphylococcus aureus и 22 КОЕ/мл Salmonella spp). Небольшая скорость образования колоний в бутилированной воде связано с ее предварительным обеззараживанием с использованием озона и УФ-облучения перед розливом. Относительно невысокий рост колоний показала водопроводная вода, используемая для питья и хозяйственных нужд в г. Махачкала, что также связано с ее предварительным обеззараживанием перед подачей потребителям.

Сравнение подавления роста бактерий и эффективности обеззараживания питьевой воды с использованием различных подходов показало, что наиболее целесообразным является использование комбинированных методов обработки. Наибольшую эффективность при подавлении роста бактерий как в предварительно обеззараженной водопроводной воде, так и в воде до обеззараживания из канала им. Октябрьской революции, используемой для питьевого водоснабжения г. Махачкалы, показало совместное использование пероксида водорода и УФ-облучения. Относительно высокую эффективность для обеззараживания воды также показало использование гипохлорита натрия и УФ-облучения.

Однако, для использования пероксида водорода при обеззараживании питьевых вод необходимо решить вопросы, связанные с транспортировкой, хранением и обращением с ${\rm H_2O_2}$, что представляют собой потенциальную опасность и дополнительные расходы. В связи с этим необходимо разрабатывать технологии синтеза пероксида водорода непосредственно на месте потребления, как это уже решено с гипохлоритом натрия в качестве обеззараживающего реагента для питьевых вод.

Экономическое обоснование проекта

В России основным реагентом для обеззараживания питьевой воды до недавнего времени являлся жидкий хлор. В последние годы многие города встали на путь реконструкции своих водопроводных систем с учетом современных требований к безопасности, в том числе использования гипохлорита натрия.

В настоящее время операторы водного бизнеса используют два способа получения гипохлорита: поставка от производителя или производство на месте его применения.

Производство гипохлорита натрия на месте осуществляется в основном на станциях небольшой или средней производительности. На крупных сооружениях применяется, как правило, товарный гипохлорит натрия.

Подход к выбору метода получения гипохлорита основывается на экономическом анализе. При наличии существующего производства достаточной производительности и высокого качества при транспортной доступности выбор, как правило, делается в пользу закупки на свободном рынке. В том случае, если доступного производства нет, рассматривается вариант организации специального производства гипохлорита натрия для группы водопроводных станций [6].

При применении предлагаемого нами комбинированного способа обеззараживания воды с использованием и гипохлорита и УФ, требуется учесть основные статьи расхода при эксплуатации УФ-установок — затраты на электроэнергию, замену ламп и щавелевую кислоту для промывки.

Электропитание установок осуществляется от сети переменного тока 220/380 В. Удельное потребление электроэнергии составляет 10–20 Вт на м³ обрабатываемой воды.

Ресурс работы бактерицидных УФ-ламп 9000–12000 часов (немного больше года). После этого лампы в обязательном порядке подлежат замене. Современные УФ-лампы достаточно надежны, по статистике, частота замены ламп вследствие поломок не превышает 1 % от их общего количества. При правильной эксплуатации защитные кварцевые чехлы служат не менее 10–15 лет.

Промывка установки раствором щавелевой кислоты необходима для удаления с поверхности кварцевого чехла солей железа и кальция. Периодичность промывки при концентрации в исходной воде железа менее 0,3 мг/л и жесткости менее 7 мг•экв/л. — не чаще одного раз в месяц или по показаниям УФ-датчика.

Постоянный контроль обслуживающего персонала за работой УФ-установок не требуется. В аварийной ситуации на пульт диспетчера поступает сигнал об аварии. Присутствие персонала необходимо лишь для проведения промывки один раз в месяц на период не более трех часов.

Таким образом, при внедрении метода УФобеззараживания средняя стоимость обработки 1 м³ воды, включающая капитальные и эксплуатационные затраты за пять лет составит от 10 до 60 коп [6].

С учетом калькуляции водоочистки в городе Махачкале, плата за 1 м³ холодной воды на питьевое водоснабжение (без НДС) на период 01.07.2025 — 31.12.2025 составляет 35,86 руб [36]. Таким образом, внедрение УФ обработки существенно не повысит плату и расходы населения и коммунальных служб, даже если учесть прибавку в себестоимости в 60 коп.

Заключение

Одним из главных вызовов экологии является изменение климата, которое может привести к повышению уровня моря, изменению температуры и изменению со-

става воды. Эти изменения могут иметь серьезные последствия для водных экосистем, такие как уменьшение доступности пресной воды, изменения в пищевой цепи, а также ухудшение качества воды.

Разработка методов очистки воды необходима для обеспечения безопасности и здоровья людей, а также сохранения окружающей среды. В целом, это важный шаг в обеспечении безопасности и благополучия людей и окружающей среды, а также в сохранении природных ресурсов и биоразнообразия. В данной работе предложены оригинальные высокоэффективные методы обработки воды, которые могут иметь прикладное значение для обеспечения жителей городов очищенной от микроорганизмов водой.

ЛИТЕРАТУРА

- 1. Алешня В.В., Журавлёв П.В., Панасовец О.П., Седова Д.А. Экспериментальное изучение влияния активного хлора на патогенные и потенциально патогенные микроорганизмы / Ж. «Здоровье населения и среда обитания». 2018. № 10. С. 17—21.
- 2. Государственный доклад «О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации» (2018 2024 гг.).
- 3. Журавлёв П.В., Алешня В.В., Шелякина Т.В., Головина С.В., Кондратенко Т.А., Айдинов Г.Т., Прядко Л.И., Киселёв А.И., Артёменко В.Ф., Белоглазова М.Д., Бията А.И., Кораблина М.В. Влияние условий водопользования на онкозаболеваемость населения // Гигиена и санитария. 2000. № 6. С.28—30.
- 4. Журавлёв П.В., Головина С.В., Алешня В.В., Цацка А.А., Карцева Н.П. Барьерная роль водоочистных сооружений в отношении условно-патогенных микроорганизмов. // Гигиена и санитария. 1997. № 4. С. 15—16.
- 5. Исаев А.Б., Магомедова А.Г. Новые технологии очистки сточных вод от красителей на основе окислительных процессов // Вестник Московского Университета. Сер. Химия. 2022; 77: C.181-196 (Isaev A.B., Magomedova A.G. Advanced oxidation processes based emerging technologies for dye wastewater treatment // Moscow University Chemistry Bulletin. 2022; 77: 181–196)
- 6. Капитальные и эксплуатационные затраты при использовании УФ-установок для обеззараживания подземных вод. [Электронный ресурс]. https://www.uv-tech.ru/articles/kapitalnye-i-ekspluatatsionnye-zatraty-pri-ispolzovanii-uf-ustanovok-dlya-obezzarazhivaniya-podzemny/.
- 7. Марченко Б.И., Журавлев П.В., Плуготаренко Н.К., Юхно А.И. Оценка канцерогенного риска от воздействия хлорорганических соединений в воде систем централизованного водоснабжения //Гигиена и санитария. 2021. Т. 100. № 2. С. 99—110.
- 8. Мелехова О.П. Биологический контроль окружающей среды. Биоиндикация и биотестирование. Москва 2010, Издательство Академия, 228 с.
- 9. Онищенко Г.Г. О состоянии и мерах по обеспечению безопасности хозяйственно-питьевого водоснабжения населения РФ. //Гиг. и сан. 2010. № 3. С 4—7
- 10. Онищенко Г.Г. Гигиеническая оценка обеспечения питьевой водой населения РФ и меры по ее улучшению. // Гиг. и сан. 2009. № 2. С. 4—13.
- 11. Попова А.Ю. Стратегические приоритеты Российской Федерации в области экологии с позиции сохранения здоровья нации. Здоровье населения и среда обитания. 2014; (2): 4—7.
- 12. Примин О.Г. Анализ мирового и отечественного опыта применения гипохлорита натрия для обеззараживания воды. Системные технологии. 2023. № 2 (47). С. 131–138.
- 13. Принципы и методы биологического контроля в системе экологического мониторинга / Мелехова О.П., Егорова Е.И. Безопасность в техносфере. 2008; 5: 14—20.
- 14. Рахманин Ю.А., Доронина О.Д. Стратегические подходы управления рисками для снижения уязвимости человека вследствие изменения водного фактора. // Гиг. и сан. 2010. № 2. С. 8–13.
- 15. Рахманин Ю.А., Загайнова А.В., Артемова Т.З., Гипп Е.К., Кузнецова К.Ю., Курбатова И.В., Грицюк О.В., Новожилов К.А., Асланова М.М., Мания Т.Р., Федец З.Е., Недачин А.Е., Дмитриева Р.А., Доскина Т.В., Абрамов И.А., Журавлев П.В. Определение унифицированных доз ультрафиолетового обеззараживания воды от бактериального, вирусного и паразитарного загрязнения / Ж. Гигиена и санитария. 2019. № 12. С. 1342—1348
- 16. Тарифы на холодное водоснабжение в Maxaчкале. [Электронный pecypc]. https://my-gkh.ru/getcitytariff/makhachkala/8.
- 17. Choi Y., Choi Y. The effects of UV disinfection on drinking water quality in distribution systems. Water Res. 2010; 44: 115–122.
- 18. DeMarini D.M. A review on the 40th anniversary of the first regulation of drinking water disinfection by-products. Environ Mol Mutagen. 2020; 61: 588–601.
- 19. Gerba C.P., Gramos D.M., Nwachuku N. Comparative inactivation of enteroviruses and adenovirus 2 by UV light. Appl Environ Microbiol. 2002; 68: 5167–5169.
- 20. He Z. et al. Chlorine-resistant bacteria in drinking water: Generation, identification and inactivation using ozone-based technologies. J Water Proc. Eng. 2023; 53: 103772.
- 21. Heeb M.B. et al. Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment. Water Res. 2017; 110: 91–101.
- 22. Hijnen W.A.M., Beerendonk E.F., Medema G.J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (00)cysts in water: A review. Water Res. 2006; 40:3–22.

- 23. Lee O.M. et al. A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process. J Hazard Mater. 2015; 295: 201–208.
- 24. Li X.F., Mitch W.A. Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary Challenges and Opportunities. Environ Sci Technol. 2018; 52: 1681–1689.
- 25. Liu, A., et al. Analysis of degradation and pathways of three common antihistamine drugs by NaClO, UV, and UV-NaClO methods // Environ Sci Pollut Res, 2022; 29: 43984—44002.
- 26. Matilainen A. et al. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere. 2011; 83: 1431–1442.
- 27. Mazhar M.A. et al. Chlorination disinfection by-products in municipal drinking water A review. J Clean Prod. 2020; 273: 123159.
- 28. Pichel N., Vivar M., Fuentes M. The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods. Chemosphere. 2019; 218: 1014–1030.
- 29. Plewa M.J. et al. Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: An emerging class of nitrogenous drinking water disinfection byproducts. Environ Sci Technol. 2008; 42: 955–961.
- 30. Silva K.J.S., Sabogal-Paz L.P. Exploring Potentials and Constraints of H₂O₂ Water Disinfection for Household Settings. Water Air Soil Pollut. 2021; 232: 1–11.
- 31. Sommer R. et al. Disinfection of Drinking Water by UV Irradiation: Basic Principles Specific Requirements International Implementations. Ozone Sci Eng. 2008; 30: 43–48.
- 32. Sommer R., Cabaj A. Evaluation of the Efficiency of a UV Plant for Drinking Water Disinfection. Water Science and Technology. 1993; 27: 357–362.
- 33. Sun P., Tyree C., Huang C.-H. Inactivation of Escherichia coli, bacteriophage MS2, and Bacillus spores under UV/H₂O₂ and UV/Peroxydisulfate advanced disinfection conditions // Environ. Sci. Technol. 2016; 50: 4448–4458.
- 34. Wang H. et al. Formation of disinfection by-products during sodium hypochlorite cleaning of fouled membranes from membrane bioreactors. Front Environ Sci Eng. 2021; 15: 1–11.
- 35. Zhao Q. et al. The UV/H, O, process based on H, O, in-situ generation for water disinfection. J Hazard Mater Lett. 2021; 2: 100020.
- 36. Zyara A.M. et al. The Effect of UV and Combined Chlorine/UV Treatment on Coliphages in Drinking Water Disinfection. Water. 2016; 8: 130.

© Исрапилова Ашура Исмаиловна (ms.israpilova98@bk.ru); Адиева Айна Ахмедовна (adieva-m@mail.ru); Бекшокова Патимат Асадулламагомедовна (patenka2009@mail.ru); Магомедова Асият Германовна (asyat_g@mail.ru); Алиева Заира Абдурахмановна (Alza67@mail.ru); Исаев Абдулгалим Будаевич (abdul-77@yandex.ru) Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.17

СРАВНЕНИЕ ЭФФЕКТИВНОСТИ МЕТОДИК ВЫДЕЛЕНИЯ ДНК ИЗ МУХИ ЧЕРНАЯ ЛЬВИНКА HERMETIA ILLUCENS

COMPARISON OF THE EFFICIENCY OF DNA ISOLATION METHODS FROM THE BLACK LION FLY HERMETIA ILLUCENS

I. Kuvika N. Zinovieva

Summary. The black soldier fly (Hermetia illucens) is currently one of the most promising genetic resources, providing not only a lot of alternative protein and fat, which is necessary for animal feed, but also able to effectively bioconvert organic waste generated during the production of crop and livestock products. In 2023, it was included in the list of agricultural products by the Government of the Russian Federation. But at the moment, it is very difficult to find information on DNA extraction methods from the black soldier fly in the domestic literature. The purpose of this study is to compare the effectiveness of known methods for isolating DNA from the black soldier fly and to assess the effectiveness based on the results obtained. It has been established that the most effective method is the perchlorate method, since when using it, it is possible to isolate the highest molecular weight DNA than when using the commercial DNA-Extran-2 kit. Evaluation criteria include DNA yield, purity, integrity, and suitability for subsequent applications such as PCR and sequencing. The results show that when using the perchlorate extraction method, the DNA is more intact than when using the commercial DNA-Extrav-2 kit, which is more suitable for further research and work with this animal. This study provides insights into the optimal extraction methods for various molecular applications, contributing to future research.

Keywords: black soldier fly, Hermetia illucens, DNA extraction, sodium perchlorate, DNA-Extran-2.

Введение

Выращивание личинок мухи черная львинка (Hermetia illucens L.) — экономичный способ превращения органических остатков в ценный источник биомолекул (белков, липидов и хитина). Доказана перспективность промышленного разведения личинок черной львинки на различных органических субстратах, в связи с чем целесообразно изучить их питательные свойства и эффективность применения в кормлении сельскохозяйственных животных. [1]. В 2023 году, согласно Постановлению Правительства РФ № 2761-р, Негмеtia illucens была официально признана сельскохозяйственной продукцией и включена в категорию

Кувика Игорь Сергеевич

Аспирант, ФГБНУ «Федеральный научный центр животноводства — ВИЖ имени академика Л.К. Эрнста» Kuvika2000@mail.ru

Зиновьева Наталия Анатольевна

академик РАН, д-р биол. наук, профессор, директор ФГБНУ «Федеральный научный центр животноводства — ВИЖ имени академика Л.К. Эрнста» n zinovieva@mail.ru

Аннотация. Муха черная львинка (Hermetia illucens) — на сегодняшний день один из самых перспективных генетических ресурсов, дающий не только много альтернативного белка и жира, который необходим для кормления животных, но к тому же способен эффективно биоконвертировать органические отходы, образующиеся при производстве продукции растениеводства и животноводства. В 2023 года она была включена в перечень сельскохозяйственной продукции правительством РФ. Муха черная львинка (Hermetia illucens) привлекла значительное внимание в биотехнологии благодаря своему применению в переработке отходов, производстве кормов для животных и энтомологических исследованиях. Эффективное извлечение ДНК имеет решающее значение для молекулярных исследований с участием этого вида. В этом исследовании сравнивается эффективность различных методов извлечения ДНК, включая обычные фенол-хлороформные, коммерческие наборы, в частности ДНК-Экстран-2, и модифицированный протокол, для получения высококачественной ДНК из Hermetia illucens. Критерии оценки включают выход ДНК, чистоту, целостность и пригодность для последующих применений, таких как ПЦР и секвенирование. Результаты показывают, что при применении перхлоратного метода экстракции, ДНК выделяется наиболее целостное, чем при использовании коммерческого набора ДНК-Экстран-2, что более предпочтительно для дальнейших исследований и работ с этим животным. Это исследование дает представление об оптимальных методах экстракции для различных молекулярных применений, способствуя будущим исследованиям.

Ключевые слова: черная львинка, Hermetia illucens, выделение ДНК, перхлорат натрия, ДНК-Экстран-2, гуанидин-тиоционат.

«Кормовые культуры полевого возделывания, продукция кормопроизводства прочая». Однако в российской научной литературе практически отсутствуют данные о применении молекулярно-генетических методов для изучения черной львинки, а также нет четко описанных протоколов выделения ДНК из этого вида. Для успешного проведения генетических исследований необходимо получать высокомолекулярную ДНК с высокой степенью очистки и сохраненной структурой. [2]

На сегодняшний день методика экстракции ДНК усовершенствовалась и видоизменялась в зависимости от вида исследуемых животных.

Выделение ДНК всегда происходит в несколько этапов. Первый этап выделения нуклеиновых кислот (НК) разрушение клеток физическими, химическими или ферментативными методами. Нарушение целостности плазматической мембраны приводит к выходу содержимого клетки в экстракционный раствор [3]. К ферментативным методам относят применение протеиназ, такие как протеиназа К для разрушения белков. Эффективность перхлората натрия для выделения ДНК насекомых подтверждена в лабораторных исследованиях. Например, в наборе для выделения ДНК S&S Elu-Quik раствор перхлората натрия используется в качестве связывающего буфера, что позволяет получить чистый препарат ДНК из биологических образцов, включая насекомых. Далее идет очистка ДНК от примесей. Здесь используются детергенты, например, добавление додецисульфата натрия (SDS) или других компонентов. Очистка ДНК от примесей (белков, полисахаридов и ингибиторов) в некоторых протоколах предполагает использование органических растворителей, таких как изоамиловый спирт, хлороформ и фенол. При их добавлении смесь разделяется на две фазы: водную (верхнюю) и органическую (нижнюю). После центрифугирования в водной фазе концентрируются нуклеиновые кислоты, а в органической остаются белки, липиды и полисахариды. [2]

Финальный этап выделения ДНК — осаждение спиртом (обычно этанолом или изопропанолом). Полученный осадок затем растворяют в дистиллированной воде или ТЕ-буфере. Однако для эффективного выделения высококачественной ДНК из насекомых требуется оптимизация и доработка существующих методик. Цель работы — изучение основных методов экстрагирования ДНК из различных биологических материалов и возможности их использования в выделении ДНК из Hermetia illucens и сравнить их эффективность.

Материалы и методы

Объект исследования — личники, предкуколки и имаго Hermetia illucens, выращенные в отделе кормления сельскохозяйственных животных ФГБНУ ФИЦ ВИЖ им. Л. К. Эрнста. Развитие, рост и размножение насекомых происходило в оборудованном инсектарии со световыми лампами или постоянно заданными параметрами температуры (30°С) и влажности воздуха (55±5 %). После достижения определенной стадии развития личинки помещали в морозильную камеру (минус 20°С).

Подготовка образцов:

Перед экстракцией ДНК замороженных насекомых подвергали анатомическому разделению. Для предкуколок и личинок использовали целые сегменты тела, тогда как взрослых особей (имаго) разделяли на три анатомических отдела: голову, грудной и брюшной сег-

менты. Каждый образец (целый сегмент или часть тела) помещали в гомогенизатор, добавляя 5 мкл протеиназы К и 10 мкл DTT, после чего проводили гомогенизацию в течение 25 минут. Полученную суспензию переносили в пробирку для последующей экстракции ДНК.

Процедура лизиса:

Образцы инкубировали при 60°С в течение 8–12 часов (обычно оставляли на ночь). Альтернативный вариант лизиса проводили в течение 2 часов при комнатной температуре с использованием автоматической мешалки.

Методы выделения ДНК:

Коммерческий набор ДНК-экстран-2 (Синтол, Россия):

Выделение проводили согласно инструкции производителя.

Перхлоратный метод:

Данный метод особенно эффективен для работы с деградированной ДНК и не требует фенольной очистки. Получаемая ДНК характеризуется высокой молекулярной массой (20–50 kb) и степенью очистки, достаточной для ферментативного расщепления.

Протокол перхлоратного метода:

К клеточному лизату добавляли 0,33 объема 5М раствора Na-перхлората и тщательно перемешивали. Вносили 1,5 объема (300 мкл) хлороформ-изоамилового спирта (СIA), интенсивно встряхивали 3–5 минут и центрифугировали 5 минут при 15000 об/мин. Верхнюю ДНК-содержащую фазу аккуратно переносили в новую пробирку, избегая контакта с промежуточным слоем. Для осаждения ДНК добавляли 600 мкл 100 % этанола, перемешивали и визуализировали ДНК-преципитат. После удаления надосадочной жидкости проводили отмывку 0,5–1,0 мл 70 % этанола в течение 5–10 минут при комнатной температуре. Остатки спирта удаляли, а ДНК-преципитат высушивали в перевернутых пробирках в течение 20–40 минут. Осажденную ДНК ресуспендировали в 50–100 мкл дистиллированной воды или TE-буфера.

Оба метода позволяют получать ДНК удовлетворительного качества, однако перхлоратный метод демонстрирует преимущества при работе с деградированными образцами. Оценку качества, а также степень деградации ДНК осуществляли при помощи проведения электрофореза в 1 % агарозном геле в 1X буфере ТАЕ при напряжении 130V с добавлением бромистого димидия до конечной концентрации 30 нг/мл и визуализируют фрагменты под ультрафиолетом. В одну лунку геля берут 1 мкл ДНК в смеси с 5мкл раствора красителя ксиленци-

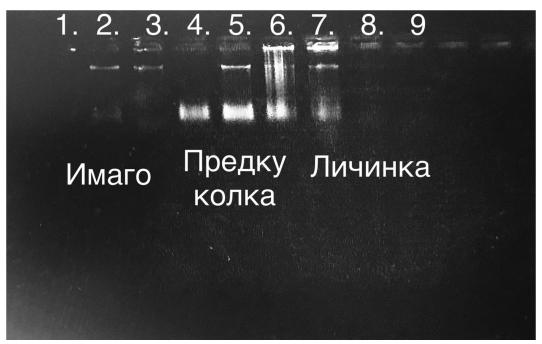


Рис. 1. Электрофореграмма результатов выделений ДНК Hermetia illucens перхлоратным методом

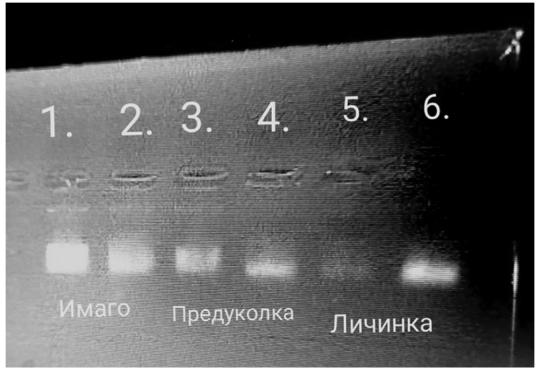


Рис. 2. Электрофореграмма результатов выделений ДНК Hermetia illucens коммерческим набором «ДНК-Экстран-2»

анола. Визуализацию фрагментов проводили с помощью цифровой видеокамеры и программного обеспечения. Качество раствора ДНК оценивают по яркости свечения полосы в ультрафиолетовом свете.

Результаты и обсуждения

Методом экстракции с применением перхлората натрия высокомолекулярная ДНК визуализирована в об-

разцах имаго черной львинки 2 и 3, а также в образцах предкуколки 5 и 6, в образце личинки — 7. Имаго была разделена на голову — 1, грудь — 2 и брюшко — 3. Как показано на рис. 1, в пробе 1 высокомолекулярная ДНК отсутствует. Это может быть связано с тем, что данный метод больше подходит для выделения из более мягких тканей насекомого. В пробах личинки и предкуколки также наблюдается высокомолекулярная ДНК, хотя имеется большое количество низкомолекулярных фрагмен-

тов, связанные с тем, что в этих тканях имеется большое содержание жира и белка, поэтому требуется дополнительная очистка для получения очищенной ДНК.

На рис. 2 видно, что только из имаго удалось выделить высокомолекулярные фрагменты, хотя даже при их наличии также имеется большое количество нежелательных примесей или разрушенной ДНК, от которых не удалось избавиться во время очистки. При выделении из предкуколки и личинки высококачественная ДНК вовсе отсутствует.

Выводы

Проверены и обобщены несколько методик по экстракции ДНК из Hermetia illucens. После проведения

электрофореза визуально наибольшая концентрация ДНК наблюдается при использовании перхлоратного метода выделения, в особенности предпочтительно брать имаго для исследования. С помощью этого метода удается добиться большой степени очистки и низкой фрагментации ДНК. После измерения концентрации данную ДНК можно будет использовать для дальнейшего анализа. Применение коммерческого набора «ДНК-Экстаран-2» показало, что с его помощью также можно выделить ДНК из черной львинки, однако, нужно доработать методику очистки, выделенной ДНК от низкомолекулярных примесей.

ЛИТЕРАТУРА

- 1. Некрасов Р.В., Чабаев М.Г., Зеленченкова А.А., Бастраков А.И., Ушакова Н.А. Питательные свойства личинок *Hermetia illucens* L. нового кормового продукта для молодняка свиней (Sus scrofa domesticus Erxleben)// Сельскохозяйственная биология, 2019, том 54, № 2, с. 316—325.
- 2. Сутула Г.И., Лоскутов С.И., Ситнов В.Ю. Сравнение методов экстракции ДНК из личинок *Hermetia illucens* // Вестник российской сельскохозяйственной науки. 2024. №6. С. 78—82. doi: 10.31857/S2500208224060171.
- 3. Dave N., Joshi T. A Concise Review on Surfactants and Its Significance // International Journal of Applied Chemistry. 2017. Vol. 13(3). P. 663–672.
- 4. Green T.R., Popa R. Enhanced Ammonia Content in Compost Leachate Processed by Black Soldier Fly Larvae // Applied Biochemistry and Biotechnology. 2012. Vol. 166(6). P. 1381–1387.
- 5. Sadykova E.O., Tyshko N.V., Nikitin N.S. et al. Monitoring methods for novel insect-derived food: the PCR protocol for the detection and identification of *Hermetia Illucens* insects based on the HEI-COI probe and primer system // Problems of Nutrition. 2023. Vol. 92(1). P. 36–44. https://doi.org/ 10.33029/0042-8833-2023-92-1-36-44.
- 6. Shehadul Islam M., Aryasomayajula A., Selvaganapathy P. A Review on Macroscale and Microscale Cell Lysis Methods // Micromachines (Basel). 2017. Vol. 8(3) P. 83. https://doi.org/10.3390/mi8030083.
- 7. Tan S.C., Yiap B.C. DNA, RNA, and Protein Extraction: The Past and The Present // Journal of Biomedicine and Biotechnology. 2009. Vol. 2009. P. 1–10. https://doi.org/10.1155/2009/574398
- 8. Smith A., Johnson B., White C. Comparison of DNA Extraction Methods for Molecular Analysis of *Hermetia illucens* (Diptera: Stratiomyidae) // Journal of Insect Science. 2022. Vol. 22, No. 3. P. 1–10. DOI: 10.1093/jisesa/ieac045.
- 9. Tan S.C., Yiap B.C. DNA, RNA, and Protein Extraction: The Past and The Present // Journal of Biomedicine and Biotechnology. 2009. Vol. 2009. P. 1—10. https://doi.org/10.1155/2009/574398
- 10. Zheng L., Hou Y., Li W. et al. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes // Energy. 2012. Vol. 47(1). P. 225–229. https://doi.org/10.1016/j.energy.2012.09.006

© Кувика Игорь Сергеевич (Kuvika2000@mail.ru); Зиновьева Наталия Анатольевна (n_zinovieva@mail.ru) Журнал «Современная наука: актуальные проблемы теории и практики» DOI 10.37882/2223-2966.2025.09.18

ИЗУЧЕНИЕ УГЛЕВОДОРОДОКИСЛЯЮЩИХ СВОЙСТВ МИКРООРГАНИЗМОВ, ВЫДЕЛЕННЫХ ИЗ ВОДНЫХ ЭКОСИСТЕМ КОЛЬСКОГО СЕВЕРА

STUDY OF HYDROCARBON-OXIDIZING PROPERTIES OF MICROORGANISMS ISOLATED FROM AQUATIC ECOSYSTEMS OF THE KOLA NORTH

M. Litvinova E. Kozhukhova E. Makarevich A. Garbul

Summary. For the first time three isolates of hydrocarbon-oxidizing microorganisms of Pseudomonas lundensis, Aeromonas eucrenophyla, Pseudomonas fragi were isolated from the oil-contaminated waters of the Kola North. The aim of this work was to study the hydrocarbon-oxidizing activity of the indigenous strains and the possibility of using those as a basis for a biopreparation for water purification after hydrocarbon pollution. The paper evaluates the efficiency of oil and diesel fuel degradation by fluorometric method, as well as the bio-emulsifying and hydrophobic activities of monocultures and the association of hydrocarbon-oxidizing microorganisms. The dynamics of bacterial growth was studied at different temperatures of cultivation based on the increase in optical density in a mineral medium with diesel fuel. Moreover, the absence of antagonistic activity was noted when composing the monocultures of oil-degrading bacteria into associations. The ability of the studied strains of microorganisms to grow on various hydrocarbon substrates was also shown. Based on the obtained results, it can be concluded that the bacterial strains are promising for biodegradation of hydrocarbons and can be used in bioremediation of environmental pollution.

Keywords: hydrocarbon-oxidizing bacteria, water, oil pollution, microbial consortium, Pseudomonas spp., Aeromonas spp.

Литвинова Марина Юрьевна

кандидат биологических наук, доцент, Мурманский арктический университет litvinovamyu@mauniver.ru

Кожухова Екатерина Вячеславовна

старший преподаватель, Мурманский арктический университет kozhukhovaev@mauniver.ru

Макаревич Елена Викторовна

кандидат биологических наук, Мурманский арктический университет makarevichev@mauniver.ru

Гарбуль Анна Викторовна

кандидат биологических наук, доцент, Мурманский арктический университет garbulav@mauniver.ru

Аннотация. Из вод Кольского Севера выделено три изолята углеводородокисляющих микроорганизмов *Pseudomonas lundensis, Aeromonas eucrenophyla, Pseudomonas fragi*. В работе дана оценка эффективности деградации нефти и дизельного топлива монокультурами и консорциумом исследуемых микроорганизмов флуориметрическим методом, а также биоэмульгирующей и гидрофобной активностей. Изучена динамика роста бактерий, при различных температурах культивирования по показателю прироста оптической плотности в минеральной среде с дизельным топливом. По результатам исследования можно сказать, что изученные штаммы обладают свойствами биодеструкторов нефтяных углеводородов и могут быть использованы в экобиотехнологиях.

Ключевые слова: углеводородокисляющие бактерии, вода, нефтяное загрязнение, консорциум микроорганизмов, *Pseudomonas spp.*, *Aeromonas spp*.

Введение

ерьезной экологической проблемой в современном мире является загрязнение углеводородами. Загрязнение нефтью и нефтепродуктами происходит в результате смыва нефтесодержащих стоков предприятий и ливневых вод, с промышленных площадок, городских улиц. Случайные нефтяные разливы также являются источником нефтяного загрязнения [7].

На сегодняшний день существует ряд технологий, которые позволяют очистить объекты окружающей среды от загрязнения углеводородами. Существует мно-

жество способов и методов борьбы с загрязнениями нефтепродуктами. Химические и механические методы имеют ограниченную эффективность и могут быть дорогостоящими [7]. Аварии судов приводят к разливам топлива, убрать которые с поверхности воды не так просто. Обычная процедура очистки предусматривает локализацию пятна, а затем сбор нефтяной пленки с поверхности воды с помощью заграждений. Но эти технологии не совершенны. Это не означает, что нефть сквозь заграждения не попадет в воду и потом очень трудно механически собрать небольшое количество нефти. Так что на поверхности неизбежно остается тонкая пленка. Ликвидировать последствия утечки нефти — тяжелый

труд, и тут на помощь приходят микроорганизмы. Водные экосистемы способны к самоочищению благодаря населяющим их микроорганизмам. Бактерии обладают удивительным свойством перерабатывать отходы. Они в прямом смысле слова съедают нефтяные пятна. С помощью особых ферментов они окисляют углеводороды до углерода и воды. Тот факт, что углеводороды могут быть использованы в качестве субстрата живыми организмами, обычно рассматривается как уникальная черта, а выделение микроорганизмов-деструкторов часто рассматривается как уникальная находка. Поскольку применение микроорганизмов в процессах биоремедиации является естественным следствием того, что они используют углеводороды в качестве источника энергии [6].

Часть нашей страны располагается в Арктическом и Субарктическом поясах, поэтому и бактерии нужны специфические — холодолюбивые. Все микробные процессы при пониженных положительных температурах замедляются, и для разложения нефтяных пятен в холодных водах, конечно, нужны психрофильные бактерии, способные разлагать углеводороды нефти [1]. Для очистки нефтезагрязненных местообитаний надо использовать не один вид, а несколько видов, их сочетания. Поэтому важным моментом является выделение и идентификация аборигенных психрофильных бактерий, которые способны деградировать нефтепродукты при температуре ниже 10°C. Невозможно остановить загрязнение окружающей среды нефтепродуктами, поэтому особенно остро стоит решение данного экологического вопроса. Хорошо зарекомендовал себя метод использования аборигенных микроорганизмов, выделенных из загрязненных местообитаний. Вследствие этого, исследования, направленные на выделение и отбор наиболее активных микроорганизмов, окисляющих нефтяные углеводороды, способных использовать их, особенно актуальны.

Цель и задачи исследования

Цель работы состояла в исследовании углеводородокисляющих свойств аборигенных штаммов бактерий Pseudomonas lundensis (Molin, et al. Molin et al. 1986); Aeromonas eucrenophyla (Schubert and Hegazi, 1988); Pseudomonas fragi (Eichholz 1902, Gruber 1905), выделенных из загрязненных местообитаний Кольского Заполярья и возможности их использования в виде биопрепарата в экобиотехнологиях.

Для реализации поставленной цели определены следующие задачи:

 при формировании микробного консорциума определить отсутствие антагонистической активности и динамику роста микроорганизмов по увеличению оптической плотности в среде с дизельным топливом;

- оценить эффективность деградации нефтепродуктов монокультурами и ассоциацией углеводородокисляющих микроорганизмов флуориметрическим методом;
- провести оценку биоэмульгирующей и гидрофобной активностей исследуемых культур и консорциума микроорганизмов.

Методы исследования

Выделение и идентификацию углеводородокисляющих бактерий проводили на основании культуральных, морфологических, тинкториальных и физиолого-биохимических свойств с использованием жидкой минеральной модифицированной среды ММС с дизельным топливом [10]. Выделение микроорганизмов проводили при температуре 4±2 °С. Из водотоков и активного ила города Мурманска выделены штаммы микроорганизмов и идентифицированы аналитическим методом массспектрометрии как *Pseudomonas lundensis, Aeromonas eucrenophyla* и *Pseudomonas fragi*.

При снижении температуры окружающей среды происходит снижение метаболической активности у микроорганизмов и потому в работе приведены данные углеводородокисляющих свойств одних и тех же штаммов микроорганизмов, но при двух температурах: 4±2°С и 20±2°С. Массовую концентрацию нефтепродуктов определяли флуориметрически на приборе «Флюорат-02», согласно ПНД Ф 14.1:2:4.128-98. Культивирование осуществляли 25 дней на минеральной среде ММС с 1% нефтяного углеводорода [10] (нефть — месторождение Баренцево море и дизельное топливо марки «летнее»).

Индекс эмульгирования определяли, как описано в работе [9]. Гидрофобную активность измеряли по методу Rosenberg M. и в модификации Серебряковой [11].

Метод перпендикулярных штрихов использовали для определения антагонистической активности отобранных штаммов бактерий. Микроорганизмы (предполагаемый антагонист и проверяемые микроорганизмы), вносили на плотную питательную среду методом перпендикулярных штрихов и проводили измерение расстояния от одной культуры до другой [4].

Оптическую плотность суспензии бактерий определяли нефелометрически на спектрофотометре. Культивирование проводили при температурах $4\pm2^{\circ}$ С и $20\pm2^{\circ}$ С в течение 14-24 дней на жидкой минеральной среде ММС с 1% дизельного топлива. Время культивирования зависело от индивидуальной скорости роста микроорганизмов. Увеличение численности бактерий во флаконах оценивали по величине оптической плотности при длине волны $\lambda=540$ нм и толщине оптического слоя 10 мм.

Результаты и их обсуждение

Микроорганизмы в естественной среде обитания живут друг с другом в определенных взаимоотношениях. Необходимым условием для разработки высокоэффективной ассоциации микроорганизмов, окисляющих углеводороды, является отсутствие антагонистических отношений между микробными культурами. Причинами возникновения антагонизма являются: нехватка питательных веществ, изменения рН среды, образование протеолитических ферментов, антибиотиков и химических веществ [4]. Одним из недостатков использования монокультур является снижение деструкции нефтепродуктов. Если использовать консорциумы микроорганизмов можно повысить эффективность деструкции углеводородов, загрязняющих окружающую среду.

У созданного в работе консорциума микроорганизмов не обнаружено антагонистического влияния на рост и развитие друг друга и поэтому мы использовали его в дальнейшей работе. Итак, исследования проводились с тремя чистыми монокультурами и консорциумом микроорганизмов *Pseudomonas lundensis* + *Aeromonas eucrenophyla* + *Pseudomonas fragi*.

Изучение темпов роста бактериальных штаммов в жидкой минеральной среде MMC с дизельным топливом при температурах 4±2°C и 20±2°C (рис. 1 и 2). Чтобы оценить данное свойство культур измеряли показатель прироста оптической плотности. Консорциум и монокультуры имели положительную динамику роста в течение всего хода эксперимента при выбранных температурах культивирования. Полученные результаты дают

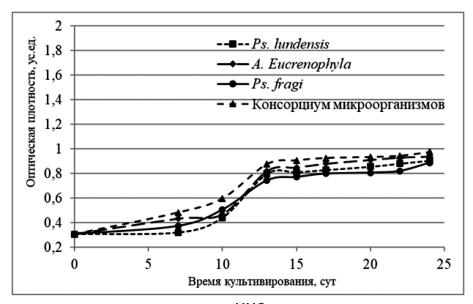


Рис. 1. Динамика роста микроорганизмов на среде MMC с дизельным топливом при температуре 4±2°C

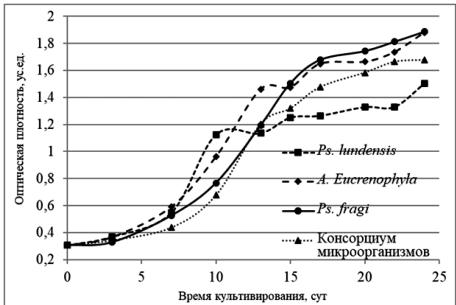


Рис. 2. Динамика роста микроорганизмов на среде MMC с дизельным топливом при температуре 20±2°C

возможность предположить, что выделенные бактерии являются психротрофными организмами. Можно заметить, что при выбранных температурах инкубации исследуемые микроорганизмы и консорциум адаптировались к условиям среды за 5 суток при 20±2°С и 10 суток при 4±2°С.

Наибольший прирост оптической плотности в среде культивирования наблюдался у *Pseudomonas fragi* при $20\pm2^{\circ}$ С. Оптическая плотность выросла в 6 раз по сравнению с начальным значением. Оптическая плотность консорциума к 24 суткам культивирования при $4\pm2^{\circ}$ С и $20\pm2^{\circ}$ С выросла в 3 и 5 раз от начального значения соответственно. Наименьшими значениями характеризовался штамм *Pseudomonas lundensis*.

Деградацию дизельного топлива и нефти оценивали в условиях культивирования 4±2°С и 20±2°С в жидкой среде при добавлении нефтепродукта в количестве 1 % от общего объема. Согласно полученным данным (рис. 3), все исследуемые микроорганизмы способны к деструкции дизельного топлива и в меньшей степени к деструкции нефти.

В процессе проведения эксперимента определено, что более интенсивными деструкторами дизельного топлива из числа исследуемых оказались штамм А. eucrenophyla, утилизировавший 98 % углеводорода, а также Ps. fragi, степень деструкции для которого достигала 82 %. Наименее активным деструктором оказался штамм Ps. lundensis, показав результат 67 %. Хочется отметить, что полученные нами количественные данные относительно деструкции дизельного топлива

монокультурами и ассоциацией углеводородокисляющих микроорганизмов являются, скорее всего, максимально возможными, так как соединения этого класса сравнительно легко используются микроорганизмами [8]. Деструкция нефти намного ниже и составляет от 8 % до 27 % при 4±2 °C культивирования и 13–30 % при 20±2 °C. В результате установлено, что все исследуемые культуры микроорганизмов способны к деструкции нефтепродуктов, а значит, могут быть использованы для создания биопрепарата.

Известно, что микроорганизмы обладают способностью к производству поверхностно-активных веществ (ПАВ) и с этим процессом сопряжена их углеводородокисляющая активность. Это позволяет повышать общедоступность нефтяных углеводородов для бактерий [2]. Синтез поверхностно-активных веществ у бактерий оценивали по индексу эмульгирования, который базируется на свойстве образовывать эмульсию при взаимодействии культуры микроорганизмов с углеводородом [3].

В ходе эксперимента установлено, что температура не оказывает какого-либо существенного влияния на производство бактериальной клеткой биоПАВ. Значения эмульгирующей активности у трех монокультур и консорциума варьируют от 44 до 50 % при обеих температурах (рис. 4). Согласно данным литературы перспективными продуцентами ПАВ являются микроорганизмы, у которых индекс эмульгирования выше 50 % [2]. Из вышесказанного следует, что штамм *Ps. lundensis* является активным продуцентом биоПАВ.

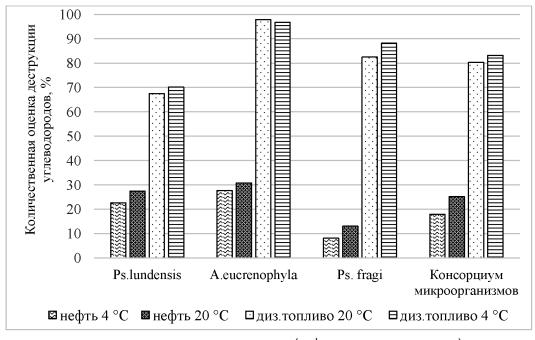


Рис. 3. Количественная оценка деструкции углеводородов (нефть и дизельное топливо) чистыми культурами микроорганизмов и консорциумом при 4±2°C и 20±2°C

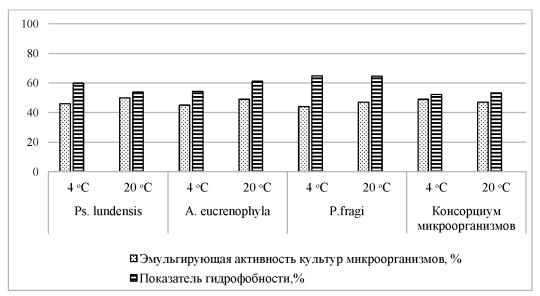


Рис. 4. Показатели эмульгирования и гидрофобности у монокультур и консорциума микроорганизмов при температурах $4\pm2^{\circ}$ С и $20\pm2^{\circ}$ С

Определение степени гидрофобности клеток микроорганизмов является еще одним важным свойством для оценки эмульгирующих свойств, т.е. критерием отбора микроорганизмов, способных к синтезу биоПАВ, не выделяющихся в водную среду. Гидрофобность клеток культуры $A.\ eucrenophyla$ выше при 20 °C, а для штамма $Ps.\ lundensis$ при 4 ±2 °C. У культуры $Ps.\ fragi$ наблюдается максимальная гидрофобность при 4 ±2 °C и 20 ±2 °C, а именно 65 % и 64 % (рис. 4), соответственно.

Для консорциума гидрофобность клеток примерно одинакова при 4 ± 2 °C и 20 ± 2 °C, а именно — 52 % и 53 % соответственно. В таком случае температура не оказывает какого-либо влияния на величину синтеза биоПАВ. Бактерии отбирают как продуценты биоПАВ при значениях показателя гидрофобности более 20 % [5] и этим требованиям соответствует штамм Ps. lundensis.

Синтез бактериями-деструкторами биоПАВ является главной составляющей биодеградации нефти в воде, так как она по своему составу и свойствам почти нерастворима в ней [12]. Создавая тонкодисперсную эмульсию, бактерии способствуют коллоидному растворению нефтяных углеводородов. Кроме всего прочего, они измельчают углеводороды, тем самым облегчают их усвоение для других нефтедеструкторов.

Заключение

Процесс микробной деградации способствует удалению углеводородов из окружающей среды. Это возможно, потому что у микроорганизмов есть ферментные системы для разложения и использования различных углеводородов в качестве источника углерода и энергии.

В результате исследования из загрязненных углеводородами проб воды и активного ила выделены три активных изолята углеводородокисляющих микроорганизмов *Pseudomonas lundensis, Pseudomonas fragi и Aeromonas eucrenophyla*. Бактерии выделенных штаммов являются постоянными обитателями естественных северных биоценозов, это позволяет не учитывать климатические условия данного региона.

Эксперименты по деструкции углеводородов дизельного топлива при $4\pm2^{\circ}$ С, показали, что исследуемые микробные сообщества обладают высокой деструктивной активностью от 70 до 96 %. Следует отметить, что полученные результаты сопоставимы с опубликованными нами ранее данными. Эффективность процесса очистки модельных питательных сред от дизельного топлива этими же культурами составила от 40 до 98 % и зависела от состава модельной среды [13].

Монокультуры микроорганизмов *Ps. lundensis, A. eucrenophyla, Ps. fragi* использованы нами для создания ассоциации на их основе, в виду отсутствия антагонистического влияния друг на друга. Микроорганизмы-деструкторы и консорциум способны к росту на среде, содержащей в качестве единственного источника углерода дизельное топливо. Кроме этого, они характеризуются высокими потенциалами эмульгирующей и гидрофобной активностей. Индекс эмульгирования монокультур и ассоциации микроорганизмов варьирует в диапазоне значений от 40 % до 50 %, а показатели гидрофобности изолятов бактерий составляет более 50 %. Степень деструкции нефти снижается в три — десять раз.

Выделенные бактерии родов *Pseudomonas* и *Aeromonas* относятся к аборигенным представителям

водной микробиоты Кольского Севера и обладают значительными углеводородокисляющими свойствами. Исследуемые монокультуры и ассоциация углеводородокисляющих микроорганизмов обладают функцио-

нальным комплексом промышленно значимых свойств и могут стать основой биопрепарата для биоремедиации нефтезагрязненных акваторий Кольского Севера.

ЛИТЕРАТУРА

- 1. Ананько Г.Г. и др. Устойчивость нефтеокисляющих микроорганизмов к низким температурам // Биотехнология. 2005. № 5. С. 63–69.
- 2. Бектурова А.Ж. и др. Эмульгирующая активность некоторых углеводородокисляющих микроорганизмов // Вестник КазНУ. Серия биологическая. 2013. № 3/1 (59) С. 56–58.
- 3. Волченко Н.Н. Влияние условий культивирования на поверхностно-активные свойства углеводородокисляющих актинобактерий: дис. ... канд. биол. наук. Ставрополь, 2006.
- 4. Гончарова А.В. и др. Изучение углеводородокисляющего потенциала ассоциаций бактерий Каспийского региона для создания препаратов для биоремедиации // Вестник КазНУ. Серия биологическая. 2017. № 4 (73). С. 126—140.
- 5. Демаков В.А. и др. Гидрофобные свойства и пленкообразующая способность штаммов рода *Pseudomonas*, изолированных из разных экологических ниш // Вестник Пермского университета. Серия Биология. 2010. Вып. 1(1). С. 55–58.
- 6. Ильинский В.В., Семененко М.Н. Распределение и активность углеводородокисляющих бактерий в Центральном Полярном бассейне, Карском и Белом морях. В.В. Ильинский // Опыт системных океанологических исследований в Арктике. Под ред. А.П. Лисицина. М: Научный Мир, 2001. С. 364—376.
- 7. Кураков А.В. и др. Биоиндикация и реабилитация экосистем при нефтяных загрязнениях М.: Графикон, 2006. 336 с.
- 8. Литвинова М.Ю. и др. Распространение и потенциальная активность углеводородокисляющих бактерий в воде среднего и северного колен Кольского залива // Вестник МГТУ: труды Мурм.гос.тех.ун-та. 2012. Т. 15, № 3. С. 533—541.
- 9. Лыонг М.Т. и др. Изучение эмульгирующих свойств бактерий-деструкторов углеводородов нефти // Актуальная биотехнология. 2014. №3 (10). С 108—109
- 10. Практическая гидробиология. Пресноводные экосистемы / Под ред. В.Д. Фёдорова, В.И. Капкова. М.: Изд-во ПИМ, 2006. 367 с.
- 11. Серебрякова Е.В. и др. Оценка гидрофобных свойств бактериальных клеток по адсорбции на поверхности капель хлороформа // Микробиология. 2002. Т. 71. № 2. С. 237—239.
- 12. Федоренко В.Н. Выделение и оценка биотехнологического потенциала микроорганизмов для утилизации нефтяных загрязнений северных морей: дис. ... канд. биол. наук. Москва, 2016.
- 13. Kozhukhova E., Litvinova M. Biodegradation of petroleum hydrocarbons by bioflocculant-producing microorganisms of the aquatic ecosystems in the Arctic region // IOP Conference Series: Earth and Environmental Science: Saint-Petersburg: Institute of Physics Publishing. 2020. Vol. 539. P. 012192.

© Литвинова Марина Юрьевна (litvinovamyu@mauniver.ru); Кожухова Екатерина Вячеславовна (kozhukhovaev@mauniver.ru); Макаревич Елена Викторовна (makarevichev@mauniver.ru); Гарбуль Анна Викторовна (garbulav@mauniver.ru)

Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.34

РАЗНООБРАЗИЕ И ТАКСОНОМИЧЕСКАЯ СТРУКТУРА ДИСКОМИЦЕТОВ ГОРОДСКИХ РАСТИТЕЛЬНЫХ ЛАНДШАФТОВ НОВОСИБИРСКОГО АКАДЕМГОРОДКА

DIVERSITY AND TAXONOMIC STRUCTURE OF DISCOMYCETES OF URBAN PLANT LANDSCAPES OF NOVOSIBIRSK AKADEMGORODOK

D. Filimonova I. Vorob'eva

Summary. The article presents the results of the study of the taxonomic composition of the discomycete biota of the Novosibirsk Akademgorodok, a cultural heritage site of the Russian Federation. According to the data obtained, operculate discomycetes predominate (65 %) in the studied urban plant landscapes that are not specially protected natural areas. The Shannon index values are 6.84 for «Foxes' Hills», 6.71 for Pirogovsky Forest, and 4.13 for Shlyuzovsky Forest-Bog Complex «Skazochny» (SFBC); which indicates that the diversity of mycobiota in the first two landscapes is higher than in the SFBC. The Simpson index for the specified territories was 0.68; 0.53 and 0.56, respectively, which indicates that dominant species can be identified in the territory of «Foxes' Hills», while in the SFBC and Pirogovsky Forest, discomycetes are represented more evenly. Cluster analysis of mycobiota of the specified plant landscapes using the Shimkevich—Simpson coefficient revealed a similarity in the structure of discomycetes in the Pirogovsky Forest and «Foxes' Hills.»

Keywords: discomycetes, taxonomic composition, urban plant landscapes, mycobiota.

Филимонова Дарья Александровна

научный сотрудник, Институт почвоведения и агрохимии СО РАН (Новосибирск) darya.filimonova@gmail.com

Воробьева Ирина Геннадьевна

доктор биологических наук, профессор, Новосибирский государственный педагогический университет

Аннотация. Приведены результаты изучения таксономического состава дискомицетов Новосибирского Академгородка — объекта культурного наследия Российской Федерации. В исследованных городских растительных ландшафтах, не являющихся особо охраняемыми природными территориями, преобладают оперкулятные дискомицеты (65 %). Значения индекса Шеннона составляют для «Лисьих горок» — 6,84, Пироговского леса — 6,71, Шлюзовского лесоболотного комплекса «Сказочный» (ШЛБК «Сказочный») — 4,13, что свидетельствует о большем разнообразии грибов в первых двух ландшафтах. Индекс Симпсона составил 0,68; 0,53 и 0,56 соответственно, что позволяет выделить виды-доминанты на территории «Лисьих горок», в то время как в ШЛБК «Сказочный» и Пироговском лесу дискомицеты представлены более равномерно. Кластерный анализ использованием коэффициента Шимкевича—Симпсона выявил схожесть структуры дискомицетов Пироговского леса и «Лисьих горок».

Ключевые слова: дискомицеты, таксономический состав, городские растительные ландшафты, микобиота.

Введение

зучение систематического состава отдельных групп живых организмов является одной из приоритетных задач науки в связи с имеющейся тенденцией выявления и сохранения биологического разнообразия [1]. Антропогенная нагрузка на городские растительные ландшафты может приводить к возникновению угрозы сокращения биоразнообразия в целом, и дискомицетов, в частности, и даже уничтожения отдельных видов. Решение задач по сохранению существующей микобиоты невозможно без изучения ее таксономического состава [2]. Отдельные группы грибов, среди которых и дискомицеты, изучены на территории РФ неравномерно, применительно же к городским ландшафтам имеются лишь единичные аннотированные списки [3-5]. Планомерный анализ таксономического состава и экологических характеристик дискомицетов отдельных территорий Новосибирска начат совсем недавно [6–9].

Новосибирский Академгородок, часть Советского района Новосибирска, строился в середине XX века с воплощением наиболее прогрессивных принципов советского градостроительства, природная среда при его закладке сохранялась и включалась в городскую структуру [10]. Район является объектом культурного наследия Российской Федерации [11]. Некоторые из существующих на территории Академгородка лесных массивов приближены к естественным и являются уникальными с точки зрения городских растительных ландшафтов [12].

Цель работы — изучение разнообразия и таксономической структуры дискомицетов на территории растительных ландшафтов Новосибирского Академгородка.

Материалы и методы

Исследования проведены на территории Новосибирского Академгородка, расположенного в 20 км к югу от центра Новосибирска, на правом берегу Новосибирского водохранилища. Обследованы три городских ландшафта, не являющихся особо охраняемыми природными территориями (ООПТ), а потому наиболее подверженных влиянию антропогенного фактора [13, 14]. Характеристики районов исследования представлены в таблице 1.

Материалом исследования послужили находки дискомицетов, собранные в период с 2017 по 2024 гг., а также данные открытых информационных баз [15]. Методы включали общепринятые полевые и лабораторные исследования [16]. Микроскопический анализ проведен с помощью микроскопа фирмы Carl Zeiss Axiolab (Германия) и стандартных определителей [17].

Названия таксонов приведены в соответствии с Index Fungorum (www.indexfungorum.org). Встречаемость дискомицетов приведена по универсальной шкале [18]. Мера доминирования видов рассчитана с помощью индекса Симпсона, индекс многообразия — по Шеннону [19]. Кластерный анализ проведен по общепринятым методикам с использованием коэффициента Шимкевича—Симпсона [20]. Дендрограммы построены средствами Google Colab.

Результаты и обсуждение

На исследованных территориях выявлен 41 вид дискомицетов, относящихся к 30 родам, 13 семействам, 2 порядкам и 2 классам (табл. 2).

Класс Pezizomycetes, включающий в себя оперкулятные дискомицеты, составляет $65\,\%$ от исследованной

микобиоты, класс Leotiomycetes, состоящий из иноперкулятных видов — 35 %. Каждый класс представлен одним порядком — Pezizales и Helotiales соответственно. Среди оперкулятных дискомицетов наиболее обширными по количеству видов выделялись семейства — Pyronemataceae (30 %), Pezizaceae и Helvellaceae (по 23 %). Среди иноперкулятных дискомицетов виды в семействах распределены более равномерно, преобладающими являются Helotiaceae и Lachnaceae, насчитывающие по 20 % видов. В числе самых разнообразных по количеству видов находятся рода Helvella (Helvellacae, Pezizales) — 14 %, и Peziza (Pezizaceae, Pezizales) — 8 %.

По количеству обнаруженных родов лидирует Пироговский лес (21), на территории «Лисьих горок» найдено 16 родов дискомицетов, а на территории ШЛБК «Сказочный» только 10. В Пироговском лесу и «Лисьих горках» таксономическая структура грибов представлена 10 семействами, в ШЛБК «Сказочный» — 7.

Полученные нами сведения согласуется с данными литературы о том, что в систематическом отношении, как правило, преобладают оперкулятные виды, а иноперкулятные доминируют чаще всего на ненарушенных территориях (ООПТ, заказниках, заповедниках и т.д.) [21]. Кроме того, в исследуемых городских ландшафтах присутствует и пирогенный фактор, что обусловливает преобладание оперкулятных видов как пионерных [13]. Выявленный таксономический состав дискомицетов характерен для бореальной зоны Голарктического царства [22].

Распределение видов грибов по исследованным территориям представлено в таблице 3.

Шкала встречаемости:

единично очень редко редко нередко час
--

Таблица 1.

Название и координаты участка	Растительность, почвы	Рельеф	Антропогенное воздействие
ШЛБК «Сказочный» (N 54.867660, E 83.057189)	Основные лесообразователи: <i>Pinus sylvestris</i> L., <i>Betula pendula</i> Roth, <i>Betula pubescens</i> Ehrh. Сосновые травяные леса, березовые и сосново-березовые редколесья. Дерново-подзолистые, аллювиальные дерновые и перегнойно-глеевые.	Естественный участок надпойменных террас. Наличие болотных систем.	Среднее и слабое.
Пироговский лес (N 54.848883, E 83.099635)	Основные лесообразователи: Pinus sylvestris, Betula pendula, Populus tremula. Дерново-подзолистые мелкие сверхглубоко-осветленные.	Выровненный.	Слабое и среднее.
Природный ландшафтный объект «Лисьи горки» (N 54.845852, E 83.082664)	Основные лесообразователи: Pinus sylvestris, Betula pendula, Betula pubescens, Populus tremula L. Сосново-березовые и березово-сосновые леса с доминированием черничников по понижениям. Преимущественно дерново-подзолистые.	Древние террасы реки Оби. Рельеф дюнный.	Слабое.

Таблица 2. Таксономический состав дискомицетов городских растительных ландшафтов Новосибирского Академгородка

Класс	Порядок	Порядок Семейство Род (число видов)				
(число родов		з/видов)	год (число видов)			
		Discinaceae (2/2)	Gyromitra (1), Paragyromitra (1)			
		Morchellaceae (3/3)	Disciotis (1), Morchella (1), Verpa (1)			
		Helvellaceae (1/6)	Helvella (6)			
Pezizomycetes (17/26)	Pezizales (17/26)	Pezizaceae (3/6)	Legaliana (1), Peziza (4), Paragalactinia (1)			
		Pyronemataceae (7/8)	Cheilymeniya (2), Pulvinula (1), Geopyxis (1), Humaria (1), Otidea (1), Scutellinia (1), Tarzetta (1)			
		Sarcosomataceae (1/1)	Sarcosoma (1)			
		Sarcoscyphaceae (2/2)	Microstoma (1), Pithya (1)			
		Chlorociboriaceae (1/2)	Chlorociboria (2)			
	Helotiales (13/15)	Helotiaceae (3/3)	Ascocyrne (1), Calycina (1), Hymenoscyphus (1)			
Leotiomycetes (13/15)		Hyaloscyphaceae (2/2)	Arachnopeziza (1), Hyalopeziza (1),			
		Lachnaceae (2/3)	Capiotricha (1), Lachnum (2)			
		Mollisiaceae (1/1)	Mollisia (1)			
		Sclerotiniaceae (2/2)	Ciboria (1), Dumontinia (1)			

Количество видов на территории «Лисьих горок» и в Пироговском лесу было практически равным: 24 и 23 вида соответственно. В ШЛБК «Сказочный» обнаружено 11 видов дискомицетов. Наиболее часто встречающийся вид — Legaliana badia, нередко отмечались Humaria hemisphaerica, Otidea onotica, Paragyromitra infula, Peziza varia, Tarzetta cupularis, что говорит о том, что условия для развития их плодовых тел оптимальны в пределах Новосибирского Академгородка.

На всех обследованных территориях обнаружены Calycina citrina, Chlorociboria aeruginascens, Humaria hemisphaerica, Otidea onotica, Paragyromitra infula, Peziza pseudoviolacea, при этом практически все они в большем количестве встречаются на территории «Лисьих горок», за исключением H. hemisphaerica и P. pseudoviolacea, преобладающих в Пироговском лесу. К наиболее редким отнесены виды, отмеченные единично и только в одном ландшафте. Так, для территории «Лисьих горок» — это Chlorociboria aeruginosa, Ciboria betulicola, Dumontinia tuberosa, Helvella acetabulum, Helvella corium, Helvella crispa, Helvella macropus, Peziza vesiculosa, Pulvinula carbonaria; для Пироговского леса — Arachnopeziza aurelia, Capitotricha bicolor, Disciotis venosa, Geopyxis carbonaria, Gyromitra sphaerospora, Lachnum virgineum, Microstoma protractum, Mollisia cinerea, Paragalactinia michelii, Pithya vulgaris. На территории ШЛБК «Сказочный» отмечены единичные находки Ascocoryne sarcoides и Helvella elastica. Полученные данные свидетельствуют о том, что указанные виды, в отличие от перечисленных выше «космополитов», более требовательны к условиям среды (погодным и ландшафтным) для формирования плодовых тел. На территориях «Лисьих горок» и ШЛБК «Сказочный» единично отмечен вид, занесенный в Красную книгу Российской Федерации (Sarcosoma globosum) [23].

Кластерный анализ с использованием коэффициента Шимкевича—Симпсона позволил выделить территории Пироговского леса и Лисьих горок по сходству состава дискомицетов в отдельную группу (см. рис. 1), что объясняется малой удаленностью территорий друг от друга и сходными биогеографическими условиями.

Сходство таксономического состава грибов исследованных растительных ландшафтов отражает известную зависимость видового разнообразия от биогеографических факторов (Леонтьев, 2008). Более скудный видовой состав и меньшее количество находок в ШЛБК «Сказочный» объясняется особыми гидрологическими показателями территории.

Для оценки видовой структуры биоты используются индексы, учитывающие богатство, сложность и меру доминирования. При исследовании небольших выборок предпочтительным для оценки богатства и сложности является индекс Шеннона, являющийся обобщенной

Таблица 3. Встречаемость дискомицетов в растительных ландшафтах Новосибирского Академгородка.

Вид гриба	ЛГ	ПЛ	ШЛБК
Arachnopeziza aurelia (Pers.) Fuckel			
Ascocoryne sarcoides (Jacq.) J.W. Groves & D.E. Wilson			
Calycina citrina (Hedw.) Gray			
Capitotricha bicolor (Bull.) Baral			
Cheilymenia coprinaria (Cooke) Boud.			
Cheilymenia crucipila (Cooke & W. Phillips) Denison			
Chlorociboria aeruginascens (Nyl.) Kanouse ex C.S.Ramamurthi, Korf & L.R.Batra			
Chlorociboria aeruginosa (Oeder) Seaver ex C.S. Ramamurthi, Korf & L.R. Batra			
Ciboria betulicola J.W. Groves & M.E. Elliott			
Disciotis venosa (Pers.) Arnould			
Dumontinia tuberosa (Bull.) L.M. Kohn			
Geopyxis carbonaria (Alb. & Schwein.) Sacc			
Gyromitra sphaerospora (Peck) Sacc.			
Helvella acetabulum (L.) Quél.			
Helvella corium (O.Weberb.) Massee			
Helvella crispa (Scop.) Fr			
Helvella elastica Bull.			
Helvella lacunosa Afzel.			
Helvella macropus (Pers.) P. Karst			
Humaria hemisphaerica (F. H. Wigg.) Fuckel			
Hyalopeziza millepunctata (Lib.) Raitv.			
Hymenoscyphus repandus (W.Phillips) Dennis			
Lachnum nudipes (Fuckel) Nannf.			
Lachnum virgineum (Batsch) P.Karst			
Legaliana badia Pers.			
Microstoma protractum (Fr.) Kanouse			
Mollisia cinerea (Batsch) P. Karst			
Morchella elata Fr.			
Otidea onotica (Pers.) Fuckel			
Paragalactinia michelii (Boud.) Van Vooren			

Вид гриба	ЛГ	ПЛ	ШЛБК
Paragyromitra infula (Schaeff.) Quél.			
Peziza ampliata Pers.			
Peziza pseudoviolacea Donadini.			
Peziza varia (Hedw.) Alb. & Schwein.			
Peziza vesiculosa Bull.			
Pithya vulgaris Fuckel			
Pulvinula carbonaria (Fuckel) Boud.			
Sarcosoma globosum (Schmidel) Rehm			
Scutellinia scutellata (L.) Lambotte			
Tarzetta cupularis (L.) Svrček			
Verpa bohemica (Krombh.) J. Schröt.			

^{*}Примечание: ЛГ — «Лисьи горки», ПЛ — Пироговский лес, ШЛБК — ШЛБК «Сказочный».

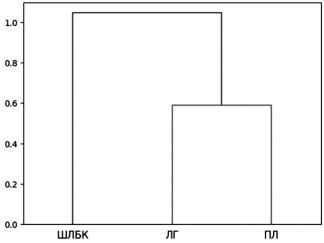


Рис. 1. Дендрограмма сходства дискомицетов исследованных территорий по видовому составу

мерой разнообразия (Леонтьев, 2008). Его значение для «Лисьих горок» составляет 6,84, для Пироговского леса — 6,71, для ШЛБК «Сказочный» — 4,13. Высокое сходство данного показателя для первых двух территорий обусловлено географическими характеристиками и сходством растительности. Вместе с тем, значения индекса Симпсона при расчете меры доминирования показали примерно равные значения для Пироговского леса (0,53) и ШЛБК «Сказочный» (0,56), что говорит об отсутствии заметных доминант, а для «Лисьих горок» он составил 0,68, что свидетельствует о достоверном доминировании отдельных видов (см. табл. 3). Для оценки богатства состава микобиоты дискомицетов используются показатели видовой насыщенности рода, семейства и родовой насыщенности семейств. При изучении дискомицетов данные параметры традиционно рассчитываются отдельно для оперкулятных и иноперкулятных видов (Попов, 2005) (табл. 4).

Таблица 4.

Показатели систематического разнообразия дискомицетов растительных ландшафтов Новосибирского Академгородка

Группа дискомицетов	«Лисьи горки»	Пироговский лес	ШЛБК «Сказочный»					
Среднее количество видов в роде								
Оперкулятные	1,64	1,13	1,17					
Иноперкулятные 1,20		1,08	1,00					
Среднее количество родов в семействе								
Оперкулятные	sie 1,83 2,60 1,50							
Иноперкулятные 1,25		1,60	1,40					
Среднее количество видов в семействе								
Оперкулятные 3,00		2,80	1,65					
Иноперкулятные 1,50		1,80	1,50					

Данные таблицы показывают, что во всех ландшафтах по каждому показателю преобладают оперкулятные виды, что объясняется их частой встречаемостью. По видовой насыщенности рода в обеих группах дискомицетов доминирующее положение занимает территория «Лисьих горок». Так, в сравнении с микобиотой ШЛБК «Сказочный», на данной местности каждый род с большей долей вероятности будет представлен более чем одним видом. По среднему количеству родов в семействах на первом месте находится Пироговский лес, что говорит о том, что на родовом уровне его микобиота более разнообразна по сравнению с остальными территориями, а, следовательно, на данной территории имеются

более благоприятные условия для формирования плодовых тел большего количества родов дискомицетов. Видовая насыщенность семейства на территории «Лисьих горок» и Пироговского леса практически идентична. Низкие показатели для ШЛБК «Сказочный» отражают менее благоприятные условия для роста и развития дискомицетов, что может быть связано с высокой заболоченностью территории.

Заключение

Изучение таксономического состава микобиоты дискомицетов необходимо для сохранения их биологического разнообразия. В растительных ландшафтах Новосибирска, наиболее подверженных антропогенной нагрузке, выявлен 41 вид дискомицетов, относящихся к 30 родам, 13 семействам, 2 порядкам и 2 классам. Преобладание оперкулятных дискомицетов в исследуемой биоте (65 %) объясняется антропогенными, в том числе, пирогенными, факторами, в результате чего нарушенные территории заселяются именно пионерными, оперкулятными видами. Сходство видового состава Лисьих горок и Пироговского леса подтверждается с помощью кластерного анализа с использованием коэффициента Шимкевича-Симпсона. Расчет обобщенной меры разнообразия дискомицетов исследованных территорий показал уникальность микобиоты ШЛБК «Сказочный», что вызвано высокой заболоченностью территории. Мера доминирования выявила отличие микобиоты Лисьих горок от остальных территорий, что говорит о более благоприятных условиях для развития одних видов и менее — для других. Более низкие показатели систематического разнообразия дискомицетов в ШЛБК «Сказочный» объясняются гидрологическими характеристиками района. Вместе с тем, на данной территории, равно как и в Лисьих горках, обнаружен гриб, занесенный в Красную книгу РФ.

ЛИТЕРАТУРА

- 1. Пятый национальный доклад «Сохранение биоразнообразия в Российской Федерации». М. Министерство природных ресурсов и экологии Российской Федерации, 20015 г., 124 с.
- 2. Арефьев С.П. О системном подходе к охране редких видов грибов // Вестник экологии, лесоведения и ландшафтоведения, 2008, № (8), С. 3—14.
- 3. Богачева А.В. Дискомицеты Ботанического сада ДВО РАН // Микология и фитопатология. 1996. Т. 30, вып. 3. С. 1—6.
- 4. Прохоров В.П., Милехин Д.И. Дискомицеты лесопарка Битца г. Москва // Бюллетень МОИП. Отделение Биологическое 2006. Т. 111, вып. 4. С. 63–69.
- 5. Попов Е.С. Дискомицеты Ботанического сада Петра Великого // Ботаника: история, теория, практика (к 300-летию основания Ботанического института им. В.Л. Комарова Российской академии наук): Труды международной научной конференции. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2014. С. 166—169.
- 6. Филимонова Д.А., Воробьева И.Г. Изучение биологического разнообразия дискомицетов растительных сообществ Новосибирска // Материалы IV Международной научно-практической конференции «Биологическое разнообразие: изучение, сохранение, восстановление, рациональное использование» (Керчь, 17—23 сентября 2024 г.). Симферополь: ИТ «АРИАЛ», 2024а. С. 136—140.
- 7. Филимонова Д.А., Воробьева И.Г. Изучение влияния антропогенной нагрузки на разнообразие дискомицетов Новосибирска // Экология. Экономика. Информатика. Серия: Системный анализ и моделирование экономических и экологических систем. 2024b. Т. 1. № 9. С. 104—108.
- 8. Филимонова Д.А., Воробьева И.Г. Таксономический состав и оценка видового разнообразия дискомицетов природного ландшафтного объекта «Лисьи горки» Новосибирского Академгородка // Экосистемы, 2025. № 41, С. 138—146.
- 9. Воробьева И.Г., Филимонова Д.А., Банаев Е.В. Экологическая структура дискомицетов Центрального сибирского ботанического сада СО РАН особо охраняемой природной территории // Сибирский экологический журнал, 2025. № 4. С. 548—557.

- 10. Павличенков В.И. Новейшие города СССР (развитие принципов социалистического градостроительства) // Советская архитектура сегодня и завтра (проблемы и перспективы): Сборник статей. Москва: Стройиздат, 1971. С. 54—77.
- 11. Единый государственный реестр объектов культурного наследия (памятников истории и культуры) народов Российской Федерации [Электронный ресурс] Режим доступа: https://opendata.mkrf.ru/opendata/7705851331-egrkn/63/354575 (дата обращения 14.06.2025).
- 12. Приказ Управления по государственной охране объектов культурного наследия Новосибирской области от 12 января 2015 г. N 7 [Электронный ресурс]. Информационно-правовой портал Гарант.ру. 2015. Режим доступа: https://base.garant.ru/7261494/ (просмотрено 31.06.2025)
- 13. Добрецов Н.Н., Зольников И.Д., Глушкова Н.В., Лямина В.А., Соколов К.С., Макунина Н.И., Смирнов В.В., Пчельников Д.В. Технологии компьютерного моделирования, ГИС-анализа и моделирования природно-антропогенных экосистем на примере Новосибирского Академгородка // Проблемы мониторинга окружающей среды (ЕМ-2011): сборник трудов XI всероссийской конференции с участием иностранных ученых. Российская академия наук. 2011. Кемерово: Кемеровский государственный университет. С.314-319
- 14. Отмахов Ю.С., Третьяков Б.А. Геоботаническое картографирование ландшафтной территории Шлюзовского Лесоболотного комплекса «Сказочный» // Материалы региональной научно-практической междисциплинарной конференции «Уникальный памятник природы шлюзовской лесоболотный комплекс «Сказочный». Экология и охрана» (19 апреля 2018 г.) Новосибирск: Изд-во «Окарина», 2020. С. 10—17.
- 15. Агеев Д.В., Бульонкова Т.М. Грибы Новосибирской области [Электронный ресурс] URL: https://mycology.su/
- 16. Методика изучения видового разнообразия макроскопических грибов / С.Ю. Большаков, А.В. Ивойлов // Методы полевых экологических исследований: учебное пособие. Саранск, 2014. С. 61—82.
- 17. Смицкая М.Ф. Флора грибов Украины. Оперкулятные дискомицеты. Киев: Наук. думка, 1980. 294 с.
- 18. Калинина Л.Б. Агарикоидные грибы широколиственных лесов Северо-Запада европейской части России (Ленинградская, Новгородская и Псковская области). Диссертация на соискание ученой степени кандидата биологических наук. 03.02.12 «Микология». Спб, 2020. 215 с.
- 19. Леонтьев Д.В. Флористический анализ в микологии: учебник для студентов высших учебных заведений. Харьков, 2008. 110 с.
- 20. Серегин А.П. Коэффициенты сходства в сравнении локальных флор (на примере сеточного картирования флоры национального парка «Мещера», Владимирская область) // Материалы Московского центра РГО. Биогеография. 2003. Вып. 11. С. 39—48.
- 21. Богачева, А.В. Дискомицеты (Ascomycota: Helotiales, Neolectales, Orbiliales, Pezizales, Thelebolales) юга Дальнего Востока России: автореф. дис. д-ра биол. наук: 03.00.24. Владивосток, 2008. 40 с
- 22. Попов Е.С. Дискомицеты Северо-Запада европейской части России (Ленинградская, Новгородская, Псковская области, г. Санкт-Петербург): автореф. дис. ... канд. биол. наук: спец. 03.00.24 Микология. СПб, Ботанический институт им. В. Л. Комарова РАН, 2005. 22 с.
- 23. Бульонкова Т.М., Филиппова Н.В., Агеев Д.В. К изучению агарикоидных макромицетов Шлюзовского лесоболотного комплекса // Материалы региональной научно-практической междисциплинарной конференции «Уникальный памятник природы шлюзовской лесоболотный комплекс «Сказочный». Экология и охрана» (19 апреля 2018 г.) Новосибирск: Изд-во «Окарина», 2020. С. 33—42.

© Филимонова Дарья Александровна (darya.filimonova@gmail.com); Воробьева Ирина Геннадьевна Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.02

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ЧЕЛОВЕКО-КОМПЬЮТЕРНОГО ВЗАИМОДЕЙСТВИЯ В СИСТЕМЕ ЭЛЕКТРОННОГО ДОКУМЕНТООБОРОТА

MODELING OF PROCESSES HUMAN-COMPUTER INTERACTION IN THE ELECTRONIC DOCUMENT MANAGEMENT SYSTEM

A. Bakanov

Summary. This article describes the research devoted to the development of a model of human-computer interaction with an electronic document management system. For this purpose, a study of information flows and processes in the organization was conducted, and an analysis of employee job responsibilities was conducted. The purpose of the study was to improve the efficiency of user interaction with the electronic document management system and ensure comfortable, friendly interaction. The result of the study is the developed model of human-computer interaction, as well as the user interface created on its basis.

Keywords: document management system, information flows and processes, user interface, interaction model.

Баканов Арсений Сергеевич

Доктор технических наук, ведущий научный сотрудник, Институт психологии РАН г. Москва arsen@yandex.ru

Аннотация. В настоящей статье описываются исследования, посвященные разработке модели человеко-компьютерного взаимодействия с системой электронного документооборота. Для этого было проведено исследование информационных потоков и процессов в организации, проведен анализ должностных обязанностей сотрудников. Целью исследования являлось повышение эффективности взаимодействия пользователя с системой электронного документооборота и обеспечение комфортного, дружественного взаимодействия. Результатом проведенного исследования является разработанная модель человеко-компьютерного взаимодействия, а также созданный на ее основе интерфейс пользователя.

Ключевые слова: система электронного документооборота, информационные потоки и процессы, интерфейс пользователя, модель взаимодействия.

Введение

ифровизация всех отраслей экономики и сфер производства предполагает широкое и эффективное использование информационных систем [1-3], включая системы электронного документооборота (СЭД). Системы электронного документооборота предоставляют совокупность функций для создания, учета, редактирования и хранения документов, но их основным предназначением является организация взаимодействия между сотрудниками в целях осуществления управления организацией. С помощью таких информационных систем, как СЭД, посредством обработки и исполнения документов, ставятся и распределяются задачи между сотрудниками, контролируется исполнение задач, иными словами, осуществляется управление в организационной системе [3-5]. Значительный научный интерес представляет задача разработки информационного и программного обеспечения систем управления, и в частности, вопросы организации человеко-компьютерного взаимодействия с системами электронного документооборота.

Анализ управленческих процессов и информационных потоков в организации

Деятельность организации заключается в распределении выполнения задач между подразделениями и сотрудниками для достижения поставленных перед организацией целей. К задачам управленческой организации можно отнести: формирование, мониторинг и актуализацию бизнес-процессов, а также управление ресурсами. Весь спектр задач управленческой деятельности можно представить как совокупность информационных потоков и процессов. Соответственно управленческую деятельность в контексте информационных потоков и процессов можно представить, как формирование, мониторинг и актуализацию информационных процессов и соответствующих им информационных потоков.

Структурная схема процессов управленческой деятельности и информационных потоков некоторой организации (в которой проводились исследования), представлена на рисунке 1. На представленном рисунке показаны основные структурные элементы органи-

зации. Структурные подразделения организации — департаменты, отделы, объединены в организационную структуру (на рисунке показано линиями) для осуществления деятельности в целях решения задач, стоящих перед организацией. Информационное взаимодействие структурных элементов организации осуществляется посредством информационных потоков (на рисунке показано стрелками), в соответствии с которыми осуществляются процессы управленческой деятельности данной организации.

Структура организации представляет собой, как правило, некоторую иерархически упорядоченную совокупность подразделений, отделов и проч. В рамках структуры организации распределяются функции и задачи, а также ответственность и полномочия.

ВНЕШНЯЯ СРЕДА ОРГАНИЗАЦИИ

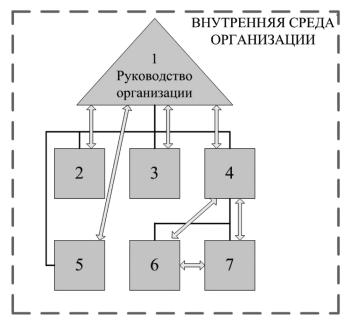


Рис. 1. Структурная схема процессов управленческой деятельности и информационных потоков организации

Распределение функций и задач, как и полномочий, для их осуществления реализуется посредством информационных потоков.

На рисунке 1 цифрами обозначены подразделения и отделы организации:

- 1) руководство организации;
- 2) бухгалтерия;
- 3) плановый;
- 4) производственный;
- 5) отдел кадров;
- 6) и 7) функциональные подразделения.

Организационная структура, как правило, включает некоторое количество уровней иерархии, согласно

которым осуществляется распределение функций, ответственности и полномочий внутри организации. Посредством информационных потоков осуществляется управление и координация деятельности организации по всем уровням иерархии.

Информационные потоки и процессы управленческой деятельности взаимосвязаны. Эта взаимосвязь обусловлена необходимостью реализации целей, стоящих перед организацией. Посредством информационных потоков, пронизывающих всю иерархию организации, осуществляется распределение работ и задач между подразделениями организации.

В целях разработки модели человеко-компьютерного взаимодействия были исследованы характеристики информационных потоков некоторой организации, была проанализирована взаимосвязь должностных обязанностей сотрудников и выполняемых ими функций, с функционалом информационных систем, используемых в данной организации. На основе структурной схемы (рисунок 1) был разработан граф информационных потоков организации, а также матрица использования информационных систем организации, представленная на рисунке 2.

В матрице (рисунок 2) по горизонтальной оси представлены информационные системы, функционирующие в организации. По вертикальной оси расположены подразделения и отделы данной организации, нумерация соответствует нумерации, приведенной в описании к рисунку 1.

	сэд	Система кадрового учета	Система бухгалтерского учета	Прочие специализированные информационные системы	
1	9	1	3	-	
2	3	3		-	
3	1	-	-	-	
4	5	-	-	7	
5	1	1	-	-	
6	1	-	-	3	
7	1	-	-	5	

Рис. 2. Матрица использования информационных систем организации

Цифры в ячейках матрицы представляют собой весовые коэффициенты, пропорциональные количеству рабочих мест конкретной информационной системы, которые используются в том или ином подразделении/

отделе организации. Анализ взаимосвязи должностных обязанностей сотрудников и функционала корпоративных информационных систем, а также графа информационных потоков и матрицы использования информационных систем организации, показал, что система электронного документооборота используется в трудовой деятельности большинства управленческих подразделений организации.

На рисунке 3 показаны участники процесса взаимодействия с комплексом систем организационного управления: руководство организации, руководство отделов/ подразделений, сотрудники подразделений организации. На схеме представлена совокупность информационных систем организации и показана их взаимосвязь.

Представленные на рисунке 3 специализированные информационные системы ориентированы на выполнение конкретных задач подразделений и используются исключительно руководителями отделов/подразделений и их сотрудниками.

Следовательно, для повышения эффективности функционирования организации важное значение имеют вопросы организации человеко-компьютерного взаимодействия с системой электронного документооборота. Успешное решение этих вопросов позволит реализовать эффективное и эргономичное взаимодействие с корпоративной системой электронного документоо-

борота, что в свою очередь, позволит достичь высоких показателей результативности и эффективности всей организации в целом.

Модель человеко-компьютерного взаимодействия в системе электронного документооборота

Взаимодействие пользователя с информационными системами (в частности, с системой электронного документооборота) можно рассматривать как совокупность процессов человеко-машинного взаимодействия. Выделим основные задачи, которые должны быть решены при анализе и совершенствовании информационного взаимодействия человек-компьютер:

- 1. Анализ процессов трудовой деятельности пользователя, исследование структуры организации с учетом функций, исполняемых пользователем в процессе взаимодействия с корпоративной информационной системой;
- 2. Исследование и реинжиниринг процессов приема и обработки информации пользователем;
- 3. Исследование процессов поддержки принятия решений при взаимодействии пользователя с информационной системой;
- 4. Исследование и совершенствование процессов, связанных с вводом информации пользователем при осуществлении взаимодействия с корпоративной информационной системой (в рассматри-

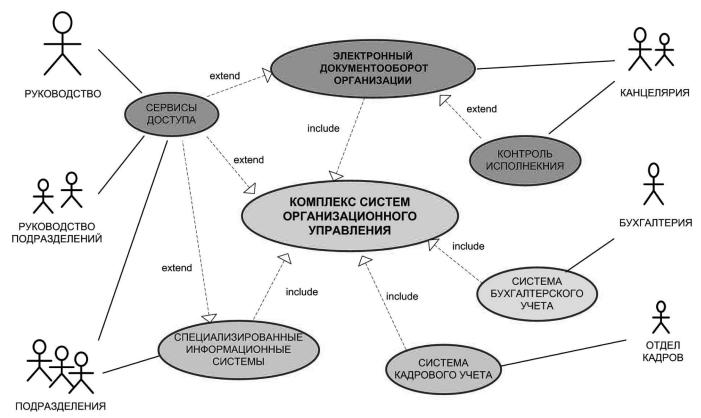


Рис. 3. Модель прецедентов использования информационных систем организации

ваемом случае, — с системой электронного документооборота).

Рассмотрим фрагмент модели взаимодействия оператора с информационной системой (на примере системы электронного документооборота), представленный на рисунке 4. Данные посредством устройства отображения информации и с использованием совокупности элементов интерфейса передаются пользователю.

В результате восприятия информации, у пользователя системы формируется «оперативный образ», иными словами, некоторое оперативное восприятие представленной информации. На основе сформированного «оперативного образа», пользователь принимает решение и осуществляет ввод информации.

На рисунке 5 представлен фрагмент интерфейса пользователя системы электронного документооборота, созданный на основе разработанной модели человеко-компьютерного взаимодействия.

Пользователь Система электронного документооборота



Рис. 4. Фрагмент модели человеко-компьютерного взаимодействия в системе электронного документооборота

Организационные системы, в своем большинстве, это сложные иерархические системы, состоящие из множества взаимодополняющих и взаимодействующих между собой элементов и подсистем. Организационная система создается в целях решения сложных, комплекс-

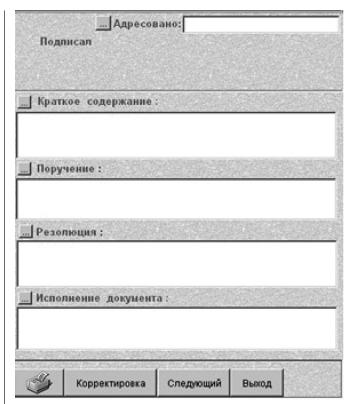


Рис. 5. Фрагмент интерфейса пользователя системы электронного документооборота

ных и трудоемких задач. Поэтому информационная среда организации, как правило состоит из совокупности информационных систем, каждая из которых предназначена для решения конкретной задачи. Разработка модели человеко-компьютерного взаимодействия позволяет упростить и оптимизировать процессы интеграции и взаимодействия информационных систем в информационном пространстве организации, а также реализовать дружественный и эргономичный интерфейс пользователя.

Заключение

В настоящей статье был произведен анализ процессов человеко-компьютерного взаимодействия в системе электронного документооборота и осуществлена разработка модели человеко-компьютерного взаимодействия. Была разработана модель и приведена структурная схема взаимодействия пользователя с системой корпоративного электронного документооборота. Разработанная функциональная модель [1, 6], может быть положена в основу проектирования и последующей разработки интерфейсов пользователя корпоративной системы электронного документооборота крупной управленческой организации [7, 8].

Информационные системы (в частности, корпоративные системы электронного документооборота) не существуют сами по себе, а предназначены для использова-

ния при комплексном решении задач, стоящих перед пользователями. Поэтому разработка информационного и программного обеспечения систем управления не может осуществляться без учета особенностей трудовой деятельности пользователей и в отрыве от задач, решаемых пользователем. Разработка модели человеко-компьютерного взаимодействия, является неотъемлемым этапом в процессе создания информационных

систем, предназначенных для управления организацией. Эргономичный, дружественный интерфейс пользователя корпоративной информационной системы [9] (в частности, системы электронного документооборота) позволит повысить эффективность процессов трудовой деятельности сотрудников организации, а также обеспечит результативность управленческих процессов всей организации в целом.

ЛИТЕРАТУРА

- 1. Баканов А.С., Обознов А.А. Эргономика пользовательского интерфейса: от проектирования к моделированию человеко-компьютерного взаимодействия. М.: Изд-во «Институт психологии РАН», 2011. 176 с.
- 2. Петрова А.М., Ромашкова О.Н., Ермакова Т.Н., Чискидов С.В. Модели процессов функционирования информационной системы мониторинга климата и окружающей среды в арктическом регионе // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2022. № 4–2. С. 104–110.
- 3. Тютюнник В.М., Баканов А.С. Подходы к анализу информационных процессов в организации // Информационные ресурсы России. 2023. № 2 (191). С. 58—71.
- 4. Баканова Н.Б. Разработка сервисов информационных систем для анализа и обработки входного потока документов //Приборы и системы. Управление, контроль, диагностика. 2024. № 12. С. 17—24. DOI: 10.25791/pribor.12.2024.1544.
- 5. Новикова А.С., Ромашкова О.Н. Интеграция нейросетей в информационные системы розничных торговых сетей: прогнозирование и управление распределением ресурсов // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2024. № 1—2. С. 49—52.
- 6. Шрайберг Я.Л. Современные тенденции развития цифровизации общества: научно-образовательная и библиотечно-информационная среда: монография /Я.Л. Шрайберг // М.: ИНФРА-М, 2024. 664 с.: ил. DOI 10.12737/2155873.
- 7. Павличева Е.Н., Ромашкова О.Н. Информационные процессы поддержки принятия решений в многоуровневых образовательных системах /Москва, 2022.
- 8. Ломовцев Р.С., Ромашкова О.Н., Пономарева Л.А. Алгоритм интеллектуальной поддержки управленческих решений для региональной образовательной системы // Вестник Брянского государственного технического университета. 2018. № 10 (71). С. 35—43.
- 9. Bakanov, A.S. Analysis of Information Resources of the Organization Using Keywords / A.S. Bakanov // Scientific and Technical Information Processing. 2024. T. 51. № 3. P. 247–252 DOI 10.3103/S0147688224700217.

© Баканов Арсений Сергеевич (arsen@yandex.ru) Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.04

МЕТОД ЛОКАЛИЗАЦИИ ИСТОЧНИКА АТМОСФЕРНОГО ЗАГРЯЗНЕНИЯ

METHOD FOR LOCALIZING THE SOURCE OF ATMOSPHERIC POLLUTION

A. Bogomolov I. Shnaider

Summary. With the growth of urbanization and the increasing number of man-made accidents, the tasks of environmental monitoring and localization of pollution sources are becoming increasingly important. A method has been developed for identifying the location of atmospheric pollution sources, along with a software system based on it. The system integrates a production model for calculating pollutant dispersion taking into account the influence of precipitation and based on a modified D. Ermak equation — with a particle swarm optimization (PSO) algorithm to determine the coordinates of atmospheric pollution sources. The system considers meteorological conditions, including humidity, precipitation, and wind speed, and utilizes data from environmental monitoring sensors within the studied area. A distinctive feature is an intuitive visual interface that enables calculation and visualization of pollution dispersion from registered sources on a geographic map and a concentration heatmap. Numerical experiments demonstrate the required localization accuracy. The advantages and limitations of the proposed approach are discussed. Prospects include applications in industrial zones, urban environmental monitoring, and civil protection

Keywords: ecology, pollutant, particle swarm optimization method, pollution sources, localization problem, simulation modeling, pollution dispersion, ecological monitoring.

Богомолов Алексей Сергеевич

доктор технических наук, Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского» bogomolov @ iptmuran.ru

Шнайдер Илья Андреевич

Аспирант, Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского» es1098@mail.ru

Аннотация. В условиях роста урбанизации и числа техногенных аварий задачи экологического мониторинга и локализации источников загрязнений приобретают особую значимость. Разработан метод поиска локации источников атмосферных загрязнений и программный комплекс на его основе, интегрирующий продукционную модель расчета распространения загрязнителя с учетом влияния осадков, основанную на модифицированном уравнении Д. Ермака, с алгоритмом метода роя частиц (PSO) для определения координат источников атмосферного загрязнения. Комплекс учитывает метеоусловия, включая влажность, осадки и скорость ветра, и использует данные с датчиков экологического мониторинга на исследуемой территории. Особенностью является интуитивно понятный визуальный интерфейс программного комплекса с возможностью расчета и отображения распространения загрязнения от зарегистрированных источников на географической картосхеме и тепловой карте концентраций. Численные эксперименты демонстрируют необходимую точность локализации. Рассмотрены преимущества и ограничения предлагаемого подхода. Перспективы включают применение в промышленных зонах, городском экомониторинге и системах гражданской защиты.

Ключевые слова: экология, поллютант, метод роя частиц, источники загрязнения, задача локализации, имитационное моделирование, распространение загрязнителя, экологический мониторинг.

Введение

еобходимость своевременного обнаружения источника выброса атмосферного загрязнителя, а также прогнозирования пространственного распределения загрязняющего вещества критически важны для принятия оперативных мер по защите здоровья населения и минимизации экологического ущерба. Особенно актуальными эти задачи становятся в случае несанкционированных выбросов, техногенных аварий или террористических угроз, когда информация об источнитеррористических угроз, когда информация об источни-

ке загрязнения заранее отсутствует, а данные поступают только с датчиков концентрации в воздухе.

Для решения подобных задач в последние десятилетия были предложены различные методики, такие как методы прямого перебора по сетке, градиентные методы, генетические алгоритмы, а также методы, основанные на машинном обучении. Многие из них сталкиваются с проблемами высокой вычислительной сложности, нестабильности при наличии шумов в данных или ограниченной применимости в реальном времени.

В работе [1] предложен метод, основанный на лагранжевой модели и обратной динамике частиц, позволяющий с высокой точностью реконструировать возможные зоны источников загрязнений на региональном уровне. Авторы демонстрируют эффективность модели в условиях ограниченной наблюдательной информации и акцентируют внимание на её применимости в реальном времени. Исследование [2] акцентирует внимание на идентификации и смягчении загрязнений воздуха внутри помещений на основе мониторинговых данных. Рассматриваются современные тренды в этой области, включая использование портативных сенсоров и методов статистического анализа для интерпретации источников выбросов и повышения качества воздуха в замкнутых пространствах.

Работа [3] рассматривает химическую эволюцию дождевых осадков в условиях экстремальных осадков в мегаполисах, что позволяет выявить вклад атмосферных загрязнителей в состав атмосферной влаги. Такой подход расширяет представления о путях осаждения загрязняющих веществ и дополняет традиционные методы идентификации источников. В [4] предложен способ интеграции данных о концентрациях загрязнителей на сетке с траекториями обратного переноса, что позволило существенно повысить пространственную точность локализации источников. Метод сочетает физически обоснованные модели с наблюдаемыми данными, демонстрируя практическую ценность для управления качеством воздуха.

Исследование [5] посвящено оценке эффективности систем мониторинга качества воздуха в промышленных зонах. Авторы предлагают метод оценки способности сети детектировать эпизоды загрязнений и отслеживать их источники, что особенно важно для своевременного принятия управленческих решений. В работе [6] рассматриваются превентивные меры и методы выявления источников загрязнения в химико-промышленных парках, с акцентом на структурные особенности таких территорий и особенности распространения выбросов. В продолжение данной темы [7] анализируют подход к определению области источников при ограниченном числе стационарных постов наблюдения. Предложенный подход демонстрирует потенциал к применению в условиях слабой пространственной дискретизации мониторинга.

В работе [8] исследуются разнообразные источники загрязнения воздуха в сложной городской среде Хорватии, используя интеграцию эмпирических данных и модельных расчётов. Работа подчёркивает значимость локальных факторов и их взаимодействия с метеоусловиями.

В систематическом обзоре [9] проанализировано применение алгоритмов искусственного интеллекта

в задачах мониторинга и прогноза загрязнения воздуха. Отмечается рост интереса к гибридным моделям, сочетающим физику процесса с машинным обучением, особенно в задачах краткосрочного прогноза и классификации источников.

Исходя из анализа существующих методологий идентификации источников атмосферных выбросов, одной из эффективных стратегий в подобных условиях является использование численных методов оптимизации, позволяющих по данным о концентрациях в определённых точках пространства оценить вероятное местоположение источника. В настоящей работе в качестве основы для решения данной обратной задачи применяется алгоритм метода роя частиц (МРЧ), известный своей простотой реализации, устойчивостью к локальным минимумам и хорошей сходимостью даже в условиях ограниченного объёма исходных данных. В качестве физической модели распространения загрязняющего вещества используется разработанная авторами продукционная модель распространения загрязнителя — модифицированное уравнение Д. Ермака, описывающее перенос и рассеяние примесей в атмосфере с учётом воздействия ветра, жидких осадков и сухого осаждения.

Целью настоящего исследования является разработка программного комплекса, позволяющего интегрировать разработанную ранее авторами продукционную модель расчета распространения загрязнителя с алгоритмом МРЧ для поиска источника загрязнения на основе собранных системой датчиков экологического мониторинга данных о концентрации поллютантов в атмосферном воздухе. Особенностью разработанного комплекса является наличие визуального интерфейса и системы отображения и сохранения результатов моделирования на географической картосхеме и тепловой карте концентраций, что делает инструмент не только аналитическим, но и прикладным средством для специалистов в области экологического мониторинга, гражданской защиты и городского управления.

Постановка задачи локализации источников повышенного атмосферного выброса

Общая задача локализации источников повышенного атмосферного выброса может быть формально представлена следующим образом. Пусть территория S подвергается загрязнению поллютантом P вследствие функционирования на территории S' множества источников загрязнения Ω . Множество Ω включает подмножество Ω' источников загрязнения с известными координатами и задекларированными интенсивностями выброса. Также на территории S расположена система датчиков $\Sigma(t)$ в известных контрольных точках. Известно, что выбросы источников из множества Ω' не превышают задекларированных значений, при которых суммарное

загрязнение от источников из этого множества не превышает некоторого известного значения, наблюдаемого ранее (или предельно допустимой концентрации поллютанта P). При этом на некоторых датчиках системы $\Sigma(t)$ наблюдается достаточно большое превышение данного значения. Требуется по наблюдениям метеоданных X(t) и концентрации поллютанта Y(t) на датчиках $\Sigma(t)$ в течение интервала времени $[t_0, t_1]$ определить источник из $\Omega \setminus \Omega'$, выбросы которого повлекли это превышение.

Данную задачу можно рассматривать как обратную к задаче расчёта рассеивания загрязняющих веществ в атмосфере. Поиск источника может быть сведен к поиску глобального максимума функции распространения загрязнителя.

2. Метод решения задачи локализации источника атмосферного загрязнения

Предлагаемый метод решения данной задачи включает в себя следующие шаги:

• первоначальный анализ данных экологического мониторинга и метеорологических наблюдений

- с целью выявления временных отрезков, на которых фиксируется превышение ПДК поллютанта;
- проведение симуляций с использованием продукционной модели для расчёта распространения загрязнителей, выброшенных зарегистрированными источниками на данных временных отрезках и их отрисовки на картосхеме исследуемого участка;
- проведение симуляций поиска источников загрязнений с использованием метода роя частиц и их отображение на картосхеме исследуемого участка;
- наложение и сравнение результатов имитационного моделирования и формирование предположений о местонахождении возможных незарегистрированных источников выбросов.

В качестве функции распространения атмосферного загрязнителя использовалась разработанная авторами ранее [10] продукционная модель расчета распространения загрязнителя с учетом сухого осаждения и влияния влажности и атмосферных осадков:

$$\begin{cases} \frac{Q}{2\pi u \sigma_{y} \sigma_{z}} exp\left(-\frac{W_{set}(z-H)}{2K_{z}} - \frac{W_{set}^{2} \sigma_{z}^{2}}{8K_{z}^{2}}\right) \left[exp\left(\frac{-(z-H)^{2}}{2\sigma_{z}^{2}}\right) + exp\left(\frac{-(z+H)^{2}}{2\sigma_{z}^{2}}\right) - \right. \\ \left. - \sqrt{2\pi} \frac{W_{0} \sigma_{z}}{K_{z}} exp\left(\frac{W_{0}(z+H)}{K_{z}} + \frac{W_{0}^{2} \sigma_{z}^{2}}{2K_{z}^{2}}\right) erfc\left(\frac{W_{0}}{\sqrt{2}K_{z}} + \frac{z+H}{\sqrt{2}\sigma_{z}}\right)\right], \text{без осадков} \end{cases}$$

$$C(x,y,z) = \begin{cases} \frac{Q}{2\pi u \sigma_{y} \sigma_{z}} exp\left(-\frac{W_{set}(z-H)}{2K_{z}} - \frac{W_{set}^{2} \sigma_{z}^{2}}{8K_{z}^{2}}\right) \left[exp\left(\frac{-(z-H)^{2}}{2\sigma_{z}^{2}}\right) + exp\left(\frac{-(z+H)^{2}}{2\sigma_{z}^{2}}\right) - \right. \\ \left. - \sqrt{2\pi} \frac{W_{0} \sigma_{z}}{K_{z}} exp\left(\frac{W_{0}(z+H)}{K_{z}} + \frac{W_{0}^{2} \sigma_{z}^{2}}{2K_{z}^{2}}\right) erfc\left(\frac{W_{0}}{\sqrt{2}K_{z}} + \frac{z+H}{\sqrt{2}\sigma_{z}}\right)\right]. \end{cases}$$

$$\left. - \frac{6}{\pi \rho d^{3}} \left(\frac{RH \cdot \vartheta \cdot v_{w} \cdot M_{w}}{1 - RH} + v_{p} M_{p}\right), \text{при осадках}. \end{cases}$$

Где C(x,y,z) — концентрация атмосферного загрязнителя в данной точке пространства; x,y,z — координаты расчетной точки в метрах; H — высота источника загрязнения в метрах; Q — скорость выброса загрязнителя источником; u — скорость ветра в метрах в секунду; σ_y σ_z — параметры гауссовского рассеивания в направлениях y и z; $W_{set} = \rho g d^2 / 18\mu$ — скорость витания сферических частиц по закону Стокса; ρ — плотность частицы загрязнителя; d — диаметр частицы загрязнителя; g — ускорение свободного падения; μ — вязкость воздуха; $W_0 = W_{dep} - \frac{1}{2}W_{set}$, где $W_{dep} > 0$ — скорость сухого осаждения частиц загрязнителя, получаемая экспериментальным путем; K_z — коэффициенты турбулентной диффузии; M_w , M_p — молярные массы воды и загрязнителя; RH — относительная влажность воздуха (в долях); θ — коэффициент связывания воды с поллютантом; v_w , v_p — количество вещества воды и загрязнителя.

Для оптимизации (поиска максимума) функции распространения атмосферного загрязнителя был использован алгоритм роя частиц (MPЧ, Particle Swarm Optimization, PSO). Метод роя частиц является эвристическим оптимизационным алгоритмом, основанным

на моделировании поведения коллективов (роев) частиц в поиске оптимального решения, разработанным по принципам, наблюдаемым в природных коллективных системах. Его формальная модель основывается на динамике агентов (частиц), поведение которых ап-

проксимирует координацию индивидов в стаях птиц и косяках рыб. Каждая частица в алгоритме характеризуется положением и скоростью в пространстве решений, обновляемыми с учётом собственного лучшего найденного решения и глобального или локального лучшего решения, обнаруженного группой. Такая схема взаимодействия отражает присущие природным системам механизмы индивидуального опыта и социального обмена информацией.

В основе МРЧ лежит набор частиц (потенциальных решений), которые перемещаются в пространстве поиска, обновляя свои позиции и скорости на основе личного опыта (лучшее решение, найденное данной частицей), группового опыта (лучшее решение, найденное всеми частицами) и инерции движения (исключает хаотичное движение частиц).

Каждая частица представляется координатами в многомерном пространстве, а её скорость управляется уравнением (2):

$$v_i^{(t+1)} = \omega v_i^{(t)} + c_1 (p_i^{best} - x_i^{(t)}) + c_2 (g^{best} - x_i^{(t)}),$$
 (2)

где: $v_i^{(t)}$ — скорость частицы i на шаге t; $x_i^{(t)}$ — текущая позиция частицы; $p_i^{\ best}$ — наилучшая найденная данной частицей позиция; $g^{\ best}$ — наилучшая позиция среди всех частиц; ω — коэффициент инерции частицы; c_1 , c_2 — коэффициенты обучения (влияния личного и группового опыта).

После обновления скорости обновляется позиция (3):

$$x_i^{(t+1)} = x_i^{(t)} + v_i^{(t+1)}. (3)$$

Алгоритм продолжается до достижения заданного количества итераций или критерия остановки.

3. Программный комплекс поиска локации источника атмосферного загрязнения

Для автоматизированного поиска возможных решений задачи локализации источников атмосферного выброса на основе метода роя частиц и разработанной продукционной модели расчета распространения атмосферного загрязнителя с учетом влияния жидких осадков был разработан программный комплекс на высокоуровневом языке программирования Python, позволяющий определять координаты потенциального источника повышенного атмосферного выброса на промышленной территории.

На вход подаются данные экологического мониторинга в заданный период времени (скорость и направление ветра, время суток, данные об инсоляции, концентрация загрязнителя) из базы SQL Server. Результатом

работы программы являются координаты сектора, содержащего потенциальный источник атмосферного загрязнения, его предполагаемая интенсивность, а также графическое отображение сектора на картосхеме исследуемого участка промышленной территории. Программный комплекс реализован как в виде десктопного приложения, так и веб-приложения с доступом через браузер. Исходный код проекта доступен по ссылке https://github.com/schneider31/web-pso.

4. Результаты моделирования

Для тестирования и оценки точности работы программного комплекса были проведены симуляции поиска источника атмосферного загрязнения по данным экологического мониторинга (концентрация сероводорода в атмосферном воздухе, метеоусловия) на участке местности 5 на 5 километров с единственным зарегистрированным источником загрязнения в виде предприятия по переработке газа. Были выбраны временные интервалы, при которых на датчике наблюдался устойчивый фон концентрации сероводорода система наблюдения находилась с подветренной стороны относительно предприятия. На рисунке 1 представлена отрисовка результатов моделирования. Черной линией указаны границы предприятия, черной меткой — расположение сенсора сбора данных, серыми метками — участки, предположительно содержащие источник загрязнения.

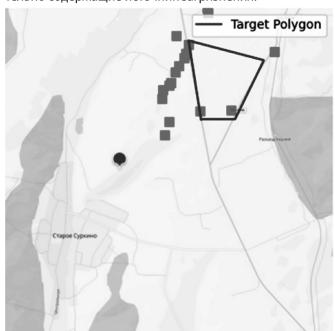


Рис. 1. Результаты поиска источника на картосхеме

Для симуляций использовались следующие параметры: число частиц — 100; число итераций — 300; w=0.45, c_1 =1.8, c_2 =1.6. Были проведены симуляции для 20 временных интервалов, среднее время моделирования одного временного интервала с данными параметра-

ми составило 40 минут на персональном компьютере с характеристиками: Процессор Ryzen 7 5700X 8 ядер, 3500 МГц, ОЗУ DDR4 32Гб 3200Мгц. Средняя абсолютная ошибка модели по результатам тестирования составила МАЕ=137,78 метра, что является достаточной точностью для проверки гипотезы о местонахождении на участке промышленной территории незарегистрированного источника атмосферного загрязнения. К преимуществам разработанного программного комплекса можно отнести: эффективность и скорость вычислений; учет влияния различных погодных факторов на рассеивание загрязняющих веществ; графическая визуализация получаемых результатов; возможность адаптации для моделирования различных типов загрязнителей и источников.

К основным ограничениям можно отнести следующее: не учитывается возможный сложный ландшафт местности или сооружения, которые могут влиять на рассеивание загрязняющих веществ, что увеличивает

ошибку для случаев со значительным рельефом местности; не учитываются возможные химические реакции в облаке шлейфа с другими загрязнителями.

Заключение

Разработанный программный комплекс на основе алгоритма роя частиц и продукционной модели атмосферного загрязнения позволяет эффективно решать задачу локализации источников выбросов. Предложенный подход обеспечивает возможность определения координат и интенсивности нелегальных источников загрязнения, расчета распространения зарегистрированных источников, а также их отображение на картосхеме. Результаты тестирования подтверждают работоспособность системы в реальных условиях. Разработанный инструментарий может быть применён в системах экологического мониторинга и управления качеством воздуха, способствуя повышению экологической безопасности территорий.

ЛИТЕРАТУРА

- 1. Filippova M., Bakhteev O., Meshchaninov F., Burnaev E., Vanovskiy V. Regional-scale air pollution source identification using backward particle dynamics // Atmospheric Environment. 2025. Vol. 346. Article 121099. DOI: 10.1016/j.atmosenv.2024.121099.
- 2. Chojer H., Branco P.T.B.S., Martins F.G., Alvim-Ferraz M.C.M., Sousa S.I.V. Source identification and mitigation of indoor air pollution using monitoring data Current trends // Environmental Technology & Innovation. 2024. Vol. 33. Article 103534. DOI: 10.1016/j.eti.2024.103534.
- 3. Zeng J., Han G., Zhang S., Xiao X., Li Y., Gao X., Wang D., Qu R. Rainwater chemical evolution driven by extreme rainfall in megacity: Implication for the urban air pollution source identification // Journal of Cleaner Production. 2022. Vol. 372. Article 133732. DOI: 10.1016/j.jclepro.2022.133732.
- 4. Nunes dos Santos O., Hoinaski L. Incorporating gridded concentration data in air pollution back trajectories analysis for source identification // Atmospheric Research. 2021. Vol. 263. Article 105820. DOI: 10.1016/j.atmosres.2021.105820.
- 5. Huang Z., Yu Q., Ma W., Chen L. Surveillance efficiency evaluation of air quality monitoring networks for air pollution episodes in industrial parks: Pollution detection and source identification // Atmospheric Environment. 2020. Vol. 223. Article 117240. DOI: 10.1016/j.atmosenv.2019.117240.
- 6. Yang S.-H., Chen J.-M. Air pollution prevention and pollution source identification of chemical industrial parks // Process Safety and Environmental Protection. 2022. Vol. 159. Pp. 992–995. DOI: 10.1016/j.psep.2022.01.040.
- 7. Huang Z., Wang Y., Yu Q., Ma W., Zhang Y., Chen L. Source area identification with observation from limited monitor sites for air pollution episodes in industrial parks // Atmospheric Environment. 2015. Vol. 122. Pp. 735–744. DOI: 10.1016/j.atmosenv.2015.10.063.
- 8. Jeričević A., Gašparac G., Maslać Mikulec M., Kumar P., Telišman Prtenjak M. Identification of diverse air pollution sources in a complex urban area of Croatia // Journal of Environmental Management. 2019. Vol. 243. Pp. 66–77. DOI: 10.1016/j.jenvman.2019.04.113.
- 9. Duan L., Fung P.L., Fu Q., Chen J., Huo J., Huang K., Wang G., Zaidan M.A., Guo Z., Hussein T. A robust black carbon prediction model derived from observational datasets in the Yangtze River Delta region, China // Environmental Pollution. 2025. Vol. 334. Article 123498. DOI: 10.1016/j.envpol.2025.123498.
- 10. Shnaider I., Lapkovsky R., Urumbaeva Rosa & Zhabinskaya, Valeria. (2024). A Production Model for Calculating Pollutant Concentration Considering the Influence of Precipitation Washout and Dry Deposition. 1–4. 10.1109/MLSD61779.2024.10739434.

© Богомолов Алексей Сергеевич (bogomolov @ iptmuran.ru); Шнайдер Илья Андреевич (es1098@mail.ru) Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.08

СИСТЕМНЫЙ АНАЛИЗ КОММУНИКАНТОВ ИНТЕЛЛЕКТУАЛЬНОГО КОНТУРА УПРАВЛЕНИЯ

SYSTEM ANALYSIS OF INTELLIGENT CONTROL LOOP COMMUNICATORS

B. Goryachkin K. Grishin

Summary. Problem Statement. The sphere of information technologies has recently influenced many spheres — healthcare, construction, transportation, security, industry and others. Nowadays it is possible to use advanced developments in the field of machine learning, artificial intelligence (hereinafter AI) in order to increase efficiency, optimize various (including time) resources when performing various tasks.

When considering the control loop, which involves two subjects (human operator and machine), the question is raised about the possibility of using Al technologies in this context. In turn, the integration and, as a consequence, the unification of all three subjects («Human Operator — Machine — Al») allows us to talk about the «interactualization» of the control loop. At the same time, some questions arise related to the delimitation of «duties» of each subject of the intelligent control loop (hereinafter ICL), i.e. where the activity of one subject starts, what is necessary for it, how it will be performed.

Within the framework of this article the concept of the intellectual control loop, its structure are formulated, the parameters of functions, requirements and limitations related to the subjects of the ICL on the basis of the stages of the model of the life cycle of the Al data, to perform effective planning, design, development and further operation of the Al system are defined.

Purpose. To consider the structure of the intelligent control loop, essential parameters in the form of functions, requirements and constraints on the example of the Al data life cycle, to perform on their basis visualization and interpret the results of the influence of characteristics on the interaction of human-operator and machine component.

Results. The ICL parameters in the form of functions, requirements and constraints in the context of stages of the Al data life cycle are formulated. It is concluded that the human component fully participates in the ICL at all stages, the machine component functions only at the stages of construction and operation of the Al system.

Practical significance. This article could potentially be used as a basis for the creation of the ICL, as well as various standards, unifying provisions governing its operation.

Keywords: intelligent control loop, artificial intelligence, ergatic system, human-machine system, data lifecycle, functions, requirements and limitations.

Горячкин Борис Сергеевич

кандидат технических наук, доцент, Московский государственный технический университет им. Н.Э. Баумана bsgor@mail.ru

Гришин Кирилл Павлович

аспирант, Московский государственный технический университет им. Н.Э. Баумана kirillgrish2014@yandex.ru

Аннотация. Постановка проблемы. Сфера информационных технологий за последнее время оказала влияние на множество сфер — здравоохранение, строительство, транспорт, безопасность, промышленность и др. В настоящее время представляется возможным использовать передовые разработки в области машинного обучения, искусственного интеллекта (далее ИИ) с целью повышения эффективности, оптимизации различных (в т.ч. временных) ресурсов при выполнении различных задач.

При рассмотрении контура управления, в котором фигурирует два субъекта (человек-оператор и машина) ставится вопрос о возможности использования технологий ИИ в данном контексте. В свою очередь интеграция, и как следствие, объединение всех трех субъектов («Человек оператор — Машина — ИИ»), позволяет вести речь об «интектуализации» контура управления. Вместе с тем возникают некоторые вопросы, связанные с разграничением «обязанностей» каждого субъекта интеллектуального контура управления (далее ИКУ), т.е. где начинается деятельность одного субъекта, что для этого необходимо, каким образом она будет выполняться.

В рамках данной статьи сформулировано понятие интеллектуального контура управления, его структура, определены параметры функций, требований и ограничений, относящиеся к субъектам ИКУ на основе этапов модели жизненного цикла данных ИИ, для выполнения эффективного планирования, проектирования, разработки и дальнейшей эксплуатации системы ИИ.

Цель. Рассмотреть структуру интеллектуального контура управления, существенные параметры в виде функций, требований и ограничений на примере жизненного цикла данных ИИ, выполнить на их основе визуализацию и интерпретировать результаты влияния характеристик на взаимодействие человека — оператора и машинной компоненты.

Результаты. Сформулированы параметры ИКУ в виде функций, требований и ограничений в контексте этапов жизненного цикла данных ИИ. Сделан вывод о полноценном принятии участия человеческой компоненты в ИКУ на всех этапах, машинная составляющая функционирует лишь на этапах построения и эксплуатации системы ИИ.

Практическая значимость. Данную статью потенциально возможно использовать в качестве основы для создания ИКУ, а также различных стандартов, унифицирующих положений, регулирующих его работу.

Ключевые слова: интеллектуальный контур управления, искусственный интеллект, эргатическая система, система «человек — машина», жизненный цикл данных, функции, требования и ограничения.

Введение

еловек на протяжении всей истории так или иначе создавал различные инструменты, орудия труда или выполнял улучшение уже существующих. В свою очередь это постоянно двигало технологический прогресс вперед, позволяя совершенствовать те или иные области, начиная от медицины, и заканчивая транспортом [10–14]. В силу активного развития технологий т.н. искусственного интеллекта (далее ИИ) представляется возможным их внедрение в этих и других сферах, снимая излишнюю нагрузку на человека, оптимизируя время и объем выполнения той или иной задачи.

В контексте производственной сферы, невозможно полностью исключить совершение ошибки человеком в какой-либо операции в момент взаимодействия с оборудованием, устройством. Одним из возможных вариантов решения или способов минимизации издержек является внедрение в подобную систему «Человек машина» (или эргатическая система) интеллектуальной составляющей, выполняющая функции по поддержке человека-оператора, например, при принятии решения, выполнения расчетов и с выводом вероятности наступления того или иного события и т.д. Такую систему состоящую из трех субъектов возможно обозначить как интеллектуальный контур управления (далее ИКУ), требующий детального рассмотрения. Ключевым здесь является обозначение тех или иных характеристик, параметров, на основе которых будет строится сама модель, на каких этапах будет решаться та или иная задача, а также какие конкретно необходимо решать человеку, а какие машинной составляющей [15].

Контур управления и интеллектуальная компонента

Человечество всегда стремилось оптимизировать свою деятельность, сделать её более эффективной. Активное развитие научно-технического прогресса позволяет использовать передовые технологии, инструменты, которые человек адаптирует в конкретно необходимой ему области.

В сфере, где существуют те или иные технологические процессы, производственная составляющая, необходим особый подход, снижающий риск возникновения ошибки, способной повлечь за собой как материальные издержки организации, так и возможное причинение вреда здоровью человека. Кроме этого, есть необходимость в оптимизации некоторых процессов, влияющих на конечный результат работы человека (общая утомляемость, скорость реакции и т.д.).

В подобном контексте, как правило, взаимодействие осуществляется между человеком-оператором и раз-

личным производственным оборудованием. Такую систему возможно обозначить как эргатическую, состоящую, по сути, из двух субъектов, взаимодействие которых происходит путем использования органов управления (устройств ввода/вывода информации), для выполнения трудовой деятельности (рис. 1):

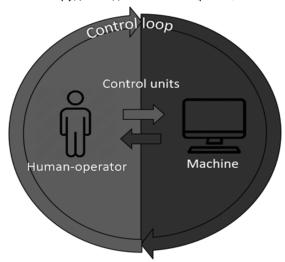


Рис. 1. Взаимосвязь системы «человек-машина»

Исходя из этого возможно сформулировать определение управленческого решения или волевого акта субъекта управления, «в результате которого делается выбор вида и способа коррекции определенных условий и обстоятельств, осуществляемый с целью сформировать определенную модель поведения человека (людей), включаемого в управленческие отношения» [7]. В контексте контура управления, человек-оператор по сути является инициатором и таким образом, являясь субъектом управленческого решения, способен влиять на механизмы, оборудование, или любой другой объект в его воспринимаемом информационном поле. Поскольку человек помимо взаимодействия с другими людьми, может использовать различные устройства, оборудование для выполнения трудовых функций, то очевиден факт подверженности к некоторым ограничениям, относящихся к самому человеку. Например, физиологические, психологические (достижения верхней границы предела выносливости, стрессоустойчивости, способности к обучению), антропометрические (требования, предъявляемые к рабочим положениям (например стоя)), длительность пребывания в таких положениях, а также к размеру и форме рабочей одежды), пищевые (необходимость в поддержании определенного уровня потребления пищи и воды), клинические (ограничения, связанные с возрастными особенностями, наличием тех или иных заболеваний) и др.

С точки зрения ограничений машины, к ней возможно отнести непригодность проекта изготовления системы, конструкции, материалов, используемых при сборке, неточность отображения тех или иных параметров и др.

В свою очередь, путем добавления «интеллектуальной» составляющей в контур управления, возможно частично уменьшить или вовсе нивелировать ограничения, относящиеся к самому человеку. Подобную систему, состоящую из трех субъектов («Человек — Машина — ИИ») возможно обозначить как ИКУ, или трёхкомпонентную систему, в которой новая составляющая способна выступать в роли «партнера» или «помощника», способного выполнять требуемые от него операции, функции (рис. 2, 3).

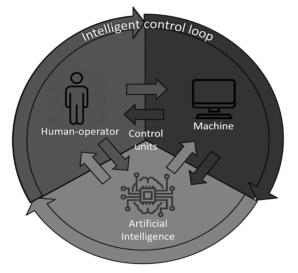


Рис. 2. Взаимосвязь системы «человек-машина — ИИ»

Поскольку понятие ИИ является обширным, в рамках данной статьи используется определение ГОСТ Р 59276-2020 «Системы искусственного интеллекта. Способы обеспечения доверия. Общие положения» [1], а именно «способность технической системы имитировать когнитивные функции человека (включая самообучение и поиск решений без заранее заданного алгоритма) и получать при выполнении конкретных практически значимых задач обработки данных результаты, сопоставимые, как минимум, с результатами интеллектуальной деятельности человека». Исходя из этого, можно сделать вывод, что подобную «умную» компоненту можно отнести не только к интеллектуальной информационной системе [8], выполняющую ту или иную интеллектуальную задачу или использующая различные методы ИИ, но и также к субъекту управленческого решения.

Параметры функций, требований и ограничений в рамках ИКУ

Активное распространение технологий ИИ закономерно порождает необходимость регулирования со стороны юридических, технических, этических норм и т.д. Поскольку данная сфера развивается стремительно, само регулирование норм является следствием, не успевая за текущими тенденциями. Тем не менее, регулирование технологий ИИ находят свое отражение в различных технических стандартах, например, обеспечение доверия, оценки качества систем [2], структуры

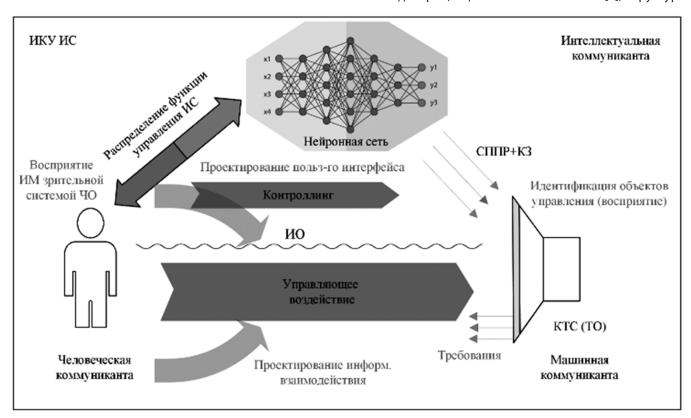


Рис. 3. Взаимосвязь системы «человек-машина — ИИ»

описания систем ИИ [3], их классификации [4], смещённости [5] и др.

При рассмотрении их с точки зрения применимости в ИКУ, становится очевидно, что они не раскрывают необходимые аспекты, заложенные в контур управления. Другими словами, отсутствуют четкие дефиниции, характеристики, конкретные задачи, требуемые от человека и машины в контексте их взаимодействия в контуре управления, а именно отсутствие дефиниций «распределения ролей» в ИКУ.

Частично эти ответы сформулированы [9] и представлены в виде рекомендательных положений, которым должен соответствовать ИКУ (соответствие моральным, этическим, техническим и другим положениям).

В качестве основы для обозначения человеческой и машинной компоненты был задействован ГОСТ 70889-2023 «Информационные технологии. Искусственный интеллект. Структура жизненного цикла данных» [6]. В его рамках заложены последовательные этапы, через которые проходит система ИИ (рис. 4).

Однонаправленные стрелки указывают на прямой путь при разработке, в то время как двунаправленные обозначают возможность обратного взаимодействия. При этом, в границах обработки данных практически каждый из этапов жизненного цикла проходит через процессы верификации и валидации модели, системы ИИ.

Вышеуказанный стандарт содержит некоторую детализацию того или иного этапа, какие действия, задачи необходимо выполнить на каждом из них. Однако, при рассмотрении его с точки зрения ИКУ, становится неочевидно как их применить при наличии трех субъектов. С целью дальнейшего определения «ролей» компонент были сформулированы некоторые дефиниции, используемые для их «стандартизации»:

- 1) Требования параметры, соответствующие некоторым заданным положениям, относимые к информационной системе, техническому устройству или человеку-оператору.
- Функции характеристика, обозначающая выполнение того или иного действия, необходимого для решения поставленной задачи. К субъектам выполнения подобных действий следует также отнести все компоненты в интеллектуальном контуре управления.
- Ограничения некоторый параметр (положение или правило), отвечающее за невозможность или нежелательность реализации тех или иных действий (функций), а также технические, временные или иные издержки.

В свою очередь, каждый из компонент содержит набор из трех параметров на каждом этапе жизненного цикла ИИ (рис. 5–7).

Таким образом, возможно сделать следующие выводы. При рассмотрении параметра функций, важно подчеркнуть главенство человеческой компоненты, поскольку она является необходимым (и по сути единственным) звеном по выбору цели, плана, структуры создаваемого проекта и т.д. По сути, задействовав абстрактное мышление, целеполагание, человек интерпретирует задуманное и претворяет в реальной действительности в виде конечного результата деятельности в виде конечного проекта, продукта. Также следует отметить первостепенность функций, т.е. именно из них должны проектироваться остальные параметры (требования и ограничения).

При рассмотрении требований, следует обратить внимание на то, какими технологиями, знаниями предметной области необходимо владеть для реализации продукта. Также важно учитывать соответствие этическим и нормативным нормам (какие данные необходимо использовать в выборке во избежание ущемления той или иной группы людей, соответствие технического задания с итоговым продуктом, проектом).

В параметр ограничений в контексте человеческой компоненты можно отнести потенциальное совершение ошибки в ходе рабочего процесса (невнимательность, неправильная интерпретация промежуточных результатов), временной параметр (например, ограниченное количество времени для выполнения интеллектуальной деятельности) и др.

Поскольку машинная компонента способна кратно больше выполнить вычислительных операций с учетом сохранения скорости обработки данных, то целесообразно её задействование в качестве основного инструмента (субъекта), закрывающего пробелы человеческой компоненты.

Требования к данной компоненте могут быть выражены в необходимости поддерживать некоторый уровень производительности, стабильности при выполнении вычислительных задач, которые возможно корректировать со стороны главенствующей компоненты, т.е. человека.

В свою очередь, если рассматривать «машину» (модель ИИ) с точки зрения параметра ограничений, то примером таковых может выступать недостаточная гибкость или труднозатратность в перестройке (переобучении) модели под новые условия. Так, например, модель, обученная для оптического распознавания символов, будет хуже справляться с работой, если её поместили в контекст решения задачи, к которым она не была из-

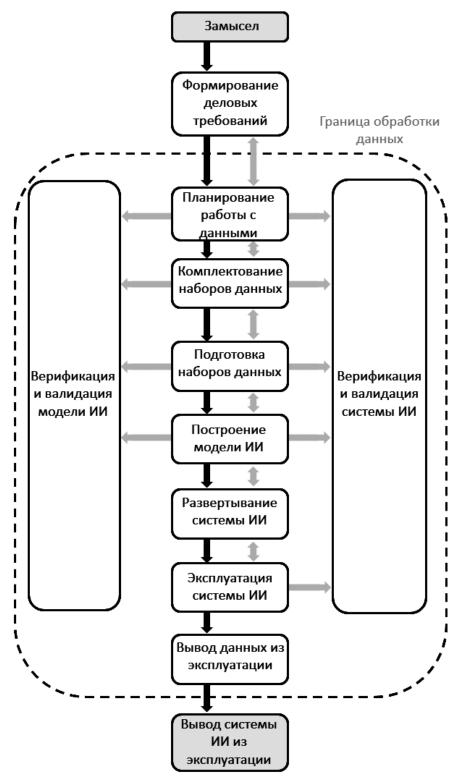


Рис. 4. Жизненный цикл системы ИИ

начально готова. Примером подобного может выступать задача по определению человека или животного на изображении, где распознаваемые объекты (а как следствие и признаки этих объектов) отличаются от первоначальных (т.е. символов).

В тоже время, в силу особенностей самих субъектов (компонентов), тот или иной этап может отличаться по заложенным критериям (характеристикам) на каждом этапе жизненного цикла. Кроме этого, «участие» компонент от этапа к этапу может отличаться. Так, если рассматривать компоненту человека, то очевидно его

Рис. 5. Детализация этапа и её компонентов

присутствие на каждом из этапов, начиная от разработки идеи, концепций, выполнения организационных и иных задач на первых этапах, и заканчивая этапом выведения системы, данных из эксплуатации. В свою очередь, «машина», или её завершенный, «окончательный» вариант в виде полноценной системы ИИ, по большому счету осуществляет «полезную» нагрузку лишь на этапах построения модели и её эксплуатации (см. рис. 8).

Подобное функциональное распределение связано с отсутствием модели (системы), вплоть до этапа построения самой модели. Различные этапы, например, выполнение действий по развертыванию системы, вывод данных и самой системы ИИ из эксплуатации должен

Рис. 6. Пример детализации этапа «Замысел» для человеческой компоненты

Рис. 7. Пример детализации этапа «Эксплуатации системы ИИ» для машинной компоненты

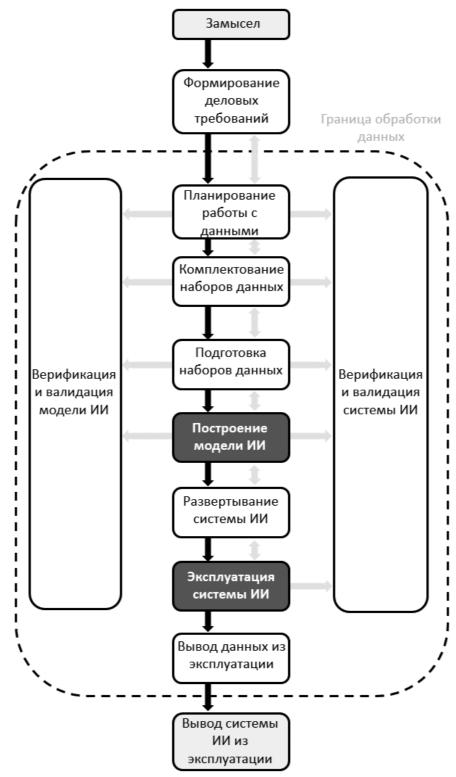


Рис. 8. Пример детализации этапов машинной компоненты

принимать именно человек. В качестве ключевых параметров и формул для анализа эффективности разделения на функции, требования и ограничения, были сформулированы следующие:

$$Fhuman = \frac{R}{L+1} \tag{1}$$

Fmachine =
$$\frac{R}{L^2 + 1}$$
 (2)

где *R, L* — параметры требований и ограничений; *Fhumam, Fmachine* — эффективность человеческой и машинной компоненты;

Ограничения будут по-разному влиять на эффективность компонент. Пусть для человека ограничения линейны, поскольку люди имеют заложенную способность к адаптации к непредсказуемым, непредвиденным условиям. В свою очередь на машинную компоненту ограничения оказывают квадратичное влияние, поскольку это обусловлено нелинейной деградацией производительности в силу растущих внутренний и внешних «потребностей» системы. Например, высокая вычислительная нагрузка на процессор, память, сетевая задержка при передаче информации, особенность архитектуры программного обеспечения влияет на скорость выполнения необходимых функций, тем самым система становится менее адаптивной и устойчивой. По этой причине, в условиях возрастания ограничений, был выбран квадратичный характер модели, отражающая эффект снижения производительности, по сути, в виде каскада. Для сравнения и определения компонент в заданных условиях используется разница:

$$\Delta F = Fmachine - Fhuman$$
 (3)

Ее использование позволяет определить «доминирующие» компоненты при заданных условиях. Например, при $\Delta F > 0$ машина будет эффективнее; в свою очередь при $\Delta F < 0$ человек эффективнее, а при $\Delta F = 0$ эффективность будет равная.

С целью визуализации вышеперечисленных формул была использована вопросно-ответная система [16] Wolframalpha (рис. 9–11):

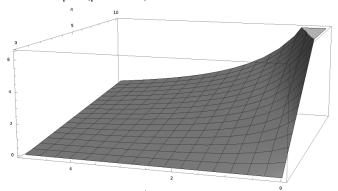


Рис. 9. Визуализация функции человеческой компоненты

На примере этапа эксплуатации системы у человеческой и машинной компоненты был выбран перечень параметров, переведенный в численное значение для выполнения расчетов (рис. 6, 7).

Для упрощения вычислений, каждый параметр компоненты обозначен единицей, в свою очередь сумма каждого параметра равна пяти. Определив значения, становится возможным выполнить подстановку значений в формулы для человеческой компоненты:

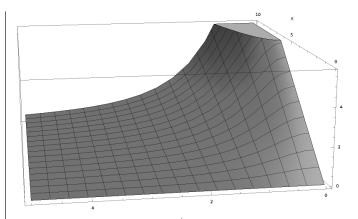


Рис. 10. Визуализация функции машинной компоненты

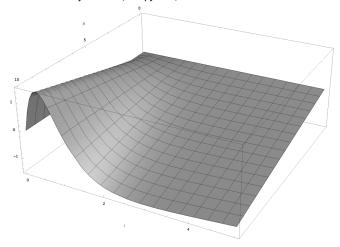


Рис. 11. Визуализация сравнения эффективности человеческой и машинной компоненты

$$Fhuman = \frac{Rhuman}{Lhuman + 1} \tag{4}$$

Fhuman =
$$\frac{5}{5+1} = \frac{5}{6} \approx 0.83$$
 (5)

Результат вычислений машинной компоненты:

$$Fmachine = \frac{Rhuman}{L^2 machine + 1}$$
 (6)

Fmachine =
$$\frac{5}{5^2 + 1} = \frac{5}{26} \approx 0,19$$
 (7)

Разница между человеческой и машинной компонентой:

$$\Delta F = Fmachine - Fhuman$$
 (8)

$$\Delta F = 0.19 - 0.83 = -0.64$$
 (9)

Таким образом, можно сделать вывод о эффективном выполнении задач человеком при заданных параметрах, в отличии от машинной компоненты. Тем не менее, данные параметры могут быть иными. В зависимости от ситуации, некоторыми ограничениями возможно

пренебречь, тем самым в последующем при вычислении получить большую производительность, например, машинной компоненты:

Fmachine =
$$\frac{5}{3^2 + 1} = \frac{5}{10} \approx 0.5$$
 (10)

$$\Delta F = 0.5 - 0.83 = -0.33$$
 (11)

Заключение

Участие, а также раскрытие функционала машинной компоненты обозначено лишь в нескольких этапах (построение модели и эксплуатации системы ИИ), что указывает на прямую зависимость от деятельности человеческой компоненты на иных стадиях. Главенство принятия решений, выполнениях ключевых действий все также остается за самим человеком на каждом этапе жизненного цикла данных.

При задействовании подхода, описанного в данной работе, представляется возможным моделировать, учитывать параметры, характеристики, и как следствие выполнять те или иные действия для достижения оптимизации работы, сокращения времени на разработку и эксплуатацию, улучшение и поддерживание качества работы ИИ за счет соответствия нормативным и иным требованиям.

ЛИТЕРАТУРА

- 1. ГОСТ Р 59276-2020. «Системы искусственного интеллекта. Способы обеспечения доверия. Общие положения: Национальный стандарт Российской Федерации: дата введения 2021-01-03 / Федеральное агентство по техническому регулированию и метрологии. Изд. Официальное. Москва: Стандартинформ, 2021—16 с.
- 2. ГОСТ Р 59898—2021. Оценка качества систем искусственного интеллекта. Общие положения: Национальный стандарт Российской Федерации: дата введения 2022-01-03 / Федеральное агентство по техническому регулированию и метрологии. Изд. Официальное. Москва: Российский институт стандартизации, 2021 24 с.
- 3. ПНСТ 838-2023/ИСО/МЭК 23053:2022. Искусственный интеллект. Структура описания систем искусственного интеллекта, использующих машинное обучение. Национальный стандарт Российской Федерации: дата введения 2024-01-01 / Федеральное агентство по техническому регулированию и метрологии. Изд. Официальное. Москва: Российский институт стандартизации, 2023 40 с.
- 4. ГОСТ Р 59277-2020. Системы искусственного интеллекта. Классификация систем искусственного интеллекта. Национальный стандарт Российской Федерации: дата введения 2021-01-03 / Федеральное агентство по техническому регулированию и метрологии. Изд. Официальное. Москва: Стандартинформ, 2021 16 с.
- 5. ПНСТ 839-2023. Искусственный интеллект. Смещенность в системах искусственного интеллекта и при принятии решений с помощью искусственного интеллекта. Национальный стандарт Российской Федерации: дата введения 2024-01-01 / Федеральное агентство по техническому регулированию и метрологии. Изд. Официальное. Москва: Российский институт стандартизации, 2023 42 с.
- 6. ГОСТ Р 70889 2023 (ИСО/МЭК 8183:2023). Информационные технологии. Искусственный интеллект. Структура жизненного цикла данных. Национальный стандарт Российской Федерации: дата введения 2023-02-11 / Федеральное агентство по техническому регулированию и метрологии. Изд. Официальное. Москва: Российский институт стандартизации, 2023 11 с.
- 7. Горячкин Б.С., Гришин К.П. Анализ нормативно-правовых документов, регулирующих работу интеллектуального контура управления // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и Технические Науки. 2024. №06. С. 65—73 DOI 10.37882/2223-2966.2024.06.14
- 8. Остроух, А.В. Интеллектуальные системы: монография / А.В. Остроух. Красноярск: Научно-инновационный центр, 2020. 316 с.
- 9. Горячкин Б.С., Гришин К.П. Понятийный базис и специфика использования системы ИИ в контуре управления ИС // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и Технические Науки. 2024. №07. С. 67—78 DOI 10.37882/2223-2966.2024.7.13
- 10. Kim H.; Chuvikov D.A.; Aladin D.V. et al. Creating a Knowledge Base for a Mivar Expert System for the Diagnosis of Diabetes Mellitus // Biomedical Engineering. 2021. T. 54, № 6. C. 421–424. doi: 10.1007/s10527-021-10053-7.
- 11. Chernobrovkin S.; Latkin I.; Belyanova M. et al. Using a hybrid intelligent information systems approach for advertising video generation // Conference of Open Innovation Association, FRUCT. 2021. T. 2021. №. -. C. —. doi: 10.23919/FRUCT50888.2021.
- 12. Yuschenko A.S.; Yin S. Dialogue Control of Collaborative Robots Based on Artificial Neural Networks; [Диалоговое управление коллаборативными роботами с помощью искусственных нейронных сетей] // Mekhatronika, Avtomatizatsiya, Upravlenie. 2021. Т. 22, №
- 13. Volkov A.; Varlamov O. Method of creation of a two-level neural network structure for solving problems in mechanical engineering // Journal of Physics: Conference Series. 2021. T. 2131, № 3. C. -. doi: 10.1088/1742-6596/2131/3/032003
- 14. Yang X.; Bobkov A.V. Development of a vision system for safe and high-precision soft landing on the Moon // Procedia Computer Science. 2021. T. 186, №. -. C. 503–511. doi: 10.1016/j.procs.2021.04.171]
- 15. B. S. Goryachkin and K. P. Grishin, «Control Loop Intellectualization in Human-Machine Systems», 2025 7th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russian Federation, 2025, pp. 1–6, doi: 10.110
- 16. Wolfram Cloud. [Электронный ресурс]. Режим доступа: https://www.wolframcloud.com. (дата обращения: 01.06.2025).

© Горячкин Борис Сергеевич (bsgor@mail.ru); Гришин Кирилл Павлович (kirillgrish2014@yandex.ru) Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.16

ДИНАМИЧЕСКИЙ МЕТОД ЗАЩИТЫ КЛИЕНТСКОЙ ЧАСТИ ВЕБ-САЙТОВ ОТ НЕПРАВОМЕРНОГО КОПИРОВАНИЯ ДАННЫХ

DYNAMIC METHOD OF PROTECTING THE CLIENT SIDE OF WEBSITES FROM ILLEGAL DATA PARSING

A. Kochenkov

Summary. The article is devoted to the development of a dynamic method for protecting the client side of websites from both automated data collection (parsing) and manual copying. The author analyzed the existing methods of protection, noting their features and disadvantages. Based on the analysis, a unique method has been developed that functionally provides the same capabilities as translating text into a bitmap image, but requires less computing power. It also allows you to load content dynamically, which makes it possible to output information as needed. This method, combined with other solutions, can increase data security against unauthorized copying.

Keywords: information technology, information security, document protection, management solutions, software development optimization.

Введение

а данный момент существует множество интернетресурсов, которые предоставляют информацию в открытом формате для личного пользования, но при этом требуют приобретение лицензии для коммерческого использования. Зачастую злоумышленник использует средства автоматизированного сбора информации для создания собственной информационной базы. Важность защиты данных возрастает в условиях, когда утечка данных не только приводит к финансовым потерям, но и подрывает доверие и может нанести непоправимый ущерб репутации организации[1-3] Автоматизированные средства сбора информации на данный момент способны собирать данные с открытых профилей социальных сетей, а также картографических сервисов, интернет-магазинов, библиотек и т.д. Методы защиты от автоматизированного сбора данных постоянно совершенствуются, что говорит об актуальности данного вопроса.

Материалы и методы

Автором рассмотрены как основные методы защиты от парсинга (автоматизированного сбора), так и ручного копирования.

Парсеры — программы или скрипты, автоматически собирающие веб-контент со страниц сайта [4, 5].

Коченков Антон Александрович

Аспирант, ФГБОУВО «Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации» i.anton.kochenkov@ya.ru

Аннотация. Статья посвящена разработке динамического метода защиты клиентской части веб-сайтов как от автоматизированного сбора данных (парсинга), так и ручного копирования. Автор проанализировал существующие методы защиты, отмечая их особенности недостатки. На основе анализа разработан уникальный метод, который функционально дает те же возможности, что и перевод текста в растровое изображение, но требует меньшей вычислительной мощности. А также позволяет загружать контент динамически, что дает возможность вывода информации по мере необходимости. Данный метод в сочетании с другими решениями способен повысить защищенность данных от неправомерного копирования.

Ключевые слова: информационные технологии, информационная безопасность, защита документов, управленческие решения, оптимизация разработки ПО.

Выделяют два вида парсеров:

- 1) Считывающие исходный код html-страницы;
- 2) Использующие web-браузер для имитации повеления

Наиболее распространенные с точки зрения защиты данных от автоматического анализа можно считать те методы, которые используют широко известные организации, такие как: Meta (запрещена в РФ), В контакте, Яндекс, Google и т.д. В ходе анализа методом серого ящика исходного кода клиентской части веб-сайтов различных организаций выявлено сходство применимых методов защиты.

Стоит выделить следующие методы защиты информации на сайтах, которые чаще всего применяются:

- 1) Проверка IP адреса клиента
- 2) Присвоение уникальных значений CSS-классов, для каждого отдельного элемента с выводом по мере прокрутки страницы
- 3) Отслеживание перемещения мыши и выявление закономерностей в процессе прокрутки страницы
- Генерация специальных токенов для обмена информацией между клиентской и серверной частью веб-сайта
- 5) Сохранение документа в виде изображения
- 6) Использование тестов Тьюринга (САРТСНА) при выявлении подозрительной активности

Недостатки теста Тьюринга, применяемого на современных интернет-ресурсах, заключаются в том, что его можно обойти методом перенаправления на зараженные ресурсы, где он будет выводиться реальным пользователям, неподозревающим, что он выполняют верификацию для атаки на другой сайт. Также исследователи Поликарпов Е.С., Анисимов С.Л., Толстых А.А. приводят методы, которые основываются на прохождении САРТСНА для слабовидящих с инструментами распознавания речи [6].

Наиболее актуальным методом для обнаружения автоматизированного сбора данных является изучение закономерностей перемещения курсора мыши и действий пользователя. Многие исследовательские группы сообщают, что поведенческие паттерны, наблюдаемые при использовании мыши или клавиатуры, могут варьироваться от человека к человеку и зависеть от настроения или уровня внимания [7]. Для поиска имитаций поведения пользователей используют алгоритмы с использованием ИИ, которые выявляют математические закономерности при перемещении курсора мыши. Подобный метод широко применяется в заблокированной на территории РФ по решению Роскомнадзора социальной сети Instagram.

Для имитации «человеческой» траектории курсора чаще всего используют кривую Безье:

$$B(t) = (1-t)^2 P_0 + 2t(1-t)^2 P_1 + t^2 P_2, t \in [0,1]$$
 (1)

Процесс выявления попыток автоматизированного сбора может занимать до нескольких минут, поэтому

присутствует необходимость ограничить возможность получения полного документа в момент его открытия. При такой реализации должна выводится только та часть страницы, которая находится в активной области.

Стоит отметить, что информация может быть скопирована не автоматически, а зарегистрированным пользователем. Актуальное на данный момент решение подробно описали Савельева М. Г., Урбанович П. П. [8]. Для защиты от копирования документа со стороны пользователя, а также усложнения работы парсеров используется метод перевода страниц в растровое изображение, однако данное решение является трудозатратным для серверной части веб-сайта.

Автором статьи предложено решение, которое функцианально схоже с методом перевода текста в растровое изображение, но при этом менее трудозатратно. Принцип данного решения заключается в создании документа, который будет сложно интерпретировать машине, а также исключает возможность несанкционированного копирования пользователем. При этом для пользователя документ остается полностью читабельным. Для реализации защиты документа предложено использовать алгоритм с применением двух ключей, которые генерируются с каждым запросом. Первый ключ представляет собой таблицу сопоставления символов, а второй ключ представляет собой файл шрифта, внутри которого символы расставлены согласно данным таблицы. Таблица сопоставления символов размещается исключительно на серверной части, что не допускает её получение прямым путем. Текст документа остается читабельным только при условии подключенного файла шрифта, а при

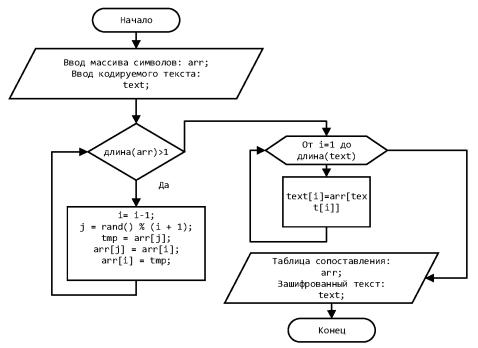


Рис. 1. Упрощенный метод создания защищенного документа

попытке копирования утрачивает данную возможность. Ниже приведена упрощенная блок-схема процесса создания таблицы сопоставления, где для создания таблицы использован алгоритм Фишера-Йетса. В упрощенном варианте представлен на рис. 1.

В качестве примера приведена таблица, содержащая стандартную фразу «Hello World», закодированную предложенным методом (табл. 1).

Таблица 1. Закодированный текст

Исходный текст	Н	E	L	L	0		W	0	R	L	D
Закодированные данные	N	狮	フ	ה	!	/	Б	!	दे	P	<u>ج</u>

Для усложнения получения исходных данных таблицы можно применить символы, которые предназначены для языков, не используемых в документе таким образом, что разные значения внутри закодированного текста, будут означать одну и ту же букву внутри итогового документа. Данный метод схож с предложенным Джозефом Моуборном табличным методом шифрования, что в совокупности с большим количеством значений в таблице дает устойчивость к расшифровке методом Фридриха Касиски [9].

Упрощенная структура документа в виде кода HTML приведена на рис. 2.

Рис. 2. Структура документа

Результатом выполнения приведенного кода (при условии подключения ключ-шрифта) будет являться блок текста, содержащий фразу: «Hello World». При попытке копирования текста он будет отображаться как набор символов: «Nx $\final > 1$. $\final > 1$. $\final > 1$.

Для поиска методов защиты, схожих по функционалу рассмотрены сайты электронных библиотек, где присутствует ограничение на копирование документов. Наиболее близким методом защиты является решение используемое ЭБС «ЮРАЙТ». Для защиты документа данная библиотека выводит информацию постранично, предварительно преобразуя ее в растровое изображение. Данное изображение можно получить, получить через элемент <canvas>.

Метод используемый ЭБС «ЮРАЙТ» является достаточно эффективным для защиты от неправомерного копирования, со стороны пользователя, а также способствует усложнению парсинга, но имеет ряд существенных недостатков. К недостаткам стоит отнести: большой объем итогового документа, высокая нагрузка на клиентскую и серверную часть веб-приложения. Для сравнения была взята тестовая страница документа из библиотеки «ЮРАЙТ» и переведена в документ с использованием метода, предложенного автором (табл. 2).

Таблица 2.

Сравнение методов

Название метода	Объем исходного документа	Время на вывод документа с учетом кеширования		
Перевод текста в изображение	724КБ	0.4 сек		
Использование ключ-шрифта	210КБ	0.1 сек		

Стоит отметить, что распознавание ключ-шрифта является более трудозатратным процессом, чем распознавание одной страницы текста, поскольку необходимо сопоставить 65536 символов стандарта UCS, что соответствует двадцати страницам формата А4 полностью заполненных текстом 12 pt. Для повышения эффективности рекомендуется использовать шрифты, которые имеют нестандартное начертание символов, а также кешировать файлы, содержащие шрифты и таблицы на серверной части для повышения производительности.

Заключение

Страницы, защищенные методом предложенным автором, не позволяют получить злоумышленнику исходный документ с сохранением форматирования текста и замедляют работу парсеров. Пользователь, не имеющий навыков в разработке специализированного программного обеспечения для парсинга не сможет получить данные из документа. Стоит отметить, что метод, предложенный автором, использует значительно меньше ресурсов серверной части как с точки зрения памяти, так и с точки зрения вычислительной мощности по сравнению со стандартным переводом текста в изображение. Также одним из преимуществ является возможность динамической загрузки текста, поскольку метод не требует загрузки целой страницы с изображением. Данный метод может найти широкое применение в различных сферах, например в электронных библиотеках, где есть ограничение на копирование данных, или для минимизации использования генеративных ИИ при создании создания работ среди студентов. Созданные описанным методом документы содержат маркеры в виде прикрепленного файла шрифта, что позволяет определить первоисточник. При попытке скопировать только текст итоговый документ приобретет нечитаемый формат.

ЛИТЕРАТУРА

- 1. Edwards, D.J. (2024). Data Protection. In: Critical Security Controls for Effective Cyber Defense. Apress, Berkeley, CA. https://doi.org/10.1007/979-8-8688-0506-6_3
- 2. Micunocic M., Balkovich, L. Author's rights in the digital age: how Internet and peer-to-peer file sharing technology shape the perception of copyrights and copywrongs // Libellarium Journal for the Research of Writing Books and Cultural Heritage Institutions. 2016. Vol. 8 (2). P. 27—64. DOI: 10.15291/libellarium. v0i0.232. 5. Урбанович П. П.
- 3. Защита информации методами криптографии, стеганографии и обфускации. Минск: БГТУ, 2016. 220 с
- 4. Бирюков В.А., Дмитриева О.В., Ливсон М.В. Парсинг аудитории в социальных медиа как инструмент повышения доходов от рекламы электронных средств массовой информации // Известия высших учебных заведений. Проблемы полиграфии и издательского дела. 2021. №2. С. 45—52.
- 5. Прокопенко В.В. Парсинг как один из инструментов интеллектуальных баз данных // Аллея науки. 2020. №6 (45). Т. 2. С. 68—75.
- 6. Поликарпов Евгений Сергеевич, Анисимов Сергей Леонидович, Толстых Андрей Андреевич. О защищенности сайта сети интернет от автоматизированного сбора данных // Вестник ВИ МВД России. 2020. №1.
- 7. A.K. Ghosh, A. Schwartzbard, and M. Schatz. «Learning program behavior profiles for intrusion detection». In Proceedings of the First USENIX Workshop on Intrusion Detection and Network Monitoring, pages 51–62, April 1999.
- 8. Савельева М.Г., Урбанович П.П. Метод стеганографического преобразования web-документов на основе растровой графики и модели RGB // Труды БГТУ. Сер. 3, Физико-математические науки и информатика. 2022. № 2 (260). С. 99—107. DOI: https://doi.org/10.52065/2520-6141-2022-260-2-99—107.
- 9. Dooley, J.F. (2023). The Lone Cryptologists: Escape from Riverbank. In: The Gambler and the Scholars. History of Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-28318-5_8

© Коченков Антон Александрович (i.anton.kochenkov@ya.ru)

Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.20

ОРГАНИЗАЦИЯ ЛАБОРАТОРНОГО ПРАКТИКУМА ДЛЯ ПОДГОТОВКИ СПЕЦИАЛИСТОВ ПО ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ С ИСПОЛЬЗОВАНИЕМ РАСШИРЕННЫХ ВОЗМОЖНОСТЕЙ ГИБРИДНЫХ ВИРТУАЛЬНЫХ ЛАБОРАТОРНЫХ СРЕД

ENHANCING THE LAB PRACTICUM FOR TRAINING OF INFORMATION SECURITY SPECIALISTS WITH THE HYBRID VIRTUAL LAB ENVIRONMENTS

Mansurov A. Minakova N. Salita D. Dmitriev A. Zhuravleva V.

Summary. The paper analyzes the approaches for deployment of the «PNETLAB» and «EVE-NG» hybrid virtual lab environments and successful development of lab training courses and practicums for training of information security specialists in higher education institutions and colleges. Ways of combining the virtual lab schemas with the real lab network and information security solutions and equipment are discussed and possible advantages and disadvantages are outlined. It is stated that the proposed hybrid virtual lab environments help design effective models of corporate infrastructure for various purposes. The education process this way can be greatly enhanced by using specific pedagogical approaches and techniques. It helps produce unique and effective lab work schemas and stimulates the process of obtaining new knowledge and skills.

Keywords: virtual lab environment, individual educational trajectory, network security, information security, information system security, cybersecurity education.

Мансуров Александр Валерьевич

канд. техн. наук, ФГБОУ ВО «Алтайский государственный университет», г. Барнаул mansurov.alex@gmail.com

Минакова Наталья Николаевна

доктор физ.-мат. наук, ФГБОУ ВО «Алтайский государственный университет», г. Барнаул minakova@phys.asu.ru

Салита Даниил Сергеевич

канд. физ.-мат. наук, ФГБОУ ВО «Алтайский государственный университет», г. Барнаул d.s.salita@gmail.com

Дмитриев Александр Александрович

канд. физ.-мат. наук, ФГБОУ ВО «Алтайский государственный университет», г. Барнаул dmitriev@asu.ru

Журавлева Виктория Владимировна

Преподаватель, ФГБОУ ВО «Алтайский государственный университет», г. Барнаул torinka8@gmail.com

Аннотация. В статье проведен анализ способов организации виртуальных лабораторных сред на базе «PNETLAB» и «EVE-NG» и успешное формирование на их основе лабораторных занятий и практикумов, необходимых для подготовки специалистов по защите информации в высших учебных заведениях и колледжах. Детально поясняется механизм сопряжения виртуальных лабораторных схем и реального лабораторного сетевого оборудования и программно-аппаратных средств защиты информации, что позволяет создавать эффективные модели корпоративной инфраструктуры для проведения практико-ориентированного обучения. Отмечены высокий потенциал к расширению подходов к обучению студентов в ходе лабораторных практикумов, использующих дополнительный ряд педагогических техник и методов.

Ключевые слова: виртуальная лабораторная среда, индивидуальная образовательная траектория, сетевая безопасность, защита информации, безопасность информационных систем, обучение кибербезопасности.

Введение

одготовка технического специалиста, который обладает современными компетенциями, знаниями и умениями, является сложной, комплексной и дорогостоящей задачей, предполагающей большой

объем теоретических знаний и развитую лабораторную базу. Особенно важным является наличие не только достаточного количества актуальных средств и решений, но и продвинутых подходов к обучению, чтобы будущие специалисты могли знать и комфортно применять возможные действенные сценарии и алгоритмы использо-

вания и работы с теми самыми решениями в различных случаях. В работах [1–4] неоднократно в ходе дискуссий отмечалось и подчеркивалось, что в настоящее время таким требованиям в полной мере отвечают виртуальные лабораторные среды, которые позволяют сократить финансовые затраты на организацию лабораторных практикумов, а также легко адаптировать лабораторные занятия под изменяющиеся обстоятельства реальности с учетом особенности изучаемых средств и методик защиты информации и применяемых для этого специфических решений.

При подготовке специалистов по информационной безопасности виртуальные лабораторные среды активно используются уже в течение нескольких лет [2-4]. Это позволило эффективно решить озвученные ранее проблемные моменты и получить единую лабораторную среду с возможностью мультиплицирования типовых лабораторных схем и стендов для минимизации затрат учебного времени на изучение рабочего места и подготовки лабораторных схем [3]. Отдельно в [4] отмечаются широкие перспективы и возможности, которые открываются при гибридизации виртуальных лабораторных схем включением реального сетевого оборудования и специализированных программно-аппаратных средств защиты информации, которые имеются в наличии в учебных лабораториях.

Эти факты позволяют по-новому взглянуть на возможности гибридных сред и на процесс разработки лабораторного практикума с использованием многократно дублируемых виртуальных лабораторных схем с возможностью подключать существующее реальное оборудование учебных лабораторий. В данной статье рассматриваются особенности построения и эксплуатации гибридных лабораторных сред с изменениями сценариев организации и проведения лабораторного практикума с использованием новых подходов к организации учебного процесса.

Развертывание гибридной виртуальной лабораторной среды и ее особенности

Лабораторные практикумы по специальным дисциплинам направления подготовки организуются на базе родственных друг для друга лабораторных средах «EVENG» (Emulated Virtual Environment — Next Generation) [5] и «PNETLAB» (Packet Network Emulator Tool Lab) [6]. Виртуальная среда «PNETLAB» является основной средой для организации лабораторных занятий, поскольку обеспечивает многопользовательский режим работы с поддержкой независимых для каждого активного пользователя лабораторных сессий. Это дает возможность поддерживать одновременную работу нескольких отдельных лабораторных схем и конфигураций в рамках одной виртуальной лабораторной среды.

Серверы DEPO Storm 3450E2 (2 x Intel Xeon Gold 6133 (20 ядер, 2.5 ГГц), 128 Гб RAM, 2 ТВ HDD) под управлением гипервизора VMWare ESXi версии 8.0.2 [7] являются основной аппаратной платформой для поддержки работы нескольких серверных платформ виртуальной лабораторной среды «PNETLAB» с заранее подготовленным циклом лабораторных работ для конкретной учебной дисциплины. При этом с помощью гипервизора VMWare ESXi для каждой серверной платформы можно задать необходимое число виртуальных процессоров (до 80) и объем требуемой оперативной памяти (до 120 Гб). Каждая серверная платформа лабораторной среды использует основной сетевой интерфейс для доступа и работы с лабораторными схемами. Дополнительно (помимо основного сетевого интерфейса) доступны до 10 сетевых интерфейсов, которые схематично ассоциированы с «облаками связи» (Cloud) в виртуальных лабораторных схемах. Они включаются в отдельные VLAN со своими идентификаторами с помощью встроенного в гипервизор VMWare ESXi виртуального Ethernet-коммутатора vSwitch, который связан с реальным сетевым интерфейсом физического сервера, на котором работает гипервизор [4]. Далее, с использованием технологии 802.1Q VLAN организуется транковый канал к реальному сетевому оборудованию учебных лабораторий (к коммутаторам Ethernet), к которому уже можно подключать любое другое реальное оборудование или программно-аппаратное решение.

Виртуальная лабораторная среда «EVE-NG» инсталлируется и запускается в виде отдельной виртуальной машины на индивидуальных рабочих станциях лабораторий. Это позволяет организовать индивидуальное рабочее место с обособленной лабораторной средой, содержащей свой собственный заранее подготовленный цикл лабораторных работ. Рабочие станции учебных лабораторий оснащены многоядерными производительными процессорами Intel и AMD, а также имеют достаточный объем оперативной памяти (16–32 Гб ОЗУ), что позволяет свободно эксплуатировать виртуальные лабораторные среды «EVE-NG» в отдельных комплектациях, предназначенных для индивидуальной работы. Аналогично виртуальной среде «PNETLAB», среда «EVE-NG» также поддерживает включение дополнительных сетевых интерфейсов рабочей станции в свою работу.

При соответствующей настройке лабораторного сетевого оборудования сетевую связность и обмен данными может быть организована не только между лабораторными схемами внутри виртуальных лабораторных сред и каким-либо реальным программно-аппаратным решением или иным реальным оборудованием в лаборатории, но и с другими лабораторными схемами, работающими внутри других виртуальных лабораторных сред на других серверных платформах или рабочих станциях лабораторий. Таким образом, такой гибридный

принцип организации и работы виртуальных лабораторных сред открывает дополнительные возможности по переходу к распределенным лабораторным схемам работ и практикумов, а также к эффективной децентрализации контроля и управления фрагментами таких распределенных лабораторных схем при сохранении сетевой связности и обмена данными между фрагментами в рамках единой сложной лабораторной работы или практического задания.

Подходы к разработке и организации лабораторных практикумов

С 2020 года виртуальные лабораторные среды полноценно используются в учебном процессе для проведения циклов лабораторных работ по нескольким специальным дисциплинам подготовки будущих специалистов по защите информации [3]. Применение виртуальных лабораторных сред позволяет организовать лабораторный практикум в виде серии работ, которые включают в себя группу базовых и расширенных заданий. Все группы работ имеют заранее сформированные и преднастроенные (если это необходимо в рамках выполнения задания) лабораторные схемы, что избавляет студентов от необходимости тратить учебное время на сборку лабораторного стенда или схемы, а также конкурировать с другими студентами за ограниченное количество реального лабораторного оборудования. Расширенные и дополнительные задания в цикле лабораторных работ дают возможность студентам повысить свои аттестационные баллы, формировать расширенные и дополнительные профессиональные компетенции, получить больший объем знаний и умений. Сами лабораторные схемы могут «переходить» из одной работы в другую или являться частями более сложных лабораторных работ. Студент при этом продолжает находиться в привычном для него окружении лабораторной среды с однотипным интерфейсом, а часть лабораторной схемы уже может быть преднастроена ранее в ходе выполнения предыдущих лабораторных работ.

Традиционный вариант формирования методических рекомендаций по выполнению лабораторных работ включает в себя предоставление студентам необходимого для выполнения работы набора теоретических знаний, инструкции по работе с применяющимся в лабораторной схеме оборудованием, поэтапные задания для выполнения и контрольные вопросы. Этот вариант подходит, если студенту необходимо сформировать некоторый «фундамент» из практических знаний и умений, что требует методичной и последовательной проработки выполняемых заданий с фиксированием и анализом получаемых на каждом шаге результатов. Однако, в ряде специализированных дисциплин направления подготовки, таких как «Безопасность вычислительных сетей», «Практикум по защите информационных систем», «Программно-аппаратные средства защиты информации», современные реалии требуют внесения специфических корректив в способы подготовки будущих специалистов по информационной безопасности. Особенно это связано с необходимостью учиться командной работе в коллективе (поскольку сольная деятельность специалиста по защите информации на современных предприятиях не является эффективной), а также учиться выполнять и отрабатывать ряд действий в рамках весьма специфичных мероприятий по защите информации, как, например, «пен-тестинг», или «тестирование на проникновение».

Под «пен-тестингом» обычно понимается проверка защищенности и поиск критичных уязвимости корпоративной инфраструктуры и информационных систем (ИС), в ходе которых моделируется реальная атака условного нарушителя или хакера [8–10]. Проведение пен-тестинга подразумевает достаточно большое количество вариантов и сценариев действий, среди которых следует выделить несколько классических подходов и алгоритмов [8]:

- 1) организация атакующих действий, имитирующих действия нарушителя (Red Team)
- 2) обнаружение и анализ атакующих действий на стороне корпоративной инфраструктуры с выстраиванием динамического противодействия (Blue Team)
- 3) проверка защищенности корпоративной инфраструктуры из точки за пределами корпоративной инфраструктуры (внешнее пен-тестирование)
- 4) проверка защищенности корпоративной инфраструктуры путем непосредственного подключения к корпоративной инфраструктуре (внутреннее пен-тестирование)

Очевидно, что такие особенности проведения пентестирования, как, например, разделение на две команды (Red Team/Aтака и Blue Team/Защита) со своими специфическими действиями в ходе работы, большое количество действий по работе с сетевым оборудованием и средствами защиты информации лабораторных схем и стендов вынуждают перестраивать традиционный формат выполнения работы и формирования учебно-методических материалов. Сам лабораторный практикум целесообразно реорганизовать с учетом следующих особенностей:

- весь объем единой лабораторной работы разделяется на отдельные группы работ пен-тестера (Red Team) и группы работ по анализу и защите модельной корпоративной инфраструктуры
- задания отдельных лабораторных работ разных групп синхронизуются друг с другом в рамках единого цикла или объединяющей лабораторной работы с общей «легендой» и постановкой задания для отдельных лабораторных работ
- организуются групповая (2–3 обучающегося) и командная (в соответствии с группами задач) работы над заданиями лабораторных работ

4) традиционные последовательные задания обычной лабораторной работы преобразуются в проблемно-ориентированные задачи с выстраиванием алгоритмов решения поставленных задач до получения требуемого результата

Аналогичным образом можно реорганизовать лабораторный практикум по другим специализированным учебным дисциплинам, где изучаются вопросы развертывания, настройки и эксплуатации современных комплексов программно-аппаратных средств защиты информации и защищенных информационных систем. Поскольку современные средства и решения для защиты информации зачастую сложны в настройке и последующей эксплуатации, это приводит к переизбытку необходимого для выполнения работы объема учебной и методической информации, а также инструкций и задач и является невозможным для освоения одним студентом в отведенные для этого учебные часы. Переход же к командной работе с формированием малых учебных групп, сегментации фронта деятельности и проблемно-ориентированным задачам позволит не только уменьшить «стрессовость» учебного процесса для студентов, но и формировать у них навыки командной и коллективной работы над конкретной проблемой, учиться выстраивать рабочее взаимодействие с коллегами и повышать эффективность обучения путем «погружения» в рабочую атмосферу и ситуацию.

Применение рассмотренных ранее гибридной виртуальной лабораторной среды и ее возможностей позволяет реализовать предлагаемую трансформацию лабораторного практикума. Сложная и комплексная лабораторная схема отлично децентрализуется на мелкие фрагменты с сохранением сетевой связности и обмена данными между ними. Возможность независимого контроля и управления каждым фрагментом сложной лабораторной схемы позволяет разбивать участие студентов в выполнении такой работы на отдельные команды. Специфичность каждого фрагмента даст возможность формировать обособленные проблемно-ориентированные задачи, акцентирующиеся на особенности применения решений отдельных лабораторных фрагментов и объединяющиеся глобальной целью всего комплекса связанных лабораторных работ. На рис. 1 представлен схематичный вариант организации такого лабораторного практикума в гибридной виртуальной лабораторной среде с разделением на отдельные группы задач и командную форму работы.

Схематическая конфигурация лабораторной работы, представленной на рис. 1 демонстрирует возможность разбиения большой комплексной схемы на отдельные фрагменты, которые поддерживаются виртуальными лабораторными средами «PNETLAB» и "EVE-NG». Между фрагментами лабораторной схемы обеспечивается се-

тевая связность с использованием сетевого оборудования учебных лабораторий. С каждым фрагментом происходит независимое взаимодействие, что позволяет разделить сформированные в рамках общей проблемы задачи на отдельные группы, определить разные задачи для разных команд, изолировать друг от друга рабочее окружение каждой из команды и сохранить возможность групповой работы нескольких обучающихся над одной и той же лабораторной схемой (для виртуальной лабораторной среды «PNETLAB"). При этом лабораторная схема каждой из команд, работающих вместе, соответствует отдельным схемам отдельных лабораторных работ, ориентированных на свою собственную группу заданий и составляющих вместе единый цикл. На рис. 1 показано, что «команда 2» при выполнении своей части лабораторного практикума имела возможность сформировать модельный вариант сегмента корпоративной сети с применением реальных программно-аппаратных средств защиты информации учебной лаборатории, интегрировав их в лабораторную схему виртуальной среды. Автономность действия команд также вносит разнообразие в возможные сценарии выполнения командных лабораторных работ, например, уведомлять о деталях своего сформированного фрагмента глобальной лабораторной схемы остальных участников (метод Whitebox) или нет (Black-box), если речь идет о практикуме по тестированию на проникновение.

Отдельное преимущество гибридной лабораторной среды можно продемонстрировать, моделируя работу защитных решений класса EDR (Endpoint Detection and Response), таких как MaxPatrol EDR [11] (рис. 2). Здесь распределенная корпоративная инфраструктура моделируется силами трех команд, одна из которых формирует и администрирует сегмент центрального офиса, а две других команды отвечают за свои «филиальные» сегменты сети. Единое решение по обнаружению и выявлению эксплуатируемых уязвимостей на оконечных устройствах распределенной корпоративной сети MaxPatrol EDR подразумевает централизованный сервис контроля и управления, а также сбор всех данных с филиальных устройств путем инсталляции агентов, которые не только передают телеметрию на центральный сервер EDR, но и способны осуществлять базовую реакцию на события в соответствии с получаемыми от центра командами. Базовая защита филиальной корпоративной инфраструктуры здесь обеспечивается путем анализа поступающей телеметрии и формирования блокирующих действий установленными EDR-агентами путем получения команд от центрального EDR-сервера. Усиленные меры по обеспечению защиты филиальных элементов корпоративной сети обеспечиваются персоналом филиала на местах с использованием локально установленных средств защиты информации. Подобная организация лабораторной работы позволяет учиться работе по организации защиты информации в рас-

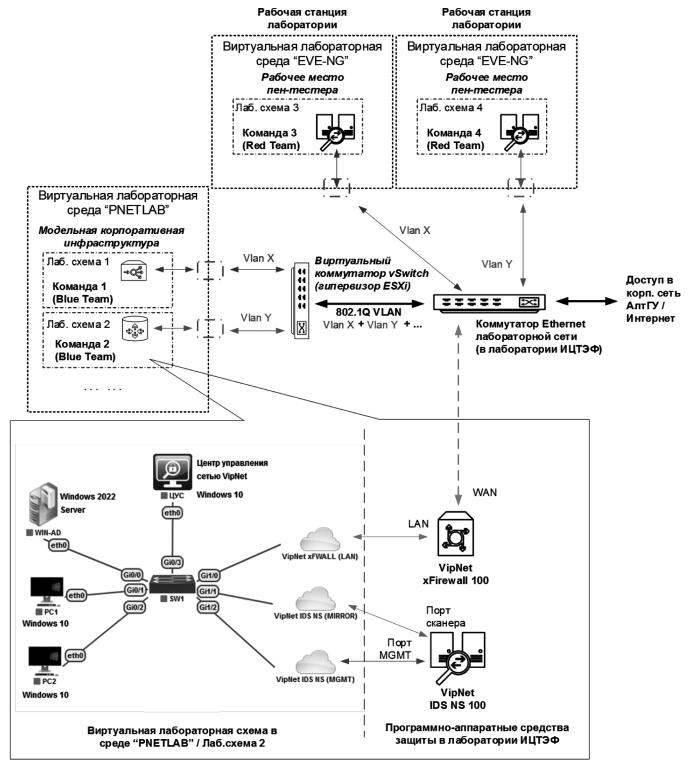


Рис. 1. Пример схемы организации лабораторного практикума с использованием возможностей гибридных виртуальных лабораторных сред для командной работы над заданиями

пределенной корпоративной среде с единым центром управления, тренировать реакцию персонала в филиалах на атаки и синхронизировать свои действия с действиями корпоративного «центра», вырабатывая таким образом единый алгоритм взаимодействия для обнаружения и отражения активных атак команд «Red Team»

на более уязвимые филиальные сегменты корпоративной сети. При такой организации практикума студенты не только учатся использовать штатные централизованные решения вендоров (таких как MaxPatrol EDR), но и формировать свои локальные алгоритмы действий для повышения эффективности отражения поступающих

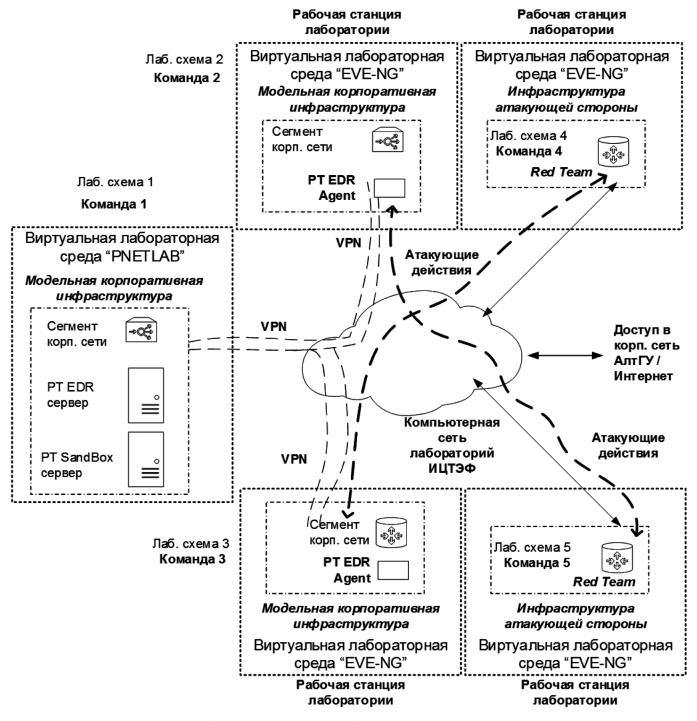


Рис. 2. Пример использования гибридной виртуальной лабораторной среды для моделирования распределенной корпоративной инфраструктуры с централизованными средствами защиты (MaxPatrol EDR)

атак. Гибридный подход к организации лабораторного практикума при этом обеспечивает независимость действий каждой группы (учебных «команд») специалистов по защите информации в центральном офисе и филиальных структурах.

Используя возможности гибридной виртуальной лабораторной среды всю работу с лабораторным практикумом можно попробовать организовать по принципу взаимодействия участников соревнований СТF (Capture the Flag) в режиме «Attack and Defense». Преимущества геймификации учебного процесса и проведения части практических занятий в стиле СТF-соревнований рассматривались в [12], где отмечалось, что это дает возможность более открыто формировать лабораторные задания, позволяет обучающимся получать в парал-

лельном режиме не только специфичные знания в области пен-тестирования, но и углублять и развивать свои навыки и умения в части администрирования операционных систем, скрипт-программированию на shell (Bash) и Python, а также использованию прикладного инструментария сетевого администратора, помимо особых навыков работы с проприетарными средствами защиты информации, используемыми в лабораторных схемах. Фрагменты лабораторных схем при подобной организации лабораторного практикума у команд могут или полностью дублироваться (вариант классического СТР «Attack and Defence») или отличаться друг от друга. Это открывает перед участниками такого практикума более широкие возможности как по поиску уязвимостей у других участвующих команд, так и по защите своего фрагмента лабораторной схемы (модельной корпоративной инфраструктуры).

Заключение

В работе выполнено рассмотрение особенностей применения виртуальных лабораторных сред «PNETLAB» и «EVE-NG» в учебном процессе подготовки специали-

стов по информационной безопасности в их расширенном гибридном варианте. Широкие функциональные возможности таких гибридных виртуальных лабораторных сред позволяют расширить стандартные комплексы лабораторных практикумов путем включения в них реального лабораторного сетевого оборудования и программно-аппаратных решений защиты информации. Кроме этого, отмечается большой потенциал для трансформирования стандартных лабораторных работ и выстраивания специализированных групп лабораторных работ, активно использующих для своего выполнения командную групповую работу студентов, децентрализацию и проблемно-ориентированное формирование лабораторных заданий. Это дает возможность строить лабораторный практикум с условиями его выполнения, более близкими к реальным рабочим условиям и ситуациям, с которыми могут столкнуться будущие специалисты по защите информации. Отдельно следует отметить потенциал к расширению традиционной парадигмы выполнения лабораторных работ в сторону увеличения элементов геймификации и переходу к практикумам в формате, близкому к формату популярных соревнований CTF.

ЛИТЕРАТУРА

- 1. Золотухин М.С., Кубанских О.В. Виртуальные лаборатории в преподавании и обучении // Современные научные исследования и инновации). 2019. №7. [Электронный ресурс] Режим доступа URL: https://web.snauka.ru/issues/2019/07/89984 (дата обращения 25.06.2025)
- 2. Мансуров А.В., Минакова Н.Н. Опыт успешного внедрения виртуальной лабораторной среды для лабораторных практикумов учебных дисциплин направления подготовки 10.03.01 Информационная безопасность // Высокопроизводительные вычислительные системы и технологии. 2023. Т. 7, № 1. С. 139—146.
- 3. Мансуров А.В., Минакова Н.Н., Рудер Д.Д., Ладыгин П.С. Опыт внедрения виртуальных лабораторных сред «PNETLAB» и «EVE-NG» для организации лабораторных практикумов при подготовке специалистов по защите информации в АлтГУ // Современное профессиональное образование. 2024. №1. С. 63—69.
- 4. Минакова Н.Н., Мансуров А.В. Успешная практика комбинирования лабораторных схем виртуальной лабораторной среды и реального лабораторного оборудования при подготовке специалистов по защите информации в АлтГУ // Высокопроизводительные вычислительные системы и технологии. 2024. Т. 8. № 1. С. 26—33.
- 5. EVE-NG. [Электронный ресурс] Режим доступа URL: https://www.eve-ng.net/ (дата обращения 25.06.2025)
- 6. PNETLab: Lab is Simple. [Электронный ресурс] Режим доступа URL: https://pnetlab.com/ (дата обращения 25.06.2025)
- 7. VMWare ESXi. [Электронный ресурс] Режим доступа URL: https://www.vmware.com/products/esxi-and-esx.html (дата обращения 25.06.2025)
- 8. Beheshti B.D., Shebli H. M. Z. A. A study on penetration testing process and tools. // 2018 IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 2018. P. 1–7. DOI: 10.1109/LISAT.2018.8378035.
- 9. Kumar S. Critical Analysis of Penetration Testing Process and Tools. // EPRA International Journal of Research & Development (IJRD). 2021. Vol. 6. Issue 9. P. 228–235. DOI: 10.36713/epra2016.
- 10. Anand A., Kumar S.,Rana R.,Sakharkar A.N. A Comprehensive Review on Penetration Testing Tools with Emerging Technology. // Proceedings of the KILBY 100 7th International Conference on Computing Sci-ences 2023 (ICCS 2023). DOI: 10.2139/ssrn.4488188.
- 11. MaxPatrol EDR защита конечных устройств от сложных и целевых атак. [Электронный ресурс] Режим доступа URL: https://www.ptsecurity.com/ru-ru/products/edr/ (дата обращения 25.06.2025)
- 12. Mansurov A. A CTF-Based Approach in Information Security Education: An Extracurricular Activity in Teaching Students at Altai State University, Russia. // Modern Applied Science. 2016. Vol. 10. No. 11. P. 159–166. DOI: 10.5539/mas.v10n11p159.

© Мансуров Александр Валерьевич (mansurov.alex@gmail.com); Минакова Наталья Николаевна (minakova@phys.asu.ru); Салита Даниил Сергеевич (d.s.salita@gmail.com); Дмитриев Александр Александрович (dmitriev@asu.ru); Журавлева Виктория Владимировна (torinka8@gmail.com) Журнал «Современная наука: актуальные проблемы теории и практики» DOI 10.37882/2223-2966.2025.09.22

ПРОТИВОДЕЙСТВИЕ БЕСПИЛОТНЫМ ЛЕТАЛЬНЫМ АППАРАТАМ ДЛЯ ОБЕСПЕЧЕНИЯ ЗАДАЧ ОБЩЕСТВЕННОЙ БЕЗОПАСНОСТИ

COUNTERACTION TO UNMANNED AERIAL VEHICLES TO ENSURE PUBLIC SAFETY

G. Plotnikov V. Elin A. Tsaregorodtsev

Summary. The article reveals a number of features of counteraction to unmanned aerial vehicles to ensure public safety based on the fact that the modern use of UAVs is aimed, among other things, at destroying social and critical infrastructure facilities that have a purely civilian purpose and are located deep in the rear of the country, which creates the need for the use of comprehensive measures to counter UAVs. Comprehensiveness implies the adoption of a law and other regulations, as well as the adoption of technical measures.

Keywords: public safety, counteraction to unmanned aerial vehicles.

Плотников Герман Геннадьевич

к.т.н., МОСУ МВД России имени В.Я. Кикотя (Москва) gr175@mail.ru

Елин Владимир Михайлович

к.п.н., МОСУ МВД России имени В.Я. Кикотя (Москва) elin vm@mail.ru

Царегородцев Анатолий Валерьевич д.т.н., профессор, ФГАОУ ВО РУДН (Москва) tsaregorodtsev_av@pfur.ru

Аннотация. В статье раскрывается ряд особенностей противодействия беспилотным летальным аппаратам для обеспечения задач общественной безопасности исходя из того факта, что современное применение БПЛА ориентировано, в т.ч. и для поражения объектов социальной и критической инфраструктуры, имеющих сугубо гражданское назначение и находящихся в глубоком тылу страны, что порождает необходимость применения комплексных мер противодействия БПЛА. Комплексность предполагает под собой принятие закона и иных нормативных актов, а также принятие мер технического характера.

Ключевые слова: общественная безопасность, противодействие беспилотным летальным аппаратам.

Онцепция применения беспилотных летательных аппаратов (БПЛА) при осуществлении военных действий разработана достаточно давно, под имеющуюся тактику применения подготовлено значительное количество типов БПЛА¹. Неожиданной новеллой современности стало не только применение БПЛА в ходе ведения военных действий, но применение БПЛА для поражения объектов социальной и критической инфраструктуры, имеющих сугубо гражданское назначение и находящихся в глубоком тылу страны и не являющуюся участником боевых действий². Зачастую, при осуществлении атак с применением БПЛА, противник использует современные разработки в сфере искусственного интеллекта³.

В сложившейся ситуации возникает необходимость применения комплексных мер по обеспечению общественной безопасности, как состояния защищённости граждан, материальных и духовных ценностей общества от преступных и иных противоправных посягательств, социальных и межнациональных конфликтов, а также от чрезвычайных ситуаций природного и техногенного характера. Общественная безопасность не сводится исключительно к пресечению преступности, а охватывает широкий спектр факторов, включая экологическую безопасность, безопасность в сфере здравоохранения, транспортную безопасность и другие аспекты, влияющие на качество жизни граждан.

В указанных целях в нашей стране принят Закон о противодействии беспилотным аппаратам⁴ направленный на расширение полномочий отдельных феде-

цифровизации экономики и государственного управления: Материалы Межвузовского круглого стола, Москва, 28 ноября 2024 года. — Москва: Российский экономический университет им. Г.В. Плеханова, ООО «РУСАЙНС», 2025. — С. 45–51. — EDN WLWCKL.

⁴ Федеральный закон от 04.08.2023 г. № 440-ФЗ «О внесении изменений в отдельные законодательные акты Российской Федерации»// http://www.kremlin.ru/acts/bank/49674

¹ Макаренко С.И., Тимошенко А.В., Васильченко А.С. Анализ средств и способов противодействия беспилотным летательным аппаратам//Системы управления, связи и безопасности №1. 2020. с. 109–146. DOI: 10.24411/2410-9916-2020-10105

² Беспилотник упал в Минске — посмотрели, что сейчас на месте крушения// https://tochka.by/articles/incidents/bespilotnik_upal_v_minske_posmotreli_chto_seychas_na_meste_krusheniya/

³ Жарова, А.К. О возможности совершения компьютерных атак по типу man in the Middle attack с применением генеративного искусственного интеллекта / А.К. Жарова // Актуальные проблемы расследования преступлений в сфере компьютерной информации или с применением компьютерных технологий в условиях

ральных органов исполнительной власти в части, касающейся пресечения функционирования беспилотных воздушных, подводных и надводных судов и аппаратов, беспилотных транспортных средств и иных автоматизированных беспилотных комплексов (далее — беспилотные аппараты), в том числе посредством подавления или преобразования сигналов дистанционного управления беспилотными аппаратами, воздействия на их пульты управления, а также повреждения или уничтожения этих аппаратов. Пресечение деятельности беспилотных аппаратов осуществляется в целях защиты жизни и здоровья граждан, обеспечения безопасности важных государственных, критически важных и потенциально опасных объектов, а также иных объектов.

Органами МВД России определен порядок принятия решения о пресечении нахождения беспилотных воздушных судов в воздушном пространстве в целях защиты жизни, здоровья и имущества граждан над местом проведения публичного (массового) мероприятия и прилегающей к нему территории, проведения неотложных следственных действий и оперативноразыскных мероприятий5. Приказом определена последовательность действий должностных лиц органов внутренних дел, уполномоченных на принятие решений о пресечении нахождения беспилотных воздушных судов в воздушном пространстве в целях защиты жизни, здоровья и имущества граждан над местом проведения публичного (массового) мероприятия и прилегающей к нему территории, проведения неотложных следственных действий и оперативно-разыскных мероприятий, по принятию такого решения.

Определен также комплекс обязанностей, возлагаемых на частные охранные предприятия в части реализации права пресекать функционирование беспилотных воздушных, подводных и надводных судов и аппаратов, беспилотных транспортных средств и иных автоматизированных беспилотных комплексов.

В связи с этим актуальным представляется вопрос об особенностях функционирования и навигации БПЛА, а также о возможностях противодействия БПЛА мерами подавления, имеющимися в распоряжении гражданского сообщества.

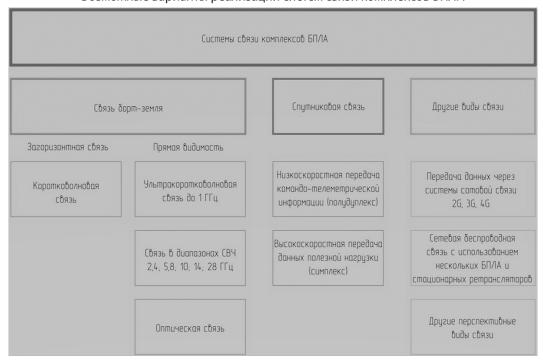
Многие задачи, решаемые современными комплексами беспилотных летательных аппаратов (БПЛА), требуют наличия высокоскоростных линий передачи информации между БПЛА и наземным комплексом управления (НКУ). Например, задачи оперативного мониторинга или разведки с помощью технологий БПЛА предполагают получение на борту и доставку на НКУ растровых изображений разного разрешения, получаемых с датчиков различных диапазонов длин волн. Наиболее распространенная на сегодняшний день технология передачи информации заключается в непрерывной трансляции изображения по мере его получения в цифровом или аналоговом формате, структура которого не меняется в течение всего полета.

Как правило, на борту БПЛА размещаются не менее двух систем связи: дуплексная/полудуплексная аппаратура передачи командно-телеметрической информации и симплексная система передачи информации полезной нагрузки. Аппаратура передачи командно-телеметрической информации предназначена для низкоскоростной передачи командной информации с НКУ на борт БПЛА и низкоскоростной передачи телеметрической информации с борта БПЛА на НКУ. Аппаратура передачи информации полезной нагрузки предназначена для односторонней высокоскоростной передачи информации полезной нагрузки с борта БПЛА на НКУ, как это представлено в таблице 1.

Прямая связь между БПЛА и НКУ в диапазонах СВЧ возможна только в пределах прямой видимости. Для повышения надежности комплекса БПЛА на борту устанавливаются несколько приемо-передатчиков различных диапазонов длин волн⁶. Передача телеметрической информации при полетах на большие расстояния может осуществляться с помощью спутниковых систем связи (Iridium, Globalstaru др.).

Высокоскоростная передача информации полезной нагрузки может также осуществляться через малоразмерные спутниковые терминалы, что требует установки на борт БПЛА высоконаправленной антенны с возможностью сканирования. В простейшем случае это параболическая антенна на опорно-поворотном устройстве.

Несмотря на большое количество возможных вариантов реализации систем передачи командно-телеметрической информации и информации полезной нагрузки, оптимальным и наиболее часто используемым остается вид связи, при котором данные передаются напрямую между БПЛА и НКУ.


В настоящее время существуют четыре глобальные CPHC:GPS (США), Galileo (Евросоюз), ГЛОНАСС (РФ), BeiDou

⁵ Приказ МВД России от 30 апреля 2020 г. № 252 «Об утверждении Порядка принятия решения о пресечении нахождения беспилотных воздушных судов в воздушном пространстве в целях защиты жизни, здоровья и имущества граждан над местом проведения публичного (массового) мероприятия и прилегающей к нему территории, проведения неотложных следственных действий и оперативно-разыскных мероприятий и Перечня должностных лиц, уполномоченных на принятие такого решения»

⁶ Боев Н.М., Шаршавин П.В., Нигруца И.В. Построение систем связи беспилотных летательных аппаратов для передачи информации на большие расстояния//https://uav-siberia.com/news/postroenie-sistem-svyazi-bespilotnykh-letatelnykh-apparatov-dlyaperedachi-informatsii-na-bolshie-ra/

Таблица 1.

Возможные варианты реализации систем связи комплексов БПЛА

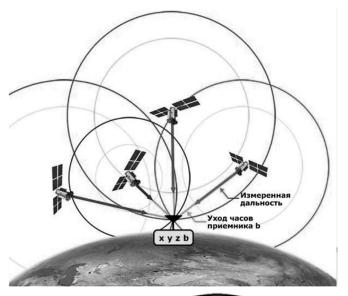
(Китай). Каждая из этих радионавигационных систем обладает группировкой навигационных космических аппаратов (НКА), которые непрерывно передают специальные навигационные радиосигналы. Измеряя время приема каждого радиосигнала, можно оценить расстояние от точки приема до каждого из НКА. Измерив не менее трех указанных сигналов, можно рассчитать местоположение (координаты) навигационного приемника.

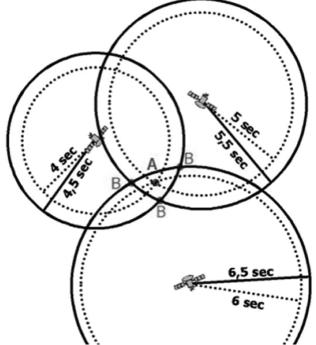
Каждый аппарат излучает несущее колебание в двух частотных диапазонах L1 и L2. Все НКА системы GPS излучают на общих частотах, 1575,42 МГц и 1227,60 МГц для L1 и L2 соответственно.

Навигационные сообщения также содержат параметры ионосферы (позволяет учитывать задержку сигналов в ионосфере), разницу между системной шкалой времени и мировой координированной шкалой времени и много еще всякой другой полезной информации.

Каждый спутник системы GPS непрерывно генерирует радиоволны двух частот — L1=1575.42МГц и L2=1227.60МГц. Мощность передатчика составляет 50 и 8 Ватт соответственно. Навигационный сигнал представляет собой фазово-манипулированный псевдослучайный код PRN (Pseudo Random Number code). PRN бывает двух типов: первый, C/A-код (Coarse Acquisition code — грубый код) используется в гражданских приемниках, второй Р-код (Precision code — точный код), используется в военных целях, а также, иногда, для решения задач геодезии и картографии. Частота L1 моду-

лируется как C/A, так и P-кодом, частота L2 существует только для передачи P-кода.


Кроме описанных существует еще и Y-код, представляющий собой зашифрованный P-код (в военное время система шифровки может меняться).


Каждый GPS-приемник имеет собственный генератор, работающий на той же частоте и модулирующий сигнал по тому же закону, что и генератор спутника. Таким образом, по времени задержки между одинаковыми участками кода, принятого со спутника и сгенерированного самостоятельно, можно вычислить время распространения сигнала, а, следовательно, и расстояние до спутника.

Основой идеи определения координат GPS-приемника является вычисление расстояния от него до нескольких спутников, расположение которых считается известным (эти данные содержатся в принятом со спутника альманахе). В геодезии метод вычисления положения объекта по измерению его удаленности от точек с заданными координатами называется трилатерацией.

Для определения координат навигационному приемнику дополнительно нужна информация о текущем местоположении НКА, а также о его бортовой шкале времени. Эта информация передается в специальных навигационных сообщениях в форме, так называемых, альманаха и эфемероидной информации.

Основным способом информационно-программного противодействия БПЛА является создание лож-

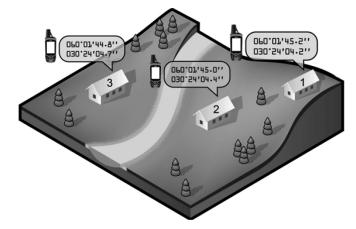


Рис. 1. Пример подмены координат объекта до искажения поля

ного радионавигационного поля, или, так называемый, GPS-spoofing. Принцип подмены радионавигационного поля заключается в том, что устанавливают относительно мощный передатчик, который излучает ложные, но структурно и технически корректные навигационные сигналы. Если мощность ложного сигнала превышает мощность сигналов от НКА, то навигационный приемник будет определять неверные координаты.

Средства интеллектуального искажения навигационного поля (ИИНП) предназначены для имитации в некоторой зоне навигационного поля, параметры которого будут отличаться от истинных. В результате этого на определённой территории будет невозможно определить истинные координаты объектов. Вне зоны действия средства ИИНП навигационное поле остаётся легитимным.

Рассмотрим следующий пример, предположим, что необходимо у зданий номер 2 и 3 (рис. 1) подменить координаты на близкие, но неверные, сохранив при этом истинные координаты здания номер 1. При отсутствии подмены навигационного поля каждое из этих строений имеет свои координаты. После включения ИИНП в зоне действия средства все навигационные приёмники будут показывать координаты, заданные оператором ИИНП. Все приёмники сигналов навигации, находящиеся в зоне действия ИИНП, будут работать корректно, но будут показывать ложные (заданные оператором) координаты (рис. 2).

Данный способ может быть использован при борьбе с БПЛА, которые ориентируются в пространстве по сигналам спутниковой навигации. Однако его следует с осторожностью применять к коммерческим БПЛА в связи с тем, что из-за их простых и дешевых систем навигационного управления при значительном изменении текущих координат происходит «зависание» системы навигационного управления и неуправляемое падение коммерческого БПЛА. Учитывая массу коммерческих

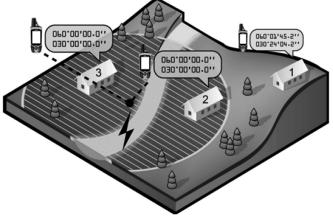


Рис. 2. Пример подмены координат объекта после искажения поля

БПЛА, их падение с высоты нескольких сотен метров может причинить ущерб имуществу охраняемого объекта и существенный вред здоровью (вплоть до летального исхода) людям, находящимся на объекте.

К основным способам противодействия БПЛА, нацеленным на прекращение перемещения БПЛА, срыв выполнения ими задач, а также их физическое уничтожение или захват, относятся⁷:

- радиоэлектронное воздействие (блокирование, подавление);
- информационно-программное воздействие (перехват, спуффинг, ddos-атаки);
- микроволновое воздействие (электромагнитное воздействие);
- оптоэлектронное воздействие (лазерное воздействие);
- механическое воздействие (ловля специальными сетями, огневое и кинетическое воздействие).

Радиоэлектронное подавление (РЭП) заключается в излучение помеховых сигналов, приводящих к затруднению или срыву функционирования различных систем БПЛА:

- подавление радиолиний управления БПЛА;
- подавление средств спутниковой радионавигации (GPS/ГЛОНАСС и других космических радионавигационных систем);
- комбинированные воздействия.

Радиоэлектронное подавление БПЛА является одним из основных способов борьбы с управляемыми БПЛА. Наиболее часто используется заградительная шумовая помеха, перекрывающая полосу пропускания радиоприемного тракта и превышающая по мощности управляющий сигнал.

Борьба с квадрокоптерами или радиоэлектронное подавление БПЛА обладает целым рядом достоинств, по сравнению с другими способами противодействия, например, механическим воздействием:

- радиоэлектронное подавление может осуществляться сразу на несколько БПЛА. Теоретически количество подавляемых целей не ограничено, условием подавления является лишь превышение уровня помехи над уровнем полезного сигнала. Причем это относится как к подавлению каналов управления, так и к подавлению средств радионавигации;
- радиоэлектронное подавление экономически более выгодно, так как в ходе функционирования расходуется только электроэнергия;

 радиоэлектронное подавление обладает большой гибкостью применения. Можно использовать различные режимы работы, избирательно подавлять заданные БПЛА и/или выбранные бортовые системы, применять различные сценарии функционирования комплекса противодействия, адаптируясь к внешним условиям.

Однако кроме достоинств радиоэлектронное подавление обладает и некоторыми недостатками:

- при функционировании средств радиоэлектронного подавления должны выполняться экологические требования, а также требования по электромагнитной совместимости с другими радиоэлектронными средствами;
- радиоэлектронное подавление радиолиний управления невозможно в случае функционирования БПЛА в режиме «радиомолчания», когда его полет осуществляется автономно по заранее загруженной программе;
- использование заградительных помех приводит к необходимости применения мощного помехового радиоизлучения, особенно для широкополосных сигналов БПЛА. Для использования прицельных помех требуется предварительный этап обнаружения и технического анализа сигналов БПЛА.

Современные средства радиоэлектронного подавления можно разделить на следующие типы:

- военные средства РЭП имеют большую излучаемую мощность, и, как следствие, обладают большой дальностью подавления;
- «коммерческие» средства РЭП имеют среднюю излучаемую мощность и ограниченную дальность подавления. Используются для прикрытия важных государственных, промышленных и социальных объектов от «коммерческих» беспилотных летательных аппаратов;
- малогабаритные средства РЭП имеют невысокую излучаемую мощность и малую дальность подавления. Как правило, выполнены в виде носимого радиоэлектронного «ружья».

Существуют несколько основных способов информационно-технического воздействия на БПЛА:

- воздействие путем нарушения радиообмена между БПЛА и наземным пунктом управления (НПУ);
- воздействие путем нарушения информационного обмена между БПЛА и наземным пунктом управления (НПУ);
- воздействие путем нарушения специального программного обеспечения на БПЛА и/или НПУ.

Для осуществления указанных воздействий средства противодействия должны получить информацию о формате и структуре используемых протоколов управления

⁷ Плотников, Г.Г. О модели оценки противодействия беспилотным системам / Г.Г. Плотников // Информационные технологии в деятельности органов внутренних дел: Сборник научных трудов Международной научно-практической конференции, Москва, 18 апреля 2024 года. — Москва: Московский университет МВД РФ им. В.Я. Кикотя, 2024. — С. 214–215. — EDN CIMEGA.

и обмена данными. Тогда появляется возможность передачи ложных команд управления или ложных параметров на БПЛА.

Для реализации указанных воздействий средства противодействия могут использовать следующие уязвимости используемых в каналах управления БПЛА технологий беспроводного доступа и/или сотовой связи:

- уничтожение или подмена параметров аутентификации и/или авторизации в ходе установления или поддержания соединения между БПЛА и НПУ;
- использование в каналах управления протоколов шифрования со слабой криптографической стойкостью.

Если удается получить доступ к форматам используемых протоколов обмена информации, то становится возможным установить:

- тип БПЛА;
- координаты БПЛА по информации от бортовой навигационной аппаратуры;
- статус (состояние) систем беспилотного летательного аппарата;
- заданную последовательность управляющих команд;
- параметры и настройки программного обеспечения.

К информационно-техническим воздействиям (ИТВ), основанным на нарушении радиообмена между беспилотным летательным аппаратом и наземным пунктом управления, можно отнести следующие:

 срыв синхронизации и/или процедуры установления связи;

- внесение нарушений в канальные или сетевые протоколы радиосети;
- переполнение входного буфера путем DOS или DDOS-атак;
- нарушение функционирования программного обеспечения микроконтроллера управления средствами радиообмена.

К информационно-техническим воздействиям (ИТВ), основанным на нарушении информационного обмена между беспилотным летательным аппаратом и наземным пунктом управления, можно отнести следующие:

- перехват управления БПЛА путем создания ложного виртуального НПУ;
- перевод БПЛА в ложный аэродинамически некорректный режим полета;
- подача на БПЛА команд на выключение или на снижение;
- подача управляющих команд на выключение бортовой полезной нагрузки;
- имитация на НПУ виртуального БПЛА.

К информационно-техническим воздействиям (ИТВ), основанным на нарушении специального программного обеспечения на БПЛА и/или НПУ можно отнести следующие:

- установка в специальное программное обеспечение компьютерных вирусов, для перехвата управления беспилотным летательным аппаратом;
- установка в БПЛА программных закладок, обеспечивающих перехват управления с помощью ложного НПУ.

ЛИТЕРАТУРА

- 1. Макаренко С.И., Тимошенко А.В., Васильченко А.С. Анализ средств и способов противодействия беспилотным летательным аппаратам//Системы управления, связи и безопасности. №1, 2020. С. 109—146. DOI: 10.24411/2410-9916-2020-10105
- 2. Беспилотник упал в Минске посмотрели, что сейчас на месте крушения// https://tochka.by/articles/incidents/bespilotnik_upal_v_minske_posmotreli_chto_seychas_na_meste_krusheniya/
- 3. Жарова, А.К. О возможности совершения компьютерных атак по типу man in the Middle attack с применением генеративного искусственного интеллекта /А.К. Жарова//Актуальные проблемы расследования преступлений в сфере компьютерной информации или с применением компьютерных технологий в условиях цифровизации экономики и государственного управления: Материалы Межвузовского круглого стола, Москва, 28 ноября 2024 года. Москва: Российский экономический университет им. Г.В. Плеханова, 000 «РУСАЙНС», 2025. С. 45—51. EDN WLWCKL.
- 4. Φ едеральный закон от 04.08.2023 г. № 440- Φ 3 «О внесении изменений в отдельные законодательные акты Российской Φ едерации»// http://www.kremlin. ru/acts/bank/49674
- 5. Приказ МВД России от 30 апреля 2020 г. № 252 «Об утверждении Порядка принятия решения о пресечении нахождения беспилотных воздушных судов в воздушном пространстве в целях защиты жизни, здоровья и имущества граждан над местом проведения публичного (массового) мероприятия и прилегающей к нему территории, проведения неотложных следственных действий и оперативно-разыскных мероприятий и Перечня должностных лиц, уполномоченных на принятие такого решения».
- 6. Боев Н.М., Шаршавин П.В., Нигруца И.В. Построение систем связи беспилотных летательных аппаратов для передачи информации на большие расстояния//https://uav-siberia.com/news/postroenie-sistem-svyazi-bespilotnykh-letatelnykh-apparatov-dlya-peredachi-informatsii-na-bolshie-ra/
- 7. Плотников, Г.Г. О модели оценки противодействия беспилотным системам /Г.Г. Плотников//Информационные технологии в деятельности органов внутренних дел: Сборник научных трудов Международной научно-практической конференции, Москва, 18 апреля 2024 года. Москва: Московский университет МВД РФ им. В.Я. Кикотя, 2024. С. 214—215. EDN CIMEGA.

© Плотников Герман Геннадьевич (gr175@mail.ru); Елин Владимир Михайлович (elin_vm@mail.ru); Царегородцев Анатолий Валерьевич (tsaregorodtsev_av@pfur.ru) Журнал «Современная наука: актуальные проблемы теории и практики» DOI 10.37882/2223-2966.2025.09.24

СОВЕРШЕНСТВОВАНИЕ МЕТОДОВ ИНТЕГРАЦИИ ОНТОЛОГИЙ В АРХИТЕКТУРУ УПРАВЛЕНИЯ ОРГАНИЗАЦИОННЫМИ СИСТЕМАМИ ИНТЕРНЕТ-ПРОВАЙДЕРА

IMPROVING METHODS FOR INTEGRATING ONTOLOGIES INTO THE MANAGEMENT ARCHITECTURE OF AN INTERNET SERVICE PROVIDER'S ORGANIZATIONAL SYSTEMS

N. Polyakov

Summary. The research is devoted to the analysis of the problems of creation, development and maintenance of ontologies as a key component of information support for organizational systems management systems in the segment of Internet service providers. The article discusses the theoretical foundations and methods of ontological modeling, the integration of ontologies into management decision-making processes, as well as software tools to support semantic models in the information and telecommunications industry. The focus is on the issues of efficiency, quality and actualization of ontologies in the context of digital business transformation.

Keywords: ontology, information and telecommunications industry, multi-level ontologies, top-level ontologies, specialized ontologies, semantic compatibility, computational frameworks.

Поляков Николай Александрович

Аспирант АО ЧУ ВО «Московский финансовоюридический университет МФЮА» polyakov.na@yandex.ru

Аннотация. Исследование посвящено анализу проблем создания, развития и сопровождения онтологий как ключевого компонента информационного обеспечения систем управления организационными системами в сегменте интернет-провайдеров. Рассматриваются теоретические основы и методы онтологического моделирования, вопросы интеграции онтологий в процессы принятия управленческих решений, а также программные средства для поддержки семантических моделей в информационно-телекоммуникационной отрасли. Акцент делается на проблемах эффективности, качества и актуализации онтологий в условиях цифровой трансформации бизнеса.

Ключевые слова: онтология, информационно-телекоммуникационная отрасль, многоуровневые онтологии, верхнеуровневые онтологии, специализированные онтологии, семантическая совместимость, вычислительные системы.

Ввеление

азвитие организационных систем в информационно-телекоммуникационной отрасли сопровождается усложнением бизнес-процессов и значительным ростом объёма разнородных данных. Для эффективного управления и оптимизации таких систем необходимы формализованные модели, обеспечивающие структурирование информационных потоков и поддержку алгоритмов принятия решений. В этих условиях онтологическое моделирование становится важнейшим инструментом, способствующим интеграции, автоматизации и интеллектуализации процессов управления интернет-провайдером. Особую актуальность приобретает совершенствование методов интеграции онтологий в информационное и программное обеспечение систем управления. Именно такие подходы отвечают задачам повышения эффективности, качества и надёжности организационных систем в условиях цифровой трансформации и возрастающей сложности инфраструктуры.

Целью работы является анализ и совершенствование методов интеграции онтологий в архитектуру управления организационными системами интернет-провайдера.

Задачи исследования:

- выполнить аналитический обзор литературы по вопросам создания и эволюции онтологий в отрасли информационно-коммуникационных технологий (ИКТ);
- систематизировать основные проблемы при внедрении онтологического моделирования в деятельность интернет-провайдера;
- проанализировать решения и программные средства для поддержки онтологий, оценить их применимость в бизнесе интернет-провайдера;
- разработать рекомендации по сопровождению, обновлению и интеграции онтологий с целью повышения адаптивности и эффективности бизнеспроцессов интернет-провайдера.

В работе использованы методы системного и онтологического анализа, сравнительного обзора, а также элементы процессного моделирования, семантических и информационных технологий.

Результаты анализа и их обсуждение

Онтологии, как семантически насыщенные и структурированные модели знаний, сегодня рассматриваются

не просто как вспомогательный компонент информационных систем, а как стратегический инструмент цифровой трансформации предприятий и отраслей. Особенно велика их значимость в информационно-коммуникационной сфере, где точность определения понятий и процессов необходима для успешной интеграции данных и автоматизации управления. Как отмечает автор [1], онтология включает описание классов, свойств, типов значений, экземпляров, функций, отношений и аксиом, а её развитие предполагает модульность и совместную работу экспертов различных профилей. Это делает актуальной задачу поддержки многоверсионности и совершенствования средств сопровождения и отладки онтологий, включая программные инструменты и организационные механизмы.

В ИКТ-отрасли онтологии востребованы для систематизации корпоративных знаний, поддержки научных исследований, интеграции различных информационных систем и автоматизации управленческих решений. Особое значение приобретает переход к созданию семантических связей между разнородными данными: на первый план выходит не только сам факт передачи информации, но и её контекстное значение. Эту тенденцию закрепляют международные и российские стандарты, включая ГОСТ Р ИСО/МЭК 21838-1-2021 [2], определяющие требования к построению, описанию и интеграции онтологий в рамках организационных систем. Тем не менее, несмотря на развитие системы стандартов, остаются дискуссионными вопросы классификации базовых понятий, оценки качества онтологий и согласованности критериев их полноты и глубины [3]. Недостаточная унификация затрудняет широкое использование онтологий, особенно в задачах взаимодействия между организациями.

Тем временем интерес к онтологическим технологиям только растёт. Wache и коллеги [4] провели один из первых комплексных анализов подходов к созданию онтологий, отметив их сильные стороны и направления дальнейшего развития интеграционных процессов. По их мнению, онтологии способствуют не только упорядочиванию терминологии, но и создают основу для автоматизации анализа, внедрения масштабируемых платформ и обмена знаниями между корпоративными системами.

Указанный подход отражается и в определении онтологии как системы понятий предметной области и связей между ними [4], что позволяет эффективно интегрировать разнообразные источники данных и разрабатывать новые аналитические решения. Важным преимуществом считается возможность согласования сразу нескольких онтологий внутри одной системы (interoperability), что является ключом к построению гибкой организационной архитектуры в современной ИКТ-среде. Основные сценарии использования онтологий с их характеристиками приведены в таблице 1.

Таблица 1. Подходы к использованию онтологий в ИКТ

Подход	Описание	Преимущества	Недостатки
Интеграция на уровне процессов (глобальная онтология)	Построение уни- версальной онтоло- гии, охватывающей всю предметную область	Целостность, системность, унификация терминологии	Высокие трудозатраты, сложность со- провождения
Медиацион- ные подходы	Использование медиаторов для преобразования запросов между различными онтологиями	Гибкость, возмож- ность работы с разными моделями	Трудности реализации, масштабируе- мость
Интеграция на уровне моделей данных (локальные онтологии)	Множество ло- кальных онтологий с последующим семантическим сопоставлением	Адаптивность, сниженные требования к согласованию	Необходимость согласования локальных представлений
Интеграция на уровне метаданных (аннотирова- ние)	Дополнение данных метаин- формацией для повышения интер- претируемости	Улучшение поиска и обработки информации	Сложность аннотирова- ния, высокие требования к качеству метаданных

Как следует из анализа, внедрение каждой стратегии связано с неизбежным выбором между целостностью и гибкостью: интеграция на уровне процессов позволяет достигнуть максимальной унификации, но уступает в адаптивности, тогда как медиационные, модельные и аннотативные подходы обеспечивают динамическое развитие системы ценой усложнения сопоставления и координации. Однако истинная глубина онтологического подхода раскрывается не только в спектре технологий интеграции, но и в понимании стратегических вызовов, которые встают перед ИКТ-отраслью на пути к масштабному внедрению онтологий (таблица 2).

Особую актуальность в современных условиях приобретает проблема согласования и интеграции разнородных данных между подразделениями и внешними системами, каждая из которых использует собственные термины и структуры представления информации.

По мнению авторов работы [5], онтологии способны эффективно устранить такую разобщённость, обеспечивая создание единого репозитория знаний и, благодаря этому, достигая не только синтаксической, но и семантической совместимости между корпоративными и отраслевыми платформами.

Таблица 2. Стратегические вызовы и факторы успеха внедрения онтологий в ИКТ

Ключевой вызов	Влияние на процессы интеграции	Факторы успешной реализации
Гетерогенность данных (форма- ты, структуры, семантика)	Усложняет сопоставление сущностей, требует мощных механизмов согласования	Применение стандартов, автоматизация мэппинга
Высокая стоимость и трудоемкость разработки онто-логий	Замедляет внедрение, требует высоко- квалифицированных специалистов	Разработка инстру- ментов повторного использования, мето- дик автоматизации
Масштабируе- мость системы интеграции	Рост числа данных и онтологий ведет к экспоненциальному усложнению	Иерархизация и мо- дульность онтологий, постоянная оптими- зация архитектуры
Сложность меж- дисциплинарного координирования	Неоднозначность терминов, разночтения между экспертами	Создание процедур согласования, вовлечение представителей всех сегментов
Недостаток практических кейсов и инструментов	Снижение доверия и замедление освоения новых методов	Публикация успеш- ных отраслевых примеров, развитие open-source решений

Последнее, в свою очередь, существенно повышает качество интеграции, поиска и анализа информации, что

становится ключевым фактором для цифровой трансформации организационных систем. Тем не менее, как отмечают Gómez-Pérez и соавт., внедрение онтологий в практических задачах управления знаниями и интеграции данных осложняется неоднородностью терминологии и форматов, а также отсутствием отработанных методик и примеров комплексного применения в масштабе отрасли. Кроме того, для построения эффективных онтологий требуется координированное взаимодействие специалистов разных сфер, выходящее за рамки формальной спецификации.

Таким образом, необходимость преодоления перечисленных барьеров на всех этапах — от сбора источников до интерпретации в рамках информационных систем — определяет значимость онтологий как промежуточного семантического уровня интеграции данных (рисунок 1).

Кроме того, создание верхнеуровневых онтологий, управляющих специализированными нижними уровнями, требует глубокого понимания как общей структуры, так и особенностей индивидуальных областей. Так, в исследовании [6] с одной стороны предпринята попытка единого понимания онтологии, а с другой обсуждается проблема обеспечения семантической совместимости между разными уровнями и областями. Авторы отмечают, что семантическая несовместимость представляет собой значительное препятствие, поскольку это требует согласования различных концепций и терминологий.

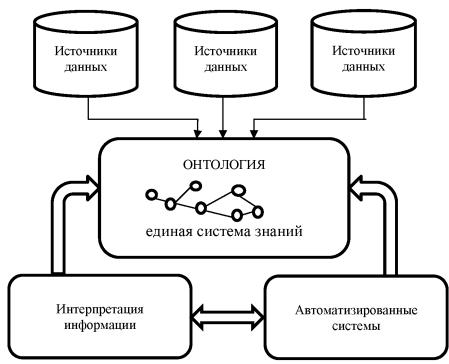


Рис. 1. Онтология как сквозная семантическая прослойка в ИКТ-среде

Источник: составлено автором

Рис. 2. Технологическая реализация онтологии в ИКТ-системах

Источник: составлено автором

Вопрос технологической реализации онтологий не менее важен, чем концептуальный. Motik [7] предлагает рассматривать использование таких языков, как OWL, RDF и Common Logic, как попытку формализовать онтологическое описание в машиночитаемом виде (рисунок 2).

Однако разнообразие стандартов по мнению авторов затрудняют обеспечение совместимости и эффективную интеграцию данных в информационно-коммуникационных системах.

Например, язык OWL 2, обеспечивая вычислимость, уступает по выразительности Common Logic, что ограничивает его применение в сложных корпоративных сценариях и может негативно влиять на масштабируемость и производительность систем.

Постоянная эволюция стандартов требует регулярного обновления онтологий и, как следствие, увеличивает издержки на сопровождение. Эти вызовы особенно заметны на фоне формирования коллективных знаний и развития «Семантической паутины». По мнению Gruber [8], широкое внедрение семантической разметки (RDF, OWL) способствует структурированию и автоматизации анализа данных как для пользователей, так и для интеллектуальных приложений. Комплексное сочетание многоуровневых онтологий и методов искусственного интеллекта позволяет автоматизировать актуализацию

знаний, что, по современным исследованиям в области машинного обучения, частично решает задачи масшта-бирования. Однако полноценная интеграция возможна только при наличии стандартов и эффективной организационной координации. В исследовании Noy [9] подчёркивается, что развитие форматов (OWL, CL) — ключевое условие межсистемной совместимости и обмена данными. Одновременно быстрые изменения стандартов усложняют жизненный цикл онтологий, повышая требования к их гибкости и увеличивая стоимость поддержки.

Выбор между выразительностью и разрешимостью становится стратегическим для архитектуры системы, как показывает Motik [7]: усиление логического вывода ведёт либо к ограничению формализации, либо к увеличению вычислительной нагрузки, что влияет на эффективность программно-аппаратных комплексов. Помимо сказанного, Gómez-Pérez [10] подчёркивает, что модульное построение онтологий иерархически облегчает интеграцию, повышая гибкость и управляемость. Тем не менее, организация взаимодействия между отраслевыми и специализированными моделями требует не только технических, но и междисциплинарных решений.

Интеграция онтологий определяет развитие Семантической Сети и Интернета вещей (IoT): Berners-Lee [11] отмечает, что сквозная согласованность онтологий существенно расширяет возможности интеллектуального

управления в IoT-платформах, что важно для динамичных отраслей. По Uschold [12], дальнейший прогресс невозможен без развития профессиональных компетенций, массовой подготовки специалистов и расширения международного сотрудничества, что ускоряет стандартизацию и внедрение на практике.

Для перехода от теории к практике необходимо соотнести выбор технологий и инструментов с реальными особенностями внедрения. На основании работы Гаркуши [13] в таблице 3 представлен сопоставительный анализ современных инструментов, востребованных в индустрии ИКТ.

Представленные инструменты могут быть адаптированы к конкретным потребностям провайдера кабельного интернета, как это демонстрирует кейс [14], где онтология служит для описания бизнес-процессов, цифровизации проектной документации и повышения эффективности управленческих решений.

Таблица 3. Результаты сопоставительного анализа программного обеспечения, применяемого для работы с онтологиями

Программное обеспечение	Краткое описание	Преимущества	Ограничения
Protégé	Инструмент с открытым ис-ходным кодом для создания и редактирования онтологий.	Обширный функционал, поддержка OWL, широкое сообщество пользователей.	Проблемы с про- изводительно- стью на больших онтологиях, вы- сокая нагрузка на память.
Thesaurus	Средство для загрузки и просмотра небольших онтологий.	Простота, удобство для визуализации и небольших моделей.	Ограниченные возможности редактирования, слабая поддержка формальных проверок.
OntoHub	Платформа для управления распределёнными и гетерогенными онтологиями на различных языках.	Поддержка межъязыковой интеграции, модульность, мость.	Сложность настройки, высокая кривая обучения, зависимость от инфраструктуры.

Практическая значимость онтологий в таких сценариях подтверждает их потенциал в ИКТ-отрасли, однако требует комплексного подхода — от стандартизации и инструментальной поддержки до подготовки кадров и межсистемной интеграции.

Таким образом, для внедрения онтологий критически важны не только технология и стандарты, но и бизнес-процессы компании, организационная структура, а также управление изменениями. Практика показывает: даже самое совершенное средство для построения и поддержки онтологий не будет работать эффективно без интеграции с существующими ИТ-системами, регулярного обновления знаний и обучения персонала.

Заключение

Проведённое исследование позволило системно структурировать ключевые вызовы и направления совершенствования, связанные с внедрением онтологий в компании, предоставляющие услуги в сфере информационно-коммуникационных технологий: разнотипность и масштабность исходных данных, необходимость интеграции с действующими ИТ-системами и сложность поддержания онтологий в актуальном состоянии. Развитие онтологических решений в указанном контексте требует не столько изолированного технологического прогресса, сколько формирования целостной стратегии внедрения, где особую роль играет организационно-методическое сопровождение, институциональные рамки и подготовка специалистов (таблица 4).

Рекомендации, представленные в таблице 4, ориентированы на практическую реализацию онтологического подхода в автоматизированных системах управления организационными процессами и корпоративными информационными системами. Их внедрение способствует формированию единого семантического пространства, обеспечивающего интеграцию информационных ресурсов, оптимизацию бизнес-процессов и совершенствование архитектуры поддержки принятия управленческих решений. Научная значимость данных предложений заключается в формализации методов сопровождения и развития онтологически ориентированных систем управления, что соответствует задачам повышения адаптивности, надёжности и эффективности функционирования сложных организационно-технических и информационно-коммуникационных систем в условиях цифровизации.

Таблица 4. Рекомендации по внедрению и поддержке онтологий в ИКТ-компании

Направление	Содержательная мера	Ожидаемый эффект
Архитектура	Переход к централизованно- му управлению онтологиями на микросервисной архитектуре, использование репозиториев с версионированием (например, OntoHub, GitLab)	Повышение управляемо- сти моделей, контроль истории изменений, гиб-кость интеграции
Интеграция	Автоматизация обмена данными через универсальные API (REST/ JSON) между CRM, биллингом, 1С, ПО Контакт-центра, IVR, видеонаблюдением (Camera Viewer, Flussonic Watcher), системами мониторинга Zabbix, мобильными приложениями, банковскими сервисами и терминалами и др.	Ускорение сопря- жения компонен- тов, снижение трудозатрат на настройку

Направление	Содержательная мера	Ожидаемый эффект
Актуализа- ция	Регулярный аудит онтологий, учёт обратной связи персонала и технологических изменений (например, введение новых драйверов/интерфейсов, обновление 1С, биллинга и пр.)	Поддержание релевантности моделей и повышение доверия пользователей
Обучение	Введение многоуровневых обуча- ющих программ для сотрудников различного профиля	Повышение цифровой грамотности и снижение риска неправильной интерпретации онтологий
Стандарти- зация	Описание шаблонных сценариев интеграции (интерфейсы, контроль версий, правила обработки, типовые протоколы REST/SOAP, webhooks и т.д.)	Унификация процессов и со- кращение затрат на сопровождение
Мониторинг	Реализация мониторинга бизнес- процессов на основе онтологий и бизнес-метрик	Обеспечение прозрачности, аналитики и оперативного управления

ЛИТЕРАТУРА

- 1. Бениаминов Е.М. Некоторые проблемы широкого внедрения онтологий в ІТ и направления их решений // Труды Симпозиума «Онтологическое моделирование». М.: ИПИ РАН. 2008. С. 71—82.
- 2. ГОСТ Р ИСО/МЭК 21838-1-2021. Информационные технологии. Онтологии высшего уровня (TLO). Часть 1. Требования.
- 3. Волкова Г.А. Создание «онтологии всего». Проблемы классификации и решения // Новые информационные технологии в автоматизированных системах. 2013. №16. С. 293—300.
- 4. Wache H. et al. Ontology-based integration of information-a survey of existing approaches // Ois@ ijcai, 2001.
- 5. Gómez-Pérez A., Fernández-López M., Corcho O. Ontological Engineering: with examples from the areas of Knowledge Management, e-Commerce and the Semantic Web. Springer Science & Business Media, 2006.
- 6. Guarino N., Oberle D., Staab S. What is an ontology? // Handbook on ontologies. 2009. PP. 1–17.
- 7. Motik B. et al. OWL 2 web ontology language: Structural specification and functional-style syntax // W3C recommendation. 2009. Vol. 27. Is. 65. PP. 159.
- 8. Gruber T. Collective knowledge systems: Where the social web meets the semantic web // Journal of web semantics. 2008. Vol. 6. Is. 1. PP. 4–13.
- 9. Noy N.F., Fergerson R.W., Musen M.A. The knowledge model of Protege-2000: Combining interoperability and flexibility // International Conference on Knowledge Engineering and Knowledge Management. Berlin, Heidelberg: Springer Berlin Heidelberg. 2000. PP. 17–32.
- 10. Gómez-Pérez A. Evaluation of ontologies // International Journal of Intelligent Systems. 2001. Vol. 16. Is. 3. PP. 391-409.
- 11. Berners-Lee, T., Hendler, J., & Lassila, O. The semantic web. Scientific American. 2001. Vol. 284. ls. 5. PP. 34–43.
- 12. Uschold M., Gruninger M. Ontologies and semantics for seamless connectivity // ACM SIGMod Record. 2004. Vol. 33. ls. 4. PP. 58–64.
- 13. Гаркуша Д.А. Функциональные особенности реализованных онтологических платформ // Проблемы искусственного интеллекта. 2023. № 4 (31). С. 4—11.
- 14. Черняховская Л.Р. и др. Проектирование системы управления бизнес-процессами на основе онтологического анализа и имитационного моделирования предметной области // Информационные и математические технологии в науке и управлении. 2019. №. 3 (15). С. 18—30.

© Поляков Николай Александрович (polyakov.na@yandex.ru) Журнал «Современная наука: актуальные проблемы теории и практики» DOI 10.37882/2223-2966.2025.09.26

СИНГУЛЯРНОЕ РАЗЛОЖЕНИЕ И ЛИНЕЙНАЯ РЕГРЕССИЯ В ЗАДАЧЕ ПРОГНОЗИРОВАНИЯ ДИНАМИКИ ПОВЕДЕНИЯ ЦЕННЫХ БУМАГ

SINGULAR VALUE DECOMPOSITION AND LINEAR REGRESSION IN THE TASK OF PREDICTING STOCK MARKET DINAMICS

A. Solobuto V. Pavlov

Summary. The study explores the application of singular value decomposition (SVD) as a tool for analyzing the linear dependence of the predicted stock price on a set of market indicators. Singular value decomposition is employed to decompose the feature matrix, enabling the identification of the most significant components that describe data variability and determining the degree of linear dependence [1] between the indicators and the target variable—the stock price. This approach facilitates dimensionality reduction, mitigates multicollinearity, and highlights key factors influencing the price.

Additionally, the study addresses the regression task for predicting stock prices in the short term based on the extracted features. Machine learning methods, such as linear regression, regularized models (e.g., Ridge or Lasso), or more complex algorithms like gradient boosting applied depending on the data characteristics. The analysis includes data preprocessing steps, such as normalization, overseeing missing values, and feature selection. Predictions evaluated using metrics such as mean squared error (MSE), mean absolute error (MAE), or the coefficient of determination (R²) [2], allowing for a quantitative assessment of the model's accuracy.

The study also discusses the limitations of the approach, including assumptions of linear dependence, market volatility, and the impact of external factors not captured in the dataset. To improve prediction accuracy, the integration of additional data, such as news feeds, macroeconomic indicators, or market sentiment analysis. The results obtained can utilized for developing trading strategies or supporting investment decision-making in the context of short-term trading.

Keywords: singular value decomposition, linear regression, linear dependence, stocks, indicators.

Солобуто Алексей Викторович

аспирант, Московский финансово-юридический университет МФЮА 29352138@s.mfua.ru

Павлов Валерий Анатольевич

к.э.н., доцент, Московский финансово-юридический университет МФЮА 29359332@s.mfua.ru

Аннотация. В работе исследуется применение сингулярного разложения (SVD) как инструмента для анализа линейной зависимости прогнозируемой цены акций от набора биржевых индикаторов. Сингулярное разложение используется для разложения матрицы признаков, что позволяет выявить наиболее значимые компоненты [1], описывающие вариации в данных, и определить степень линейной зависимости между индикаторами и целевой переменной — ценой акций. Этот подход способствует снижению размерности данных, устранению мультиколлинеарности и выделению ключевых факторов, влияющих на цену.

Кроме того, в работе решается задача регрессии для прогнозирования стоимости акций в краткосрочной перспективе на основе выделенных признаков. Для этого применяются методы машинного обучения, такие как линейная регрессия, регуляризованные модели (например, Ridge или Lasso) или более сложные алгоритмы, такие как градиентный бустинг, в зависимости от характеристик данных. Для оценки работы регрессионых моделей применяются следующие метрики: среднеквадратичная ошибка (МSE), средняя абсолютная ошибка (МAE), коэффициент детерминации (R²) [2].

Полученные результаты могут быть использованы для разработки торговых стратегий или поддержки принятия инвестиционных решений в условиях краткосрочной торговли.

Ключевые слова: сингулярное разложение, линейная регрессия, линейная зависимость, ценные бумаги, индикаторы.

Введение

инейная регрессия — один из наиболее универсальных и широко используемых методов машинного обучения благодаря своей простоте и высокой интерпретируемости. Этот подход находит применение в самых разных областях, включая прогнозирование биржевых показателей. В настоящее время крупные финансовые институты — банки, хедж-фонды

и компании, занимающиеся высокочастотной торговлей (HFT) — активно разрабатывают и внедряют собственные аналитические инструменты для предсказания рыночной динамики. Такие инструменты позволяют оперативно принимать решения на основе анализа больших массивов данных, что особенно важно в условиях высокой волатильности и неопределённости на финансовых рынках.

В данной работе рассматриваются ключевые преимущества и ограничения линейной регрессии в контексте эконометрических задач, связанных с прогнозированием биржевых показателей. Особое внимание уделяется вопросам повышения устойчивости модели и снижению рисков, связанных с её потенциальными недостатками.

Одной из типичных проблем при построении регрессионных моделей является мультиколлинеарность между признаками. Для минимизации её негативного влияния в работе предлагается использовать сингулярное разложение (SVD, Singular Value Decomposition) для отбора признаков. Этот метод позволяет выделить из исходного набора только те переменные, которые обладают выраженной линейной зависимостью с целевой переменной, тем самым повышая стабильность и качество модели.

Таким образом, основная цель данной работы — исследовать применимость линейной регрессии в задачах прогнозирования биржевых показателей, а также продемонстрировать эффективность использования SVD для оптимизации модели. Полученные результаты могут быть полезны как для теоретического анализа, так и для практического применения в аналитике финансовых рынков.

В качестве набора данных для обучения и тестирования линейной регрессии были выбраны исторические данные по бумагам, содержащимся в индексе мосбиржи с 2014 по 2023 годы.

Анализ актуальных исследований в области

Применение линейной регрессии рассматривается в статье «Прогнозирование цены акции с помощью метода регрессионного анализа», где авторы применяют модель линейной регрессии для нескольких бумаг [3]. В данной работе применяются скользящие различные скользящие средние и цена за текущий период. В качестве модификации предлагается первоначально сделать расчёт дополнительных биржевых индикаторов [4], а также сделать ранжирование их важности с использованием сингулярного разложения.

Преимущества и недостатки модели линейной регрессии

У линейной регрессии, несмотря на свою простоту есть несколько преимуществ по отношению к другим моделям машинного обучения:

- 1) Скорость обучения для вычисления коэффициентов линейной регрессии не требуются такие временные затраты, как для более сложных моделей машинного обучения.
- 2) Интепретируемость итоговые значения коэффициентов модели можно записать в виде функции.

Также следует выделить недостатки:

- 1) Все параметры должны обладать линейной зависимостью с целевой переменной
- 2) Необходимо избегать мультиколлинеарности признаков линейной зависимости между признаками

Из-за вышеперечисленных недостатков возникла необходимость строгого отбора признаков, чтобы минимизировать ошибку [5].

Отбор признаков с помощью сингулярного разложения

Достоинство сингулярного разложения в том, что оно работает с совершенно любыми матрицами: и вырожденными, и невырожденными, и квадратными, и прямоугольными. Секрет в том, что для расчётов используется не сама матрица, а произведение её с транспонированной. Эти произведения обязательно будут квадратными матрицами [6]. Для анализа значимости признаков необходимо отранжировать строки по значению собственных чисел, которые хранятся в левой матрице сингулярного разложения.

Для данных по ценным бумагам было принято решение выбрать первые 6 самых значимых признаков на цену, поскольку значения собственных чисел остальных признаков имели малую линейную зависимость, значения полученных признаков будут перечислены в таблице 1. Остальными признаками было решено пренебречь, т.к. значения их собственных чисел были малы относительно перечисленных.

Таблица 1. Значения собственных чисел

Название признака	Значение собственного числа
RSI	8.9345
ADX	6.2185
PPO	5.3333
TRIX	4.8248
OBV	4.5454
ATR	3.1111

Описание признаков

По итогам отбора признаков, были выбраны следующие:

- 1) Индекс относительной силы (RSI) индикатор технического анализа, определяющий силу тренда и вероятность его смены [7].
- 2) Индикатор ADX (Average Directional Index, средний индекс направленного движения) тех-

- нический индикатор, используемый в анализе финансовых рынков для оценки силы тренда, независимо от его направления (восходящего или нисходящего) [8].
- 3) Индикатор PPO (Percentage Price Oscillator, Процентный Ценовой Осциллятор) это технический индикатор, используемый в анализе финансовых рынков для оценки импульса (моментума) цены актива [9].
- 4) Индикатор TRIX (Triple Exponential Average) это технический индикатор, используемый в анализе финансовых рынков для определения трендов и потенциальных точек разворота цены [10].
- 5) Индикатор OBV (On-Balance Volume, Балансовый объём) это технический индикатор, который связывает объём торгов с движением цены актива, представляющий собой кумулятивную скользящую среднюю объёма торгов, взятого со знаком плюс в случае растущего рынка и со знаком минус в случае падающего [11].
- 6) Индикатор ATR (Average True Range, средний истинный диапазон) это технический индикатор, который является измерителем волатильности и говорит, что он отражает диапазон возможного изменения цен актива на выбранном временном интервале [12].

Обучение моделей

На основе полученных данных было решено построить 2 модели машинного обучения: классическую линейную регрессию и модель Ridge, от модели Lasso было решено отказаться, так как влияние L1-регуляризации может обнулить коэффициенты признаков, что при малом их количестве может привести к серьёзному недообучению [13].

Для применения моделей было проведено масштабирование данных с помощью метода StandardScaler, чтобы избежать серьёзного разрыва в коэффициентах регрессии [14].

Результаты работы модели

Таблица 2.

Название модели	MAPE	Итоговая формула (коэффициенты с округлением до 4 знаков после запятой)
LinearRegression	0.054	price = 1.8733 * rsi +
		+ 0.3765 * adx + 0.7439 * ppo +
		+ 2.3939 * trix + 0.1111 * OBV +
		+ 6.2349 * <i>ATR</i>
Ridge	0.036	price = 0.6144 * rsi +
		+ 3.7986 * adx + 0.3844 * ppo +
		+ 8.6111 * trix + 10.2500 * OBV +
		+ 0.7481 * <i>ATR</i>

Оценка качества модели была проведена при помощи метрики mean absolute percentage error, так как значения стоимостей бумаг могут сильно отличаться между собой.

Модель Ridge имеет параметр alpha, который означает штраф за сложность модели [15], для данного признака была проведена калибровка значений от 0.1 до 1, с помощью кросс-валидации на 5 наборах данных, лучший результат параметра alpha = 0.73 со значением МАРЕ = 0.036. Итоги обучения моделей будут указаны в таблице 2.

Заключение

В данной работе был проведен анализ использования линейной регрессии в качестве метода предсказания цены акций — были отобраны признаки, с помощью сингулярного разложения, а тажке обучены следующие модели: базовая линейная регрессия и модель Ridge, которая использует L2-регуляризацию с коэффициентом alpha = 0.73.

Модель Ridge показала себя лучше на 1.4 %, а её общая ошибка получилась 2.4 %, что позволяет рассматривать модель как рекомендательную систему в помощь эксперту.

ЛИТЕРАТУРА

- 1. Майкл Льюис. Flash Boys: Высокочастотная революция на Уолл-стрит = Flash Boys A Wall Street Revolt. М.: Альпина Паблишер, 2015. 348 с.
- 2. В.В. Стрижов. Функция ошибки в задачах восстановления регрессии // Заводская лаборатория. Диагностика материалов. 2012. №79. С. 65—73.
- 3. Рудзейт О.Ю., Зайнетдинов А.Р., Недяк А.В., Рагулин П.Г. Прогнозирование цены акции с помощью метода регрессионного анализа // «Отходы и ресурсы». 2020. №4. С. 23—32.
- 4. Павлов В.А., Солобуто А.В. Предобработка данных в задаче прогнозирования динамики ценных бумаг // Современные и информационные технологии в социальной сфере. Чебоксары: Волжский филиал МАДИ, 2024. С. 42–45.
- 5. Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир, 1989. 656 с.
- 6. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery. 2.6 Singular Value Decomposition // Numerical Recipes in C. 2nd edition. Cambridge: Cambridge University Press.
- 7. Донна Л. МакКормик, Джеффри Оуэн Кац Энциклопедия торговых стратегий. М.: Альпина Паблишер, 2012. 394 с.

- 8. Стивен Б. Акелис Technical Analysis from A to Z. 2 изд. McGraw Hill, 2013. 400 с.
- 9. Колби Роберт. Энциклопедия технических индикаторов рынка. 2-е изд. М.: «Альпина Бизнес Букс», 2004. 837 с.
- 10. J. Welles Wilder, Jr. New Concepts in Technical Trading Systems М.: ПРИЗМА-15. pp 40—41
- 11. ЛеБо Ч., Лукас Д.В Компьютерный анализ фьючерсных рынков. 6 изд. М.: Альпина Паблишер, 2011. 304 с.
- 12. Кауфман Перри. Системы и методы биржевой торговли. 1-е изд. М.: Альпина PRO, 2024. 1248 с.
- 13. F. Bach. Bolasso: model consistent lasso estimation through the bootstrap // ICML, 2008.
- 14. StandardScaler sklearn documentation // [Электронный ресурс] URL: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler. html (дата обращения: 03.05.2025).
- 15. Норман Дрейпер, Гарри Смит. Прикладной регрессионный анализ. Множественная регрессия. 3 изд. М.: Диалектика, 2016. 912 с.

© Солобуто Алексей Викторович (29352138@s.mfua.ru); Павлов Валерий Анатольевич (29359332@s.mfua.ru) Журнал «Современная наука: актуальные проблемы теории и практики» DOI 10.37882/2223-2966.2025.09.27

ПРИМЕНЕНИЕ НЕЧЁТКИХ МНОЖЕСТВ В ЗАДАЧЕ ПРОГНОЗИРОВАНИЯ ДИНАМИКИ ПОВЕДЕНИЯ ЦЕННЫХ БУМАГ

APPLICATION OF FUZZY SETS IN THE PROBLEM OF PREDICTING THE DYNAMICS OF SECURITIES BEHAVIOR

A. Solobuto V. Pavlov

Summary. This paper explores the application of fuzzy set theory as a tool for predicting the behavior of stock prices on the exchange. Fuzzy set theory is used to account for the uncertainty, incompleteness, and subjectivity of information inherent to the stock market, where price movements are often determined by numerous factors that cannot be precisely formalized.

To implement this approach, informative features influencing stock prices were selected. Each of these features was associated with fuzzy terms (such as «low volume,» «high price,» «overbought,» etc.), after which fuzzy inference rules were formulated to reflect expert-based or empirically identified relationships between the features and the expected price movement direction.

Thus, fuzzy set theory represents a flexible and interpretable approach, especially useful in situations of high uncertainty and the need to incorporate expert intuition, which are typical in stock market analysis.

Keywords: stocks, fuzzy sets, membership function, classification task, indicators, fuzzy inference.

Введение

В настоящее время, в связи с ростом вычислительных мощностей, увеличением доступности больших объёмов данных и активным развитием моделей искусственного интеллекта, наблюдается повсеместное внедрение интеллектуальных систем прогнозирования в различных отраслях экономики. Одной из таких сфер, активно воспринимающей новейшие технологические решения, является фондовый рынок. Высокая волатильность, большое количество факторов, влияющих на стоимость активов, и необходимость оперативного реагирования на малейшие изменения рыночной конъюнктуры делают эту область особенно чувствительной к качеству и скорости аналитических процессов.

В ответ на эти вызовы, хедж-фонды и другие институциональные инвесторы активно внедряют системы автоматизированной торговли (алготрейдинга), позво-

Солобуто Алексей Викторович

аспирант, Московский финансово-юридический университет МФЮА 29352138@s.mfua.ru

Павлов Валерий Анатольевич

к.э.н., доцент, Московский финансово-юридический университет МФЮА 29359332@s.mfua.ru

Аннотация. В данной работе рассматривается применение теории нечётких множеств как инструмента для прогнозирования поведения стоимости ценных бумаг на бирже. Теория нечётких множеств используется для учета неопределенности, неполноты и субъективности информации, характерных для фондового рынка, где поведение цен часто определяется множеством факторов, не поддающихся точной формализации.

Для реализации подхода были подобраны информативные признаки, влияющие на стоимость ценных бумаг. Каждому из этих признаков были сопоставлены нечёткие термы (например, «низкий объём», «высокая цена», «перекупленность» и т.д.), после чего были сформированы нечёткие правила вывода, отражающие экспертные или эмпирически выявленные зависимости между признаками и предполагаемым направлением движения цены.

Таким образом, теория нечётких множеств представляет собой гибкий и интерпретируемый подход, особенно полезный в условиях высокой неопределённости и необходимости включения экспертной интуиции, характерной для анализа фондового рынка.

Ключевые слова: ценные бумаги, нечёткие множества, функция принадлежности, задача классификации, индикаторы, нечёткий вывод.

ляющие значительно сократить время принятия решений и минимизировать влияние человеческого фактора. Современные алгоритмы способны обрабатывать колоссальные массивы данных, выявлять скрытые закономерности и формировать торговые сигналы с высокой точностью.

Одним из перспективных подходов к созданию таких систем является использование теории нечётких множеств (fuzzy logic). В отличие от традиционных логических моделей, основанных на бинарных «да/нет» решениях, нечёткая логика позволяет работать с неопределённостью, неполными или расплывчатыми данными [1], что особенно важно в условиях нестабильности и отсутствия чётко выраженных границ между рыночными состояниями. Такой подход позволяет более гибко моделировать поведение рынка, учитывать множество факторов, влияющих на движение цен, и тем самым повышать адаптивность и устойчивость торговой стратегии.

Таким образом, разработка и внедрение системы автоматизированной торговли на основе нечёткой логики представляет собой актуальное и практически значимое направление, сочетающее в себе элементы искусственного интеллекта, математического моделирования и экономического анализа.

Система полностью поддаётся интерпретации — все параметры, используемые в системе основаны на экспертных оценках, что позволяет эффективно оценивать результаты работы модели.

- Данные системы адаптивны к любым условиям при правильной калибровке параметров и их функций принадлежности можно добиться удовлетворительного результата как на падающем, так и на растущем рынке.
- Выход нечёткой системы можно использовать как один из параметров моделей машинного обучения, что позволяет значительно сократить количество признаков и ускорить обучение в других моделях [2].
- Устойчивость к выбросам система работает с признаками, которые игнорируют экстремальные значения.

Данные преимущества демонстрируют универсальность и адаптивность нечётких систем в качестве прогнозирующих систем.

Анализ актуальных исследований в области

Применение теории нечётких множеств в финансовых системах была рассмотрено в нескольких научных работах. В статье «Применение теории нечётких множеств к задаче формирования портфеля проектов», где авторы рассматривают схожую проблему — ранжирование проектов предприятия, а также распределение ресурсов по этим проектам [3].

Также в работе «Построение торговой стратегии на основе методов нечёткой логики» [4] была рассмотрена работа алгоритма на акциях компании Microsoft, где модель себя эффективно показала на всём диапазоне, кроме одного месяца.

На основе данных работ была сформулирована модель, которая позволяет ранжировать ценные бумаги, а также формулировать нечёткий вывод — какое действие следует предпринять с данной бумагой при текущих состояниях параметров [5].

Анализ признаков, применяемых в модели

В качестве признаков для применения в модели были выбраны следующие:

1. Индекс относительной силы (RSI) — индикатор технического анализа, определяющий силу тренда и вероятность его смены [6]. Данный индикатор может принимать значения от 0 до 100. Для задачи классификации используется строгая версия индикатора, в которой значение 80 означает перекупленность бумаги, а значение 20 недокупленность. График функции принадлежности изображен на рис. 1.

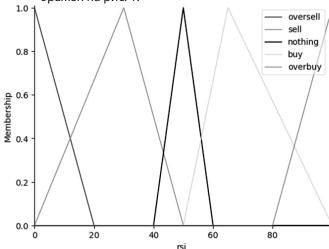


Рис. 1 Функция принадлежности индикатора rsi

2. Индикатор ADX (Average Directional Index, средний индекс направленного движения) — технический индикатор, используемый в анализе финансовых рынков для оценки силы тренда, независимо от его направления (восходящего или нисходящего) [7]. Варьируется в значениях от 0 до 100 — чем выше значение, тем сильнее тренд. График функции принадлежности изображен на рис. 2.

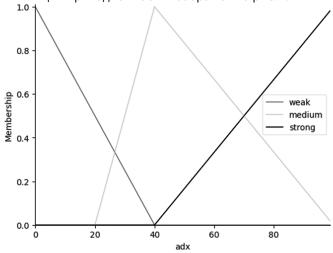
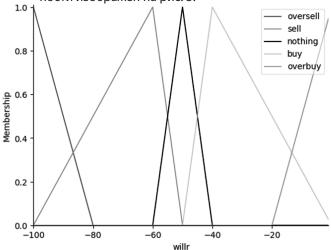



Рис. 2. Функция принадлежности индикатора adx

3. Williams %R — технический индикатор, определяющий состояние перекупленности/перепроданности по положению текущей цены закрытия в диапазоне между минимумом и максимумом

цен за предыдущие периоды [8]. Максимальное значение, которое может принимать индикатор, является 0; минимальное -100. При значениях от -20 до 0 прогнозируется рост, при значениях от -100 до -80 прогнозируется падение, иначе слабое колебание цены. График функции принадлежности изображен на рис. 3.

Puc. 3. График функции принадлежности индикатора Williams %R

4. Индекс товарного канала (CCI) — технический индикатор, основанный на анализе текущего изменения отклонения цены от её среднего значения за определённый период и среднестатистического абсолютного значения этого параметра [9]. При значении ССI ниже –100 прогнозируется рост; выше 100 — прогнозируется падение. График функции принадлежности изображен на рис. 4.

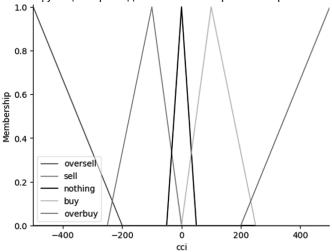


Рис. 4. Функция принадлежности индикатора ссі

5. Aroon-осциллятор — это технический индикатор, используемый в анализе финансовых рынков для оценки силы и направления тренда, а также для определения возможных точек разворота, основан на двух линиях: Aroon Up и Aroon Down.

Aroon-осциллятор представляет собой разницу между этими двумя линиями [10]. График функции принадлежности изображен на рис. 5.

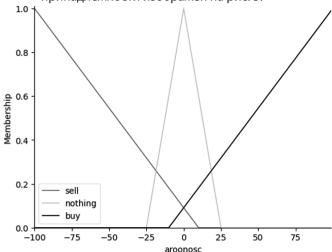


Рис. 5. Функция принадлежности индикатора aroon oscillator

6. Индикатор MFI (Money Flow Index, Индекс денежного потока) — это технический индикатор, который измеряет силу притока и оттока денег в актив, основываясь на изменениях цены и объема торгов. Он позволяет определять перекупленность или перепроданность актива, а также выявлять потенциальные развороты тренда. MFI учитывает не только цену, но и объем [11]. График функции принадлежности изображен на рис. 6.

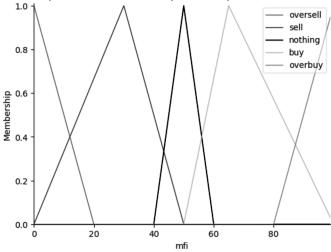


Рис. 6 Функция принадлежности индикатора mfi

7. Ultimate Oscillator — индикатор, который комбинирует данные за короткий, средний и длинный периоды — это позволяет сгладить ложные сигналы, которые могут возникать при использовании одного таймфрейма. Индикатор учитывает три ключевых компонента: покупательное давление (Buying Pressure), истинный диапазон (True Range)

и взвешенные средние этих значений [12]. График функции принадлежности изображен на рис. 7.

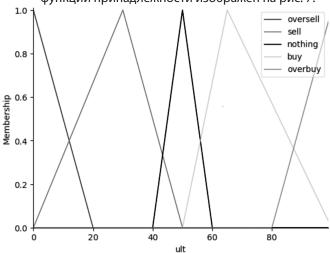


Рис. 7. Функция принадлежности индикатора ultimate oscillator

Реализация

Было сформировано правило вывода, состоящее из трёх значений: «Продавать», «Ничего не делать», «По-купать» — данным выводам соответствует оценка от 0 до 10. График изображен на рис. 8.

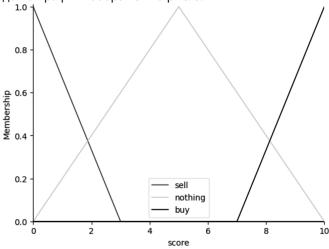


Рис. 8. Правило вывода

Для правила «Продавать» сформировано следующие условия:

- 1) adx—сильный тренд & большинство остальных индикаторов соответствуют значению «продавать»
- adx слабый тренд & большинство остальных индикаторов соответствуют значению «перекупленность»

Для правила «Покупать» сформировано следующие условия:

- 1) adx сильный тренд & большинство остальных индикаторов соответствуют значению «покупать».
- adx слабый тренд & большинство остальных индикаторов соответствуют значению «перепроданность».

Для всех остальных условий соответствует правило «Ничего не делать» — это означает, что модель не увидела какой-то активный тренд.

Анализ результатов

Для проверки результатов был сформировано два набора данных: в первом содержатся исторические данные по акциям из индекса Мосбиржи, во втором данные по криптовалютам. Оба набора данных были выбраны за период с 01.01.2014 по 31.12.2023. По итогу для акций Мосбиржи сбалансированная точность получилась равна 67.3 %, для криптовалют сбалансированная точность получилась равна 65.1 %. Для оценки идеальной доходности: было выбрано среднее значение доходности за неделю, при идеальном закрытии сделок. Для прогнозируемой доходности было рассчитано мат. ожидание доходности на основе полученных результатов. Подробнее результаты описаны в таблице 1.

Таблица 1. Результаты работы модели

Тип ценных бумаг	Точность	Идеальная доходность	Прогнозируе- мая доходность
Акции Мосбиржи	67.3 %	3.75 %	2.52 %
Криптовалюты	65.1 %	5.16 %	3.35 %

Заключение

В данной работе была сформулирована модель, позволяющая прогнозировать поведение акций, которая дает верный прогноз в двух из трёх случаев, что позволяет на основе неё создать систему автоматического управления инвестиционным портфелем и на дистанции стабильно получать доход. Система себя показала одинаково качественно на акциях и на криптовалютах. Из недостатков системы стоит выделить:

- Отсутствие масштабируемости: при вводе новых параметров, необходимо заново строить правила вывода
- Медленная работа на больших данных

ЛИТЕРАТУРА

- 1. Лотфи Заде. Понятие лингвистической переменной и его применение к принятию приближенных решений М.: букинистика, 2021.
- 2. Ang, K.K., & Quek, C. (2005). «RSPOP: Rough Set-Based Pseudo Outer-Product Fuzzy Rule Identification Algorithm» Neural Computation, 17(1), pp. 205–243.
- 3. В.М. Аньшин, И.В. Демкин, И.Н. Царьков, И.М. Никонов. Применение теории нечётких множеств к задаче формирования портфеля проектов, сс. 3—24.
- 4. Решетников А.А. Построение торговой стратегии на основе методов нечёткой логики, сс. 2–6.
- 5. Павлов В.А., Солобуто А.В. Предобработка данных в задаче прогнозирования динамики ценных бумаг // Современные и информационные технологии в социальной сфере. Чебоксары: Волжский филиал МАДИ, 2024. С. 42–45.
- 6. Стивен Б. Акелис. Technical Analysis from A to Z. 2 изд. McGraw Hill, 2013. 400 с.
- 7. Донна Л. МакКормик, Джеффри Оуэн Кац. Энциклопедия торговых стратегий. М.: Альпина Паблишер, 2012. 394 с.
- 8. ЛеБо Ч., Лукас Д.В. Компьютерный анализ фьючерсных рынков. 6 изд. М.: Альпина Паблишер, 2011. 304 с.
- 9. J. Welles Wilder, Jr. New Concepts in Technical Trading Systems M.: ПРИЗМА-15, pp 40–41.
- 10. Колби Роберт. Энциклопедия технических индикаторов рынка. 2-е изд. М.: «Альпина Бизнес Букс», 2004. 837 с.
- 11. Newsome, Jerremy. «One of my favorite technical indicators...» // Trade Smart University conference. 2014. С. 113 (дата обращения: 21.04.2025)
- 12. Larry Williams. Trading Indicators // Larry Williams Trading Indicators URL: https://williamspercentr.com/newsletters/ULTI.pdf (дата обращения: 21.04.2025).

© Солобуто Алексей Викторович (29352138@s.mfua.ru); Павлов Валерий Анатольевич (29359332@s.mfua.ru) Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.30

МЕТОД ДВУХЭТАПНОЙ КЛАССИФИКАЦИИ

TWO-STAGE CLASSIFICATION METHOD

N. Teterin T. Smolentseva

Summary. The article discusses a two-level classification method aimed at improving the quality of reliability of detecting destructive user behavior in social networks. The relevance of the study is due to the need to automate content moderation processes on the Internet, which will allow us to quickly respond to potentially destructive behavior. The purpose of this work is to develop a two-level classification method designed to detect destructive user behavior in social networks. The proposed approach includes two stages: at the first level, binary classification is performed to filter data, and at the second level, multi-class classification is used to accurately determine categories. The key quality criteria for the two-level classification method are: adaptability to new forms of threats, interpretability of decisions made, and compliance with expert assessment

Keywords: two-stage classification, detection, destructive behavior, social networks, heterogeneous data.

овременные социальные сети представляют собой сложную коммуникативную среду, где ежедневно ■появляются огромные объемы контента, значительную долю которого занимают материалы, содержащие деструктивное поведение [1]. Под сложной коммуникативной средой авторы подразумевают динамичное цифровое пространство с непрерывным потоком разноформатного контента и изменяющимися формами взаимодействия между пользователями [2]. Модерация такого контента становится все менее эффективной изза масштабов и скорости распространения информации. В связи с этим возникает необходимость в разработке автоматизированных методов, способных не только обнаруживать деструктивный контент, но и классифицировать его по типам для последующего принятия управленческих решений [3].

Цельданнойработы—разработкаметодадвухэтапной классификации, предназначенный для детекции деструктивного поведения пользователей в социальных сетях.

Анализ существующих исследований двухэтапных классификационных решений выявил существенные различия в технической реализации. В работе Лебедева И.С. предложен двухуровневый механизм обработки данных, где нижний уровень выполняет первичную

Тетерин Николай Николаевич Accucmeнm, PTУ МИРЭА (Москва) teterin@mirea.ru **Смоленцева Татьяна Евгеньевна** Д.т.н., доцент, PTУ МИРЭА (Москва) smoltan@bk.ru

Аннотация. В статье рассматривается метод двухэтапной классификации, направленный на повышение качества достоверности выявления деструктивного поведения пользователей в социальных сетях. Актуальность исследования обусловлена необходимостью автоматизации процессов модерации контента в сети интернет, что позволит оперативно реагировать на потенциально деструктивное поведение. Цель данной работы — разработка метода двухэтапной классификации, предназначенный для детекции деструктивного поведения пользователей в социальных сетях. Предложенный подход включает два этапа: на первом выполняется бинарная классификация для фильтрации данных, а на втором используется многоклассовая классификация для точного определения категорий. Ключевыми критериями качества метода двухуровневой классификации являются: адаптивность к новым формам угроз, интерпретируемость принимаемых решений и соответствие экспертной оценке.

Ключевые слова: двухэтапная классификация, детекция, деструктивное поведение, социальные сети, разнородные данные.

классификацию, а верхний — динамически перераспределяет данные между моделями на основе изменений отношения между входными и выходными данными модели [4]. Масакулова Ж.А. в своем исследовании продемонстрировала альтернативный подход к технической реализации двухуровневой классификации, применив каскад из нейронных сетей для обработки многомерных временных рядов [5]. Однако существующие решения обладают рядом ограничений, в том числе они не ориентированы для работы с мультимодальными данными.

Метод двухэтапной классификации начинает свое применение после анализа мультимодальных данных, где обработанные данные структурированы и объединены [6]. Далее включается двухэтапный механизм, где первый уровень — это бинарная классификация, а второй уровень — это мультиклассовая классификация.

На этапе бинарной классификации система определяет содержит ли контент признаки деструктивного поведения, для этого используются алгоритмы машинного обучения, обученные на размеченных данных [7].

На этапе мультиклассовой классификации, если контент классифицирован как деструктивный, то система переходит к определению его категории. На данном эта-

пе используются более сложные модели искусственного интеллекта. Категории деструктивности могут включать: буллинг, экстремизм, троллинг и другие формы агрессии. Важной особенностью данного уровня является динамическое обновление категорий, что позволяет системе адаптироваться к новым видам угроз без необходимости полного переобучения [8].

Описание этапов метода двухэтапной классификации отображено на Рисунке 1.

После классификации система формирует решения, например отправка контента на дополнительную проверку модераторам. Для визуализации результатов используются отчеты и рекомендации, которые помогают модераторам принимать обоснованные решения [9].

На Рисунке 2 отражен процесс запуска классификации деструктивного контента. На данном этапе происходит загрузка модели Qwen2.5-7B, где обрабатывается 100 комментариев со скоростью 1.17 итераций в секунду.

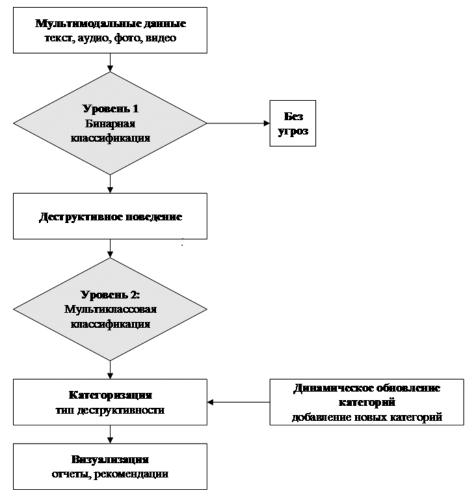


Рис. 1. Описание этапов метода двухэтапной классификации

```
Загрузка модели: Qwen/Qwen2.5-7B-Instruct (с 4-битной квантизацией)
Используемое устройство: cuda
Sliding Window Attention is enabled but not implemented for `sdpa`; unexpected results may be encountered.

Loading checkpoint shards: 100%

4/4 [00:16<00:00, 4.15s/it]

4-битная модель успешно загружена на GPU.
Модель и токенизатор готовы.
Загрузка данных из файла: data/vk_comments_podslushka_mirea1.xlsx
Найдено комментариев для анализа: 1119
Сколько комментариев вы хотите обработать? (Введите число от 1 до 1119 или 'все'): 100
Будет обработано комментариев: 100
Начало классификации комментариев...

Классификация: 8%
```

Рис. 2. Процесс запуска классификации

На Рисунке 3 интерфейс системы предлагает три варианта анализа: только текст, только медиа или комплексный, а именно медиа и текст.

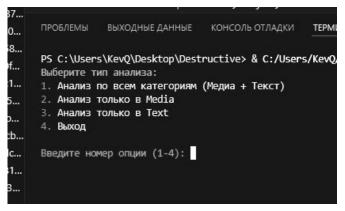


Рис. 3. Анализ контента по типу медиа и текст

На Рисунке 4 отображен перечень категорий деструктивного контента, который определяет тип деструктивности на этапе мультиклассовой классификации.

Важно отметить, что данная классификация не является статичной и включает возможность динамического обновления категорий деструктивного поведения в процессе работы.

Описанный выше метод двухэтапной классификации опирается на три ключевых критерия качества достоверности: адаптивность, интерпретируемость и соответствие экспертной оценке. Данные критерии обеспечивают не только высокую точность работы системы, но и ее практическую применимость в условиях динамично изменяющегося контента социальных сетей [10].

На Рисунке 5 представлены ключевые критерии качества по показателю достоверность.

Адаптивность — способность системы динамически обновлять категории классификации при появлении новых форм деструктивного контента без полного переобучения. Измеряется по метрикам: F1-score и FPR.

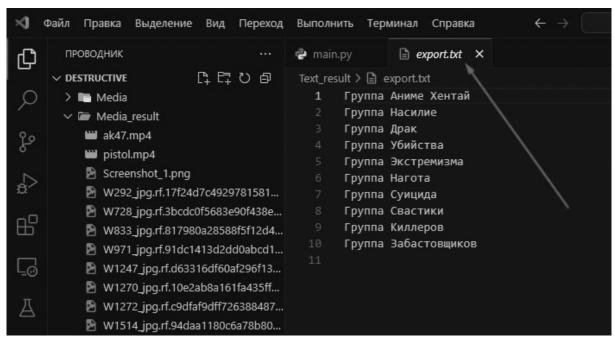


Рис. 4. Категории деструктивного поведения

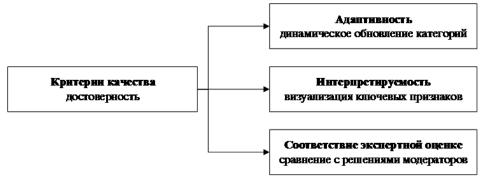


Рис. 5. Критерии качества по показателю достоверность

F1-score — метрика, которая показывает оценку эффективности бинарной классификации от 0 до 1.

FPR (false positive rate) — метрика, которая показывает как часто классификатор определяет объекты в неверный класс.

Интерпретируемость — возможность объяснить, на основе каких признаков система приняла решение. Измеряется по использованию XAI методов: LIME и SHAP.

XAI — это методы и инструменты, которые делают искусственный интеллект более понятным для людей.

LIME — метод создания более простой модели для локальной аппроксимации классификатора или регрессора.

SHAP — метод присвоения баллов важности каждому признаку для конкретного случая, объясняя конкретный прогноз.

Соответствие экспертной оценке — степень согласованности решений между системой и модератором. Измеряется по метрике: Cohen's Kappa.

Cohen's Kappa — статистическая метрика, которая измеряет уровень согласия между двумя экспертами.

В таблице 1 показаны ключевые критерии достоверности и их метрики.

Таблица 1. Критерии достоверности и их метрики измерения

Критерий	Метрики измерения
Адаптивность	F1-score, FPR
Интерпретируемость	% объяснимых решений (SHAP/LIME)
Соответствие экспертной оценке	Cohen's Kappa

Вышеописанные метрики позволяют объективно оценить качество метода двухуровневой классификации и его применимость в реальных условиях модерации.

Таким образом, вышеописанный метод двухуровневой классификации демонстрирует высокую необходимость применения в задачах детекции деструктивного поведения пользователей в социальных сетях.

Использование приведенных в работе метрик обеспечивает достоверную оценку качества метода двухуровневой классификации. Адаптивность гарантирует устойчивость к новым угрозам, интерпретируемость — прозрачность, а соответствие экспертной оценке — практическую применимость.

Перспективы дальнейших исследований связаны с совершенствованием алгоритмов классификации и разработкой механизмов для более точного определения новых форм деструктивности.

ЛИТЕРАТУРА

- 1. Гусев, М.М. Исследование зависимости влияния соционического типа пользователя социальной сети на его поведение в социальной сети / М.М. Гусев, А.Н. Гусева, Т.В. Кораблина // Вестник Сибирского государственного индустриального университета. 2020. № 2(32). С. 71–73. EDN SQXBTW.
- 2. Тетерин, Н.Н. Общие вопросы анализа деструктивного поведения пользователей в социальных сетях / Н.Н. Тетерин // Актуальные проблемы деятельности подразделений уголовно-исполнительной системы: Сборник материалов Всероссийской научно-практической конференции. В 3-х томах, Воронеж, 24 октября 2024 года. Воронеж: 000 Издательско-полиграфический центр «Научная книга», 2024. С. 96—99. EDN OWDJUT.
- 3. Тетерин, Н.Н. Концептуальный подход классификации деструктивного поведения с применением технологий искусственного интеллекта / Н.Н. Тетерин, В.В. Смоленцева // Актуальные проблемы прикладной математики, информатики и механики: Сборник трудов Международной научной конференции, Воронеж, 02—04 декабря 2024 года. Воронеж: Научно-исследовательские публикации, 2025. С. 326—329. EDN DZEHAU.
- 4. Тетерин, Н.Н. К вопросу формализации задачи выявления деструктивного поведения с применением технологий искусственного интеллекта / Н.Н. Тетерин, В.В. Смоленцева // Тенденции развития науки и образования. 2024. № 114-10. С. 81—83. DOI 10.18411/trnio-10-2024-440. EDN EEBVGI.
- 5. Лебедев, И.С. Применение многоуровневых моделей в задачах классификации и регрессионного анализа / И.С. Лебедев // Информатика и автоматизация. 2023. Т. 22, № 3. С. 487—510. DOI 10.15622/ia.22.3.1. EDN TUABWM.
- 6. Мусакулова, Ж.А. Применение двухуровневой нейронной сети Кохонена в медицинской задаче классификации данных / Ж.А. Мусакулова // Евразийское Научное Объединение. 2021. № 2-2(72). С. 98–102. DOI 10.5281/zenodo.4599668. EDN PXTUHG.
- 7. Павлюченко, М.В. Анализ зависимости точности бинарной классификации текстов от применения мета-функций для различных алгоритмов классификации / М.В. Павлюченко, Т.В. Кабанова // Математическое и программное обеспечение информационных, технических и экономических систем: Материалы VIII Международной молодежной научной конференции, Томск, 26—30 мая 2021 года / Под общей редакцией И.С. Шмырина. Том 306. Томск: Национальный исследовательский Томский государственный университет, 2021. С. 42—47. DOI 10.17223/978-5-907442-42-9-2021-8. EDN EIEQNU.
- 8. Стужук, И.Г. Анализ степени деструктивности аккаунтов в социальных сетях / И.Г. Стужук // Право и общество. 2022. № 4(9). С. 67—70. EDN JTFEIX.
- 9. Эргешова, А.Ж. Роль искусственного интеллекта в профилактике деструктивного поведения среди молодежи / А.Ж. Эргешова // Актуальные тенденции социальных коммуникаций: история и современность: Сборник научных статей. Ижевск: Издательский дом «Удмуртский университет», 2024. С. 439—442. EDN IWVBYH.
- 10. Шевченко, Д.А. Актуальные аспекты воздействия различных информационных источников на деструктивное поведение молодежи / Д.А. Шевченко // Актуальные вопросы юридической науки глазами молодых исследователей: Сборник статей по итогам Четвертой Всероссийской научной конференции курсантов, студентов, адъюнктов, аспирантов и соискателей, Рязань, 02 февраля 2024 года. Москва Нижний Новгород: Постер-М, Российская академия народного хозяйства и государственной службы при Президенте РФ, 2024. С. 155—158. EDN KXQXNK.

DOI 10.37882/2223-2966.2025.09.31

МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ УЧАСТНИКОВ УЧЕБНОГО ПРОЦЕССА ДЛЯ ФОРМИРОВАНИЯ ИНДИВИДУАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ТРАЕКТОРИИ С УЧЁТОМ ДЕСТРУКТИВНЫХ ФАКТОРОВ

A MODEL OF INTERACTION BETWEEN PARTICIPANTS IN THE EDUCATIONAL PROCESS FOR FORMING AN INDIVIDUAL LEARNING TRAJECTORY CONSIDERING DESTRUCTIVE FACTORS

A. Timofeev A. Glavinskaya

Summary. The article proposes a comprehensive model of interaction between participants in the educational process, aimed at forming an individual learning trajectory considering destructive factors. The model integrates a hierarchical linear structure, an agent-based approach, a Markov decision process, and a mechanism for building the context of an intelligent agent. A computational experiment using LLM (ChatGPT, GigaChat) was conducted, the results of which showed a 23–35 % reduction in training time and an increase in the quality of support.

Keywords: adaptive learning, learning trajectory, intelligent agents, Markov processes, destructive factors, electronic educational systems, learning personalization.

Введение

овременные подходы к организации образовательного учебного процесса в условиях цифровизации и роста потребности в персонализированном обучении требуют создания моделей, которые обеспечат гибкость и адаптивность. Особую актуальность приобретает проблема формирования индивидуальной образовательной траектории (ИОТ), обеспечивающая достижения заданного уровня знаний, умений и навыков (ЗУН) за регламентированное время. При этом необходимо учитывать влияние деструктивных факторов, которые влияют на усвоение материала, а также особенности взаимодействия преподавателя и обучающегося в интеллектуальных электронных образовательных системах (ИЭОС).

Данная работа направлена на разработку комплексной модели взаимодействия участников учебного процесса. В качестве теоретической основы используется

Тимофеев Александр Николаевич

Младший научный сотрудник, Финансовый университет при Правительстве Российской Федерации, г. Москва antimofeev@fa.ru

Главинская Арина Александровна

Преподаватель, Федеральное государственное бюджетное образовательное учреждение высшего образования «Восточно-Сибирский государственный университет технологий и управления», Улан-Удэ glavinskaya20@yandex.ru

Аннотация. В статье предложена комплексная модель взаимодействия участников образовательного процесса, направленная на формирование индивидуальной образовательной траектории с учётом деструктивных факторов. Модель включает иерархическую линейную модель, агентный подход, марковский процесс принятия решений и механизм построения контекста интеллектуального агента. Проведён вычислительный эксперимент с использованием больших языковых моделей (ChatGPT, GigaChat), результаты которого показали сокращение времени обучения на 23—35 % и повышение качества сопровождения.

Ключевые слова: адаптивное обучение, образовательная траектория, интеллектуальные агенты, марковские процессы, деструктивные факторы, электронные образовательные системы, индивидуализация обучения.

концепция «мягких вычислений» Л. Заде и формализм марковского процесса принятия решений (МППР).

Литературный обзор

Анализ современных исследований в области адаптивного обучения и оценки образовательных траекторий показывает значительное методологическое разнообразие и развитие направлений, которые направлены на индивидуализацию обучения и оценку компетенций. В работе Мищенко [1] описан подход к выбору оптимальных траекторий подготовки с использованием методов векторной оптимизации и булевого программирования, который формализует подготовку специалистов через графовую модель обучения. Багрецов и соавторы [2] предложили двухуровневую иерархическую систему подготовки с использованием логистических моделей и функции Лагранжа для оптимизации ресурсов и учёта начального уровня обучающихся.

Много внимания уделено вопросам диагностики знаний и ошибок обучающихся. Например, Багрецов и соавторы [3] использовали дискриминантный анализ и функции принадлежности в автоматизированных системах. Другие работы исследуют методы профессиональный диагностики [4], априорной оценки эффективности учебно-тренажерного комплекса [5], а также агрегирования оценок с учётом внешнего критерия [6].

Большое внимание уделяется построению цифровых и адаптивных образовательных систем. Разработки включатся адаптивные тренажёры [11], адаптивное тестирование с марковскими моделями [8, 9], и также мультиагентные архитектуры таких систем как «Гефест» [10, 12].

Модели взаимодействия с элементами стохастического моделирования, включая полумарковские процессы, находят отражение в работах Багрецова и др. [3], где рассматривается управление обучением операторов в условиях вероятностного перехода между этапами. Современные работы [12, 13] также рассматривают адаптацию курсов и оценку качества обучения на основе анализа распределений успеваемости и марковских цепей.

Таким образом, существующие подходы активно развивают темы адаптации, диагностики, построения индивидуальных траекторий и применения интеллектуальных агентов. Однако комплексная модель, интегрирующая построение ИОТ с учетом деструктивных факторов, стратегии взаимодействия преподавателя и обучающегося и агентные методы принятия решений, в имеющейся литературе представлена фрагментарно.

Материалы и методы исследования

Для построения модели использовался междисциплинарный подход, который объединяет методы системного анализа, теории графов, теории вероятностей, теории марковских процессов и методов искусственного интеллекта. Основу предлагаемой модели составляет иерархическая линейная структура, в которой нижний уровень включает в себя индивидуальное взаимодействие «обучающийся — преподавателя», а верхний уровень описывает их групповое взаимодействие.

На индивидуальном уровне динамика формирования ЗУН моделируется с помощью функций, описывающих изменение уровня компетенций как сумму взаимодействия времени самостоятельной работы, времени взаимодействия с преподавателем и времени, потраченного на выполнение заданий. Эти зависимости имеют следующий вид:

$$\mathit{rs} \left(\mathit{tr}_{\!_{i}}, \mathit{a}^{\scriptscriptstyle S} \right) = \beta_{\scriptscriptstyle S} \left(t^{\scriptscriptstyle \mathrm{CPC}}, t^{\scriptscriptstyle \mathrm{KohT}}, e_{i} \right) + \alpha_{\scriptscriptstyle S} \left(t^{\scriptscriptstyle \Pi}, \Phi_{\scriptscriptstyle S} \right)$$

$$rl(tr_i, a^I) = \beta_I(t^{CP\Pi}, t^{Koht}, e_i) + \alpha_I(t^{\Pi}, \Phi_I)$$

где параметры β и α учитывают эффективность временных затрат и функции распределения когнитивной нагрузки соответственно; e_i — текущий уровень обученности; tr_i — і-ый этап ИОТ; a^s — обучающийся; a^l — преподаватель.

На групповом уровне применяется рекуррентная функция:

$$rtr(tr_i, A) = rtr(tr_{i-1}, A) + ctrle(rs(tr_i, a^s), \sum rl(tr_i, a^l))$$

где *ctrle* — функция оценки, объединяющая индивидуальные оценки в общую групповую оценку с учётом совместного влияния участников обучения.

Для описания взаимодействия на отдельных этапах прохождения ИУП и метода принятия решений о переходе между ними должна использоваться модель взаимодействия участников учебного процесса, оптимально реализующая функции β_s , α_s , β_l , α_l и *ctrle*. Таким образом задача оптимизации может быть выражена как нахождение следующей функции:

$$argminv(B,\Theta,R)$$

Где: B — интеллектуальная электронная образовательная система, позволяющая реализовать функции β_s , α_s , β_l , α_l

 Θ — параметры среды, множество временных характеристик (в часах) изучения і-ой дисциплины.

R — заданный в виде безразмерной шкалы [1...M] уровень ЗУН при электронном обучении программированию.

В ИЭОС B должен быть учтен критерий оптимальности:

$$\left(R{<}R^{min}\,\wedge\,T^{\mathrm{per}\pi}\,-\,T{\leq}\epsilon\right)\vee\left(R^{min}\left\langle R{\leq}R^{max}\,\wedge\,T^{\mathrm{per}\pi}\,-\,T\right\rangle\!\epsilon\right)$$

Где: R— заданный в виде безразмерной шкалы $\begin{bmatrix} 1...M \end{bmatrix}$ уровень ЗУН при электронном обучении программированию.

T— фактическое время (в часах) изучения учебной дисциплины;

 R^{min} — удовлетворительный уровень ЗУН согласно образовательной программе дисциплины;

R^{max}— максимально возможный уровень ЗУН согласно образовательной программе дисциплины;

 $T^{
m per n}$ — регламентированное время (в часах) изучения учебной дисциплины согласно образовательной программе дисциплины;

Приведенная выше формализация позволяет аналитически описать в ИЛМ достижение цели на уровне ИУП и задать правило формирования ИОТ в рамках ИЭОС. Однако, в условиях недетерминированности учебного процесса, который ведется в адаптивной и открытой системе «Преподаватель — Обучающийся», использование только аналитических моделей не позволяет формализовать учет деструктивных факторов при динамическом формировании ИОТ [14, 15, 16, 17].

Указанное обстоятельство обуславливает необходимость представить обеспечение достижения цели на каждом этапе формирования ИОТ. Для этого в диссертации было обосновано что модель взаимодействия участников учебного процесса (далее — модель взаимодействия), включающая в себя ИЛМ как составную часть, должна включать компоненты, которые позволяют описать достижение цели исследования с применением концепции «мягких вычислений».

Модель взаимодействия, обеспечивающая достижение заданного уровня 3УН за регламентированное время, в своем составе включает:

- Иерархическую линейную модель, состоящую из двух уровней;
- Три частных модели, описывающих реализацию функций β_s , α_s , β_l , α_l индивидуального уровня и функции *ctrle* группового уровня ИЛМ.
- Базовые компоненты, отражающие объекты и множества, которые используются во всех частных моделях и методике оперативного формирования ИОТ
- Базовые компоненты, отражающие объекты и множества, которые используются во всех частных моделях и методике оперативного формирования ИОТ в формальном виде могут быть описаны как следующий кортеж:

$$M^A = \langle A, c, PI, Tr, Kb \rangle$$

- A множество участников учебного процесса: $\mathbf{A} = \mathbf{A}^H \cup \mathbf{A}^J \cup \mathbf{A}^M \cup \mathbf{A}^{LL}$, где \mathbf{A}^H агенты-люди (преподаватели, обучающиеся, аудиторы), \mathbf{A}^J верификаторы, \mathbf{A}^M модератор, \mathbf{A}^{LL} агенты на базе БЯМ. Каждый агент $\mathbf{a}_i^L = \left\langle \pi, \mathbf{mdl}, \mathbf{ctx} \right\rangle$ описывается стратегией, моделью и контекстом.
- c выбранный для прохождения курс, $c \in C$: $\mathbf{c} = \langle \mathbf{ctx}^{crs}, \mathbf{E}_c \rangle$ где \mathbf{ctx}^{crs} контекст курса, $\mathbf{E}_c = \{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$ материалы курса, каждый $\mathbf{e}_i = \langle \mathit{TH}, \mathit{TK}, \mathit{TS}, \mathit{PR} \rangle$ включает теорию, задачи, тесты и подсказки.
- PI индивидуальный учебный план, который можно описать как связный ориентированный граф следующего вида: $PI = \langle VPI, EPI \rangle$, где верши-

- ны **Vpl** этапы плана **pl**_i = $\langle e_j^c, R_e^{\rm per \pi}, t_e^{\rm per \pi} \rangle$, дуги **Epl** переходы от одного этапа ИУП к другому.
- Tr индивидуальная образовательная траектория: $Tr = \{tr_1, tr_2, ..., tr_m\}$, где $tr_i = \langle pl_k, A^d, Msg, r_{ij}, t^{\Phi_{\text{akt}}} \rangle$ прохождение этапов с участием агентов и фиксированным временем.
- Kb база знаний интеллектуальных агентов, которая состоит из тематического сегмент базы знаний, содержащий знания в сфере обучения программированию Kb^A и сегмента общего назначения Kb^O .

Модель взаимодействия участников учебного процесса включается три частные модели:

- Частная модель формирования индивидуальной образовательной траектории.
- Частная модель распределения времени участников учебного процесса.
- Частная модель построения контекста интеллектуального агенты на основе базы знаний с применением алгоритма генерации с дополненной выборкой.

Частная модель формирования индивидуальной образовательной траектории описывает процесс динамического построения ИОТ как марковский процесс принятия решений, где состояния — вершины графа ИУП PI, действия — переходы $act = epI_k$, а стратегия агента π направлена на максимизацию полезности:

$$\begin{split} & \boldsymbol{V} \left(\left. \boldsymbol{\pi}, \boldsymbol{tr_i} \right. \right) = \\ &= \max_{\boldsymbol{pl_i}} \boldsymbol{P}(\boldsymbol{pl_j} \mid \boldsymbol{pl_i}, \boldsymbol{act}) \bigg[\boldsymbol{R} \left(\left. \boldsymbol{pl_i}, \boldsymbol{act}, \boldsymbol{pl_j} \right. \right) + \gamma \boldsymbol{V} \left(\boldsymbol{\pi}, \boldsymbol{pl_j} \right) \bigg] \end{split}$$

Функция полезности включает:

$$\begin{split} & R\Big(\left. pl_i, act, pl_j \right) = \\ & = rtr\Big(tr_i, A\Big) + E\Big[\left. rtr\Big(\left. pl_j, A\right) \right] + fw\Big(\left. pl_j, \epsilon\right) \end{split}$$

где $\it rtr$ — функция оценки освоения, а $\it fw$ — корректировка с учётом остаточного времени.

Частная модель распределения времени участников учебного процесса моделирует влияние деструктивных факторов на фактическое распределение времени на этапе ИОТ:

$$\begin{split} \boldsymbol{t}^{\Phi_{\text{AKT}}} &= \\ &= \boldsymbol{w_{bs}w_{bl}t_{\Phi_{\text{AKT}}}^{\text{Koht}} + \boldsymbol{w_{bs}t_{\Phi_{\text{AKT}}}^{\text{CPC}} + \boldsymbol{w_{al}w_{as}t_{\Phi_{\text{AKT}}}^{\Pi}} + \boldsymbol{w_{al}t_{\Phi_{\text{AKT}}}^{\text{CPH}}} \end{split}$$

Коэффициенты $m{w}_{bs'}$, $m{w}_{as'}$, $m{w}_{bl}$, $m{w}_{al}$ рассчитываются по формуле $m{w} = \sum \! m{w}_i m{d}_i$, где $m{w}_i$ — веса деструктивных факторов, $m{d}_i$ — величины Коэна. Модель позволяет учитывать ошибки обучающихся и оценки при планировании и коррекции ИОТ.

Частная модель построения контекста интеллектуального агента формирует персонализированный контекст ctx на основе базы знаний Kb и диалогов агента: $ctx = \langle D^*, ctx^{pers}, ctx^{comp} \rangle$.

Контекст используется для повышения качества генерации ответов и вычисления функции $ctrleig(rsig(tr_i,a^sig),\sum rlig(tr_i,a^lig)ig).$

Формирование ctx^{comp} базируется на графе знаний $\mathbf{G} = (\mathbf{V}, \mathbf{E})$, связывающем элементы базы знаний с компетенциями, что минимизирует ошибки и повышает достоверность решений НГО-агентов.

Модель взаимодействия участников учебного процесса должна учитывать распределение времени, корректировку ИОТ с учётом недетерминированности, а также минимизацию ошибок.

Была предложена модель М — частная модель построения контекста интеллектуального агента. В этой модели используются данные о предыдущих действиях обучающегося, его профиле и успешности, а также информация из базы знаний. На основе этих данных агент формирует рекомендации по корректировке траектории, учитывая текущий уровень обученности, поведенческие паттерны и типичные ошибки. Обновление модели осуществляется в реальном времени с использованием механизмов самообучения, что повышает адаптивность и снижает вероятность повторения ошибок.

Дополнительно, учет времени и частоты ошибок реализуется через иерархическую линейную модель, функции которой оптимизируются за счет увеличения количества проверок текущего уровня освоения без повышения нагрузки на преподавателя. Первый уровень модели описывает индивидуальные затраты времени, ошибки и влияние случайных факторов на каждого участника образовательного процесса. Второй уровень формализует взаимосвязь этих индивидуальных показателей, обеспечивая достижение требуемого уровня освоения курса в пределах установленного времени. Таким образом, функции нижнего уровня в совокупности формируют индивидуальную образовательную траекторию как динамически корректируемый учебный план.

Использование агентного подхода позволяет трактовать образовательное пространство как ориентированное на результат взаимодействие между обучающимся и преподавателем. Эти участники представлены как агенты, обладающие сенсорами для восприятия информации из среды и эффекторами — средствами воздействия на неё. Эффективность агента-преподавателя определяется степенью достижения цели через оптимизацию соответствующих функций взаимодействия.

Формальное описание модели агентного взаимодействия включает: множество агентов (участников процесса), выбранный учебный курс, индивидуальный учебный план, индивидуальную траекторию обучения и базу знаний интеллектуальных агентов. Участники включают не только преподавателей и обучающихся, но также агентов-верификаторов, модераторов и языковые модели. Каждый агент характеризуется стратегией поведения, контекстом и используемой языковой моделью. Контекст формируется на основе персонализированных диалогов, компетенций и базы знаний.

Учебный курс включает набор учебно-методических материалов: теоретические сведения, задачи, тестовые примеры и подсказки. Индивидуальный учебный план представлен в виде ориентированного графа, в котором вершины соответствуют этапам плана, а связи между ними описывают возможные переходы. Каждая вершина включает временные параметры прохождения, оценки и материалы курса. Обязательным условием является наличие по крайней мере одной последовательности, соединяющей начальный и завершающий этапы обучения.

Индивидуальная образовательная траектория определяется как путь в графе учебного плана, формируемый на основе диалогов, результатов оценивания и анализа временных затрат. Достижение цели траектории обеспечивается выполнением требований по уровню знаний и ограничений по времени, что позволяет гарантировать результат в рамках установленных сроков.

В модели формирования ИОТ используется модифицированный марковский процесс принятия решений (МППР), где состояния соответствуют вершинам графа учебного плана (РІ), а действия агентов — возможным переходам между ними. Для выбора оптимального действия система рассчитывает совокупную полезность каждого возможного шага. Эта оценка учитывает ожидаемую выгоду от конкретного действия, прогнозируемый результат после его выполнения (например, изменение уровня подготовки обучающегося), а также корректирующую составляющую. Последняя позволяет учитывать вероятность отклонений от запланированной траектории и уровень неопределенности, вызванный внешними и внутренними деструктивными факторами. На основе этих оценок система выбирает действие, которое в наибольшей степени способствует достижению учебной цели с минимальными рисками.

Кроме того, в модели используется блок оценки временных и информационных потерь, возникающих вследствие ошибок обучающихся, недостаточной квалификации преподавателя, неточной или несвоевременной обратной связи и других факторов. Для количественной оценки этих потерь используются специальные эмпи-

рические коэффициенты. Они характеризуют потери времени и информации для разных участников образовательного процесса: отдельно для обучающихся и для преподавателей, а также в разрезе двух этапов — планирования и выполнения учебных действий. Такие коэффициенты позволяют учитывать, насколько эффективна организация процесса на каждом из этих этапов и как отклонения от нормы влияют на достижение образовательных целей.

Таким образом, совокупность используемых методов позволяет гибко адаптировать образовательный процесс под конкретного обучающегося, оптимизировать временные затраты и повысить устойчивость системы к деструктивным воздействиям.

Вычислительный эксперимент

Для оценки эффективности применения модели был проведен вычислительный эксперимент с использованием прототипа ИЭОС. В эксперимент учувствовало 2 группы студентов по 7 человек, которым предстояло смоделировать 252 диалога по 6 сценариям (3 для «Разработчика», 2 для «Тестировщика» и 1 для «Аналитика») и 3 задачам по программированию базового уровня. При моделировании использовались две большие языковые модели (БЯМ): ChatGPT, GigaChat. Анализ проводился по следующим метрикам: среднее количество исправлений обучающимся кода, среднее количество найденных проблем в коде, среднее количество рекомендаций от агентов, количество итераций до верного решения и процент понятных обучающемуся исправлений. Для статистической оценки различий использовались t-критерий Стьюдента, дисперсионный анализ и критерий Пирсона.

Индивидуальная образовательная траектория для студентов строилась на основе эталонных траекторий ${m tr}_i^0$, включающих изучение трех тем и решение по каждой теме контрольных задач.

Цель эксперимента заключалась в проверке гипотезы о том, способствует ли применение модели *М* достижению требуемого уровня профессиональных компетенций в установленные сроки.

Были сформулированы следующие допущения:

- Нулевая гипотеза (H_0) использование модели M в обучении программированию не оказывает значимого влияния на достижение требуемого уровня освоения профессиональных компетенций в заданные сроки обучения;
- Альтернативная гипотеза (H_1) использование модели M способствует достижению требуемого уровня освоения профессиональных компетенций в заданные сроки обучения.

Перед началом каждый студент предварительно выполнял задания, составлял тестовые наборы и проверял прохождение тестов. Все решения были проверены с помощью Al-ассистента платформы GitHub и опытным программистом.

Анализ количества исправлений, выполненных БЯМ, и количества рекомендаций об исправлениях по-казывает, что у модели лучше получается давать рекомендации о том, как исправить какую-либо проблему в коде решения. Однако студенты могут внести исправления не по всем рекомендациям. Исправления и рекомендации, данные на этапе траектории tr_i использовались при корректировке контекста и влияли на следующий этап tr_{i+1} .

Необходимо отметить, что количество рекомендаций коррелирует с ролью агента, так агент-тестировщик давал в среднем больше рекомендаций по исправлению тестовых примеров, а агент-аналитик плохо искал проблемы в коде. При сравнении моделей выявлено, что GigaChat в среднем давал больше советов и рекомендаций, при этом количество выполненных студентами исправлений практически не изменялось. Результаты эксперимента по количеству исправлений и рекомендаций, предложенных БЯМ, приведены в Таблице 1.

Анализ количества итераций, которые потребовались для выработки кода решения задачи, проходящего контрольные примеры, показывает, что простые задачи все модели решают за 1-2 итерации. Результаты эксперимента по количеству итераций до получения кода, прошедшего тестовый пример, приведены в Таблице 2.

Понятность исправлений и рекомендаций от моделей является субъективным показателем, однако можно заметить, что объяснения агентов студенты почти всегда оценивали как понятные, однако исправления в коде были понятны лишь в 70-80% случаев. Можно сделать вывод о том, что студенты переоценивают собственные навыки и компетенции и одновременно с этим есть возможность расширения их знаний. Оценка студентами понятности исправлений и рекомендаций приведена в Таблице 3.

Находит подтверждение и тезис о том, что у студентов имеется возможность для получения дополнительных знаний, поскольку количественно понятно около 90 % исправлений при расчете в средних значениях, но только 70 % при расчете в максимальных значениях. Это говорит о том, что при максимальном количестве исправлений и советов, к очевидным добавляются более сложные рекомендации, которые студенты с трудом интерпретируют. Среднее количество понятных исправлений показано в Таблице 4.

Таблица 1.

Среднее количество исправлений

Показатель	Д1. Количество исправленных ошибок	Д2. Количество найденных в вашем коде проблем	ДЗ. Количество советов по вашему коду	Дз. Количество уточнений по советам	ДЗ. Количество внесенных вами изменений в соответствии с советами	Д4. Количество советов по улучшению тестового примера	Д4. Количество внесенных вами изменений	Д4. Количество найденных в вашем коде проблем (Согласно шагам диалога 2)	Д5. Количество найденных в вашем коде проблем (Согласно шагам диалога 2)	Д6. Количество исправленных ошибок (Согласно шагам диалога 1)
Среднее ChatGPT	0,90	3,05	4,67	0,05	2,76	4,24	2,52	2,38	0,81	1,29
Среднее GigaChat	1,14	3,95	5,57	0,38	2,67	6,14	2,38	2,33	1,05	1,38
Максимум ChatGPT	3	6	8	1	5	7	4	6	4	8
Максимум GigaChat	7	10	10	8	5	10	5	6	4	5
Максимум	7	10	10	8	5	10	5	6	7	8

Таблица 2.

Среднее количество итераций

Показатель	Д1. Количество шагов до получения кода, прошедшего тестовый пример	Д2. Количество шагов до получения кода, прошедшего тестовый пример	ДЗ. Количество шагов до получения кода, прошедшего тестовый пример	Д4. Количество шагов до получения кода, прошедшего тестовый при- мер (Согласно шагам диалога 2)	Д5. Количество тестовых примеров до момента нахождения правиль- ного тестового примера	Д5. Количество шагов до получения кода, прошедшего тестовый при- мер (Согласно шагам диалога 2)	Д6. Количество уточнений поста- новки задачи до прохождения те- стового примера	Д6. Количество шагов до получения кода, прошедшего тестовый при- мер (Согласно шагам диалога 1)
Среднее ChatGPT	1,29	1,24	1,19	1,67	1,81	1,29	0,10	1,24
Среднее GigaChat	1,48	1,57	1,43	2,05	2,95	1,52	0,29	2,00
Максимум ChatGPT	5,00	4	4	9	5	4	1	4
Максимум GigaChat	5,00	4	4	6	19	4	2	5
Максимум	5	4	4	9	19	4	2	5

В каждом из шести диалогов использование БЯМ приводит к сокращению времени выполнения задач по сравнению с преподавателем. Это указывает на то, что БЯМ могут помогать студентам выполнять задачи быстрее.

Результаты времени выполнения задач студентами с преподавателем и с использованием БЯМ приведены в Таблице 5.

Для определения влияния использования БЯМ на временные затраты был проведён сравнительный

анализ продолжительности выполнения задач с преподавателем и с БЯМ. Оценка сокращения времени проводилась в процентах по формуле:

$$\Delta T = \frac{\left(T_{\text{преп}} - T_{\text{ВЯМ}}\right)}{T_{\text{преп}}} * 100$$

 $T_{\text{преп}}$ _ время выполнения задачи с преподавателем,

 $T_{
m BSM}$ _ время выполнения аналогичной задачи с БЯМ.

Оценка понятности исправлений и рекомендаций

					11- 1			
Показатель	Д1. Насколько исправленные ошибки вам понятны	Д1. Объяснение агента о его решении вам понятно	Д2. Объяснение агента о его решении вам понятно	ДЗ. Объяснение агента о его решении вам понятно	Д4. Объяснение агента о его решении вам понятно (Согласно шагам диалога 2)	Д5. Объяснение агента о его решении вам понятно (Согласно шагам диалога 2)	Д6. Насколько исправлен- ные ошибки вам понятны (Согласно шагам диалога 1)	Дб. Объяснение агента о его решении вам понятно (Согласно шагам диалога 1)
Понятно	30	44	42	43	42	42	32	0
Всего исправлений/советов	43	47	45	45	45	45	40	45
Процент понятных	70%	94%	93%	96%	93%	93%	80%	0%

Таблица 4.

Таблица 3.

Среднее количество понятных исправлений

Показатель	Д2. Количество найденных в вашем коде про- блем	Д2. Количество найденных проблем, которые вам понятны	%	Д4. Количество советов по улучшению тесто- вого примера	Д4. Количество понятных вам советов	%	Д4. Количество найденных в вашем коде про- блем (Соглсно шагам диалога 2)	Д4. Количество найденных проблем, которые вам понятны (Соглсно шагам диалога 2)	%	Д5. Количество найденных в вашем коде про- блем (Соглсно шагам диалога 2)	Д5. Количество найденных проблем, которые вам понятны (Соглсно шагам диалога 2)	%
СреднееChatGPT	3,05	2,81	92 %	4,24	3,81	90 %	2,38	2,60	109 %	0,81	0,80	99 %
Среднее GigaChat	3,95	3,57	90 %	6,14	5,62	91 %	2,33	2,19	94 %	1,05	1,00	95 %
Максимум ChatGPT	6	6	100 %	7	7	100 %	6	9	150 %	4	4	100 %
Максимум GigaChat	10	7	70 %	10	10	100 %	6	6	100 %	4	4	100 %
Максимум	10	7	70 %	10	10	100 %	6	9	150 %	4	4	100 %

Таблица 5.

Среднее время работы

	С пре-	С БЯМ (мин.)							
За- дача	подава- телем (мин.)	Диа- лог 1	Диа- лог 2	Диа- лог 3	Диа- лог 4	Диа- лог 5	Диа- лог 6		
1	111	74	78	80	85	79	82		
2	191	124	130	135	140	125	132		
3	258	168	175	180	185	172	176		

Так как время взаимодействия с БЯМ варьируется, для оценки диапазона сокращения времени использовались минимальное и максимальное сокращение времени:

$$\Delta T_{min} = \frac{\left(T_{\text{преп}} - max(T_{\text{BSM}})\right)}{T_{\text{преп}}} * 100$$

$$\Delta T_{max} = \frac{\left(T_{\text{преп}} - min(T_{\text{BSM}})\right)}{T_{\text{преп}}} * 100$$

$$\Delta T_{max} = \frac{\left(T_{\text{преп}} - min(T_{\text{BЯМ}})\right)}{T_{\text{преп}}} * 100$$

Результаты сравнительного анализа временных затрат на выполнение задач с преподавателем и с использованием БЯМ представлены в таблице 6. Полученные результаты показывают, что применение БЯМ позволяет уменьшить время выполнения задач на 23-35 %.

Для оценки влияния БЯМ на временные затраты преподавателя по сравнению с традиционным форматом обучения был проведён комплексный статистический анализ.

Таблица 6. Сравнительный анализ временных затрат

Задача	С преподава- телем (мин.)	max(ТБЯМ) (мин.)	ΔTmin (%)	min(ТБЯМ) (.ним)	ΔTmax (%)
1	111	85	23,42	74	33,3
2	191	140	26,7	124	35,08
3	258	185	28,29	168	34,9

Результаты статистического анализа по t-критерию Стьюдента показали, что t=3,9389 при p-value = 0,0588. Размер выборки составил n=3 (количество задач), что соответствует числу степеней свободы df=n-1=2. При уровне значимости 0,05 и df=2 критическое значение составляет $t_{\rm кp}=4,303$. Поскольку t-статистика (3,9389) меньше $t_{\rm kp}$ (4,303), различие между методами обучения не достигает статистической значимости на уровне 0,05. Несмотря на это, близость p-value к 0,05 и значительное значение t-статистики в сравнении с критическими порогами для более высоких степеней свободы могут свидетельствовать о тенденции к различию между методами.

Полученные при дисперсионном анализе (ANOVA) результаты (F = 1,2940, p-value = 0,3188353269) не указывают на наличие статистически значимых различий между группами, поскольку p-value значительно больше уровня значимости 0,05. При уровне значимости 0,05, критическое значение для df₁ = 1 и df₂ = 4 составляет $F_{\kappa p}$ = 7,71. Поскольку F-статистика (1,2940) меньше $F_{\kappa p}$ (7,71), можно сделать вывод, что использование БЯМ не оказывает статистически значимого влияния на временные затраты и различий между методами обучения не выявлено.

Результаты теста хи-квадрат ($\chi^2=130,6004$, p-value = 1,77 \times 10⁻²⁶) указывают на высокую статистическую значимость различий. При уровне значимости 0,05 и df = 12, критическое значение составляет $\chi^2_{\text{кр}} \approx 21,03$. Поскольку χ^2 -статистика (130,6004) значительно превышает $\chi^2_{\text{кр}}$ (21,03), можно сделать вывод, что различия в распределении временных затрат являются статистически значимыми. Малое значение p-value свидетельствует о том, что случайное совпадение маловероятно. Это подтверждает значительное влияние БЯМ на распределение временных затрат.

Проведенный эксперимент позволяет дать ответы на выдвинутые гипотезы:

 Нулевая гипотеза (Н0) не может быть полностью отвергнута. Результаты t-критерия Стьюдента показывают различие между традиционным подходом и использованием модели M, однако это различие не достигает статистической значимости на уровне 0,05. Это может быть связано с малым

- объемом выборки, что снижает статистическую мощность теста. В то же время, результаты хиквадраттеста показывают статистически значимые изменения в распределении временных затрат, что указывает на структурные различия в процессе обучения при использовании модели М;
- Альтернативная гипотеза (Н1) получила частичное подтверждение. Результаты хи-квадрат теста однозначно отвергают гипотезу о случайном характере различий во временных затратах, что свидетельствует о структурном изменении процесса обучения при использовании модели М. Во всех случаях применение модели М приводило к уменьшению времени работы над заданиями: относительное сокращение составило 23–35 %.

Относительное сокращение времени ΔT составило 23–35 % ($\Delta T_{min}=23,42\%$, $\Delta T_{max}=35,08\%$). При этом результаты t-критерия Стьюдента (t = 3,9389, p-value = 0,0588) и дисперсионного анализа (F = 1,2940, p-value = 0,3188353269) не показывают статистически значимых различий между методами обучения. Однако результаты хи-квадрат теста ($\chi^2=130,6004$, p-value = 1,77 \times 10^{-26}) подтверждают значительное влияние БЯМ на распределение временных затрат, что свидетельствует о структурных изменениях в процессе обучения при его использовании.

Полученные результаты позволяют утверждать, что применение комплексной информационной модели оперативной корректировки модулей учебных дисциплин с учетом индивидуальной динамически формируемой траектории освоения, позволяет достигнуть требуемый уровень компетенций в заданные сроки обучения.

Результаты исследования

Результатом разработки является комплексная модель взаимодействия участников учебного процесса, включающая:

- 1. ИЛМ, описывающую зависимость уровня ЗУН от времени в двухуровневой системе.
- 2. Частную модель формирования ИОТ с применением МППР, позволяющую строить траекторию прохождения курса с учетом текущего состояния обучающегося и параметров ИУП.
- 3. Частную модель распределения времени с учетом деструктивных факторов двух типов: ошибки обучающихся и ошибки оценки.
- 4. Частную модель построения контекста интеллектуального агента на основе базы знаний и истории взаимодействия, направленную на минимизацию ошибок в процессе обучения.

Применение предложенной модели позволяет формализовать зависимость достижения заданного уровня

ЗУН от числа корректировок ИОТ и параметров среды, включая влияние случайных и системных деструктивных факторов.

Эффективность модели проверялась в рамках вычислительного эксперимента с участием студентов, использовавших БЯМ (ChatGPT и GigaChat) в процессе выполнения заданий по программированию. Результаты эксперимента показали, что применение модели снижает количество итераций при решении задач, повышает понятность рекомендаций и способствует сокращению времени выполнения заданий на 23–35 %.

Модель показала устойчивость к деструктивным факторам, позволяя за счёт контекстуализации взаимодействия и корректировки ИОТ достичь уровня ЗУН в пределах установленного времени. Это подтверждается как количественными (таблицы 1–6), так и статистическими результатами: хи-квадрат тест показал высокую значимость различий (p<0,001) между подходами.

Обсуждение результатов

Предложенная модель отличается от известных работ тем, что интегрирует три ключевых аспекта управления образовательной траекторией: формализацию прогресса в ИЛМ, адаптацию за счет МППР и обеспечение качества взаимодействия через построение релевантного контекста агента. Подход обеспечивает адаптивное формирование ИОТ в условиях ограниченного времени и неопределенности.

Отличительной чертой модели является использование концепции «мягких вычислений», допускающей неполноту, эвристичность и приближённость при принятии решений. Это особенно важно в условиях реального обучения, где взаимодействие преподавателя и обучающегося носит вероятностный характер и подвержено внешним и внутренним сбоям.

Кроме того, моделирование влияния деструктивных факторов позволяет выполнять коррекцию ИОТ в режиме реального времени, перераспределяя временные ресурсы и сохраняя траекторию в границах допустимого отклонения от ИУП.

Результаты эксперимента подтвердили, что интеллектуальные агенты на основе НГО способны заменить

или дополнить преподавателя в рутинных сценариях, снизить нагрузку на контактное взаимодействие и ускорить достижение целей ИОТ. Важным результатом стало сокращение количества итераций и увеличение доли «понятных» рекомендаций, что свидетельствует о повышении качества сопровождения учебного процесса.

В рамках реализации модели предложен механизм оценки агентов-преподавателей с использованием верификаторов и модераторов, а также реализована возможность применения нескольких преподавателей в рамках одного курса.

Выводы и заключение

Разработанная модель взаимодействия участников учебного процесса представляет собой комплексное решение для адаптивного формирования индивидуальной образовательной траектории. Ее основными преимуществами являются:

- формализация процесса достижения заданного уровня ЗУН с учетом времени и деструктивных факторов;
- использование иерархической линейной модели для аналитического описания индивидуального и группового взаимодействия;
- применение марковского процесса принятия решений для построения и корректировки ИОТ;
- учет деструктивных факторов на основе эмпирических коэффициентов влияния;
- формирование контекста интеллектуальных агентов для снижения числа ошибок в процессе взаимодействия.

Результаты исследования могут быть использованы при проектировании ИЭОС в высших учебных заведениях, особенно в области инженерного и программного образования, где требуется точное соблюдение сроков обучения и высокий уровень освоения учебного материала.

Таким образом, представленная модель взаимодействия и предложенные частные модели обеспечивают инструментальный базис для реализации адаптивных систем электронного обучения, устойчивых к воздействию деструктивных факторов и способных к оперативной корректировке индивидуальной траектории.

ЛИТЕРАТУРА

- 1. Мищенко Э.В. Методика выбора оптимальных вариантов подготовки военных специалистов (на этапе ввода в строй) с применением векторной оптимизации // Инновационная деятельность в Вооруженных Силах Российской Федерации. СПб.: Военная академия связи им. С.М. Буденного, 2015. С. 309—318. — 10 с.
- 2. Багрецов С.А., Мищенко Э.В. Система отбора кандидатов и подготовки специалистов в системе военного образования с учетом распределения имеющихся ресурсов // Труды Военно-космической академии им. А.Ф. Можайского. 2013. № 639. С. 163—169. 7 с.
- 3. Багрецов С.А., Мищенко Э.В., Розанова Л.В. Использование дискриминантного анализа для агрегирования оценок знаний обучающихся в номинальных шкалах // Эргодизайн. 2023. № 1(19). С. 43–52. 10 с.
- 4. Багрецов С.А., Мищенко Э.В., Розанова Л.В. Методика построения плана диагностического исследования профессионального соответствия кандидатов // Эргодизайн. 2022. № 4(18). С. 243—251. 9 с.
- 5. Алтухов А.И., Багрецов С.А., Чебурков М.А. Метод оценивания качества применения учебно-тренажерного комплекса при проведении практических занятий // Известия СПбГЭТУ ЛЭТИ. 2018. № 1. С. 31—37. 7 с.
- 6. Лиференко В.Д., Багрецов С.А., Чистяков Д.В. Методики агрегирования оценок знаний обучающихся для случаев представления внешнего критерия в порядковых шкалах // Наукоемкие технологии в космических исследованиях Земли. 2021. Т. 13, № 2. С. 4—14. —— 11 с.
- 7. Багрецов С.А., Лаута О.С., Баленко Е.Г. и др. Методика априорной оценки эффективности подготовки операторов в системах управления // Известия ТулГУ. Технические науки. 2023. № 8. С. 124—131. 8 с.
- 8. Ульянов Д.А. Марковская модель адаптивного тестирования и ее программная реализация в условиях дистанционного обучения: автореф. дис. ... канд. техн. наук. Иркутск, 2005. 16 с.
- 9. Бровка Н.В., Дьячук П.П., Носков М.В., Перегудова И.П. Марковская математическая модель динамического адаптивного тестирования активного агента // Информатика и образование. 2018. № 10. С. 29–35. 7 с.
- 10. Минасов Ш.М., Тархов С.В. Проект «Гефест» как вариант практической реализации технологий электронного обучения в вузе // Образовательные технологии и общество. 2005. Т. 8, № 1. С. 134—147. 14 с.
- 11. Поминов Д.А. Самообучающийся адаптивный тренажер для подготовки абитуриентов к экзаменам по математике // Нейрокомпьютеры: разработка, применение. 2021. Т. 23, № 2. С. 35—42. 8 с.
- 12. Минасова Н.С., Тархов С.В., Тархова Л.М. Модели и методы адаптивного управления обучением с использованием агрегативных учебных модулей // Вестник УГАТУ. 2017. Т. 21, № 4(78). С. 136—142. 7 с.
- 13. Толмачев А.В., Синицын Е.В., Астратова Г.В. Вероятности распределения успеваемости студентов онлайн-курсов как инструмент оценки качества контрольных материалов // Отходы и ресурсы. 2020. Т. 7, № 3. С. 9. 6 с.
- 14. Abdullaeva M.S., Korneva O.N. Individual's Innovative Behavior: Personal and Contextual Determinants // International Journal of Self-Directed Learning. 2023. Vol. 20, № 1. P. 45–67. DOI: 10.1016/j.ijsel.2023.01.004
- Plucker J., Beghetto R.A., Dow G.T. Why Creativity Is Not Reducible to Analytical Metrics // Computers & Education. 2024. Vol. 189. Art. № 104578. DOI: 10.1016/j. compedu.2024.104578
- 16. De Dreu C.K.W., Nijstad B.A., Baas M. Human Cognition as a Complex Adaptive System: Implications for Learning Analytics // Journal of Learning Analytics. 2022. Vol. 9, № 3. P. 112–130. DOI: 10.18608/jla.2022.7501
- 17. Xie K., Paik S. Cultural Values and Learning Variance: A Comparative Study of Eastern vs. Western MOOCs // Computers & Education. 2023. Vol. 176. Art. № 104352. DOI: 10.1016/j.compedu.2023.104352

© Тимофеев Александр Николаевич (antimofeev@fa.ru); Главинская Арина Александровна (glavinskaya20@yandex.ru) Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.33

СРАВНИТЕЛЬНАЯ МНОГОКРИТЕРИАЛЬНАЯ ОЦЕНКА СУЩЕСТВУЮЩИХ МЕТОДОВ КОНТРОЛЯ ДОСТОВЕРНОСТИ ДАННЫХ ЭЛЕКТРОПОТРЕБЛЕНИЯ В АИИС КУЭ

COMPARATIVE MULTI-CRITERIA ASSESSMENT OF EXISTING DATA RELIABILITY OF POWER CONSUMPTION MONITORING METHODS IN AIIS KUE

A. Timchuk Yu. Dubenko

Summary. The article provides a comparative multi-criteria assessment of two currently existing methods for monitoring data reliability in AIIS KUE, conventionally called «clusterization» and «increase of meter surveys frequency». Many different indicators related to the cost of methods implementation and the quality of monitoring the metering data reliability were chosen as the estimated parameters, and a set of criteria consisting of multiplicative, additive, and ideal point distance criteria with different weights was chosen for their evaluation. As a result of the compared methods evaluation, conclusions were made about their shortcomings and effectiveness.

Keywords: AllS KUE, data reliability control, comparative assessment, criteria set.

Тымчук Алексей Игоревич

Ассистент, Кубанский государственный технологический университет (Краснодар) alextimchuck@gmail.com

Дубенко Юрий Владимирович

Доктор технических наук, доцент, Кубанский государственный технологический университет (Краснодар) scorpioncool1@yandex.ru

Аннотация. В статье проведена сравнительная многокритериальная оценка двух существующих в настоящее время методов контроля достоверности данных электропотребления в автоматизированных информационно-измерительных системах контроля и учёта электроэнергии, условно названных «кластеризация» и «увеличение частоты опроса приборов учёта». В качестве оцениваемых параметров было выбрано множество различных показателей, связанных со стоимостью реализации методов и обеспечиваемым ими качеством контроля достоверности данных приборов учёта. В качестве критериев оценки методов взято множество, состоящее из мультипликативного, аддитивных и расстояния до идеальной точки критериев с различными весами. В результате проведённой оценки сравниваемых методов были сделаны выводы об их эффективности и имеющихся у них недостатках.

Ключевые слова: АИИС КУЭ, контроль достоверности данных, сравнительная оценка, множество критериев.

настоящее время в автоматизированных информационно-измерительных системах контроля и учёта электроэнергии (АИИС КУЭ) существуют два метода автоматизированного контроля достоверности данных потребления электроэнергии [1]. Первый метод — кластеризация принадлежащих АИИС КУЭ приборов учёта, суть которого заключается в сужения круга поиска приборов учёта, передающих недостоверные данные, посредством разбиения множества всех принадлежащих АИИС КУЭ приборов учёта на кластеры с контрольными точками [2]. Второй метод автоматизированного контроля достоверности данных потребления электроэнергии — увеличение частоты опроса приборов учёта. Суть данного метода заключается в переводе прибора учёта на режим работы с уменьшенным интервалом передачи данных, при наличии потерь электроэнергии в системе.

Был проведён сравнительный анализ методов «кластеризация» (М1) и «увеличение частоты опроса приборов учёта» (М2) по множеству нормализованных

параметров, имеющему древовидную структуру, представленную на рисунке 1. Нормализация параметров была произведена посредством вычисления отношения их текущего значения к максимально возможному.

Приведённые на рисунке 1 параметры далее в тексте имеют следующие сокращённые обозначения:

- E эффективность метода по используемому критерию.
- Q качество контроля достоверности данных электропотребления.
 - С стоимость реализации метода.
 - A точность идентификации приборов учёта.
- S скорость определения приборов учёта, передающих недостоверные данные (единица измерения ус-

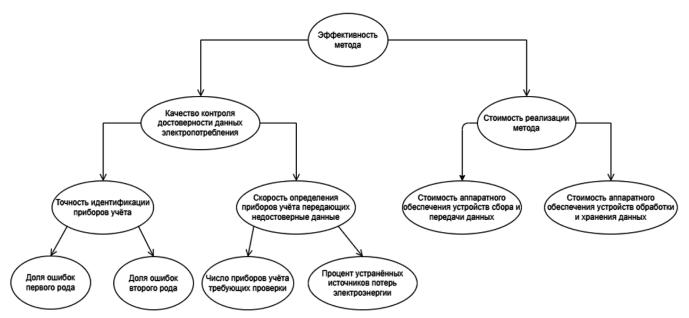


Рис. 1. Структура множества параметров оценки эффективности контроля достоверности данных электропотребления в АИИС КУЭ

реднённое время, требуемое для проведения проверки одного прибора учёта).

CL — стоимость аппаратного обеспечения устройств сбора и передачи данных.

СН — стоимость аппаратного обеспечения устройств обработки и хранения данных (единица измерения — усреднённое значение стоимости вычислительных мощностей, требуемых для хранения и обработки 1 Гб.).

ER1 — доля ошибок первого рода [3] (отношение количества правильно идентифицированных недостоверных приборов учёта электроэнергии к общему количеству недостоверных приборов учёта в выборке).

ER2 — доля ошибок второго рода [3] (отношение количества правильно идентифицированных достоверных приборов учёта электроэнергии к общему количеству достоверных приборов учёта в выборке).

D — число приборов учёта, требующих проверки.

PL — процент устранённых источников потерь электроэнергии.

Так как множество параметров на рисунке 1 имеет структуру в виде двоичного дерева, то в качестве критериев для оценки тех из них, что имеют потомков, было выбрано множество, состоящее из следующих двухпараметрических критериев [4]:

- 1. Аддитивный критерий с весовыми параметрами 1:1 (1).
- 2. Аддитивный критерий с весовыми параметрами 2:1 (2).

- 3. Аддитивный критерий с весовыми параметрами 1:2 (3).
- 4. Обратный критерий идеальной точки с координатами (1;1) (4).
- 5. Обратный критерий идеальной точки с координатами (2;1) (5).
- 6. Обратный критерий идеальной точки с координатами (1;2) (6).

$$K_1 = \frac{1}{2}P_1 + \frac{1}{2}P_2,\tag{1}$$

$$K_2 = \frac{2}{3}P_1 + \frac{1}{3}P_2, \tag{2}$$

$$K_3 = \frac{1}{3}P_1 + \frac{2}{3}P_2, \tag{3}$$

$$K_4 = 1 - \sqrt{\frac{\left(1 - P_1\right)^2 + \left(1 - P_2\right)^2}{2}},$$
 (4)

$$K_5 = 1 - \sqrt{\frac{\left(2 - 2P_1\right)^2 + \left(1 - P_2\right)^2}{5}},$$
 (5)

$$K_6 = 1 - \sqrt{\frac{\left(1 - P_1\right)^2 + \left(2 - 2P_2\right)^2}{5}},$$
 (6)

$$K_7 = P_1 * P_2,$$
 (7)

где: $K_1, ... K_7$ — значение параметра по соответствующему критерию; P_1 — значение первого параметра; P_2 — значение второго параметра.

Для проведения сравнительного анализа была использована выборка данных потребления электроэнергии, состоящая из 20 % реальных обезличенных данных

Таблица 1. Оценка значений параметров первого уровня различных конфигураций кластера метода М1

Конфи- гурация	ER1	ER2	D	PL	СН	CL
1/1	1	1	1	1	0,5	0,5
2/1	0,75	1	0,75	1	0,66	0,66
3/1	0,575	1	0,575	1	0,75	0,75
4/1	0,25	1	0,25	1	0,8	0,8

электропотребления объектов различных типов и 80 % синтетических, полученных на основе реальных [5]. Размер выборки, согласно методу оценки Отдельновой [6], обеспечивает её репрезентативность относительно раз-

личных типов объектов энергопотребления, при мощности критерия $\beta = 82\%$ и уровне значимости $\alpha = 5\%$.

Для оценки метода М1 относительно других, был предварительно проведен анализ его различных конфигураций (соотношение количества приборов учёта в кластере на один контрольный прибор учёта) для определения наилучшей из них, относительно множеств рассматриваемых параметров и применяемых критериев оценки. При применении различных конфигураций метода для анализа данных, принадлежащих исследуемой выборке, были получены результаты, приведенные в таблицах 1 и 2.

По результатам сравнительной оценки различных конфигураций метода М1, представленным в таблицах 1 и 2, были сделаны выводы:

Таблица 2. Оценка значений параметров A, S, Q, C и E различных конфигураций кластера метода М1 по множеству критериев (1)–(7)

Конфигурация	A_{1}	A ₂	A_3	A_4	A_{5}	A_6	A ₇
1/1	1	1	1	1	1	1	1
2/1	0,875	0,833	0,917	0,823	0,776	0,888	0,75
3/1	0,788	0,717	0,858	0,699	0,62	0,81	0,575
4/1	0,625	0,5	0,75	0,47	0,329	0,665	0,25
Конфигурация	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇
1/1	1	1	1	1	1	1	1
2/1	0,875	0,833	0,917	0,823	0,776	0,888	0,75
3/1	0,788	0,717	0,858	0,699	0,62	0,81	0,575
4/1	0,625	0,5	0,75	0,47	0,329	0,665	0,25
Конфигурация	$Q_{_1}$	Q_{2}	$Q_{_3}$	$Q_{_4}$	Q_{5}	$Q_{_{6}}$	$Q_{_{7}}$
1/1	1	1	1	1	1	1	1
2/1	0,875	0,833	0,917	0,823	0,776	0,888	0,563
3/1	0,788	0,717	0,858	0,699	0,62	0,81	0,331
4/1	0,625	0,5	0,75	0,47	0,329	0,665	0,063
Конфигурация	(1	C ₂	C ₃	C ₄	C _s	C ₆	C ₇
1/1	0,5	0,5	0,5	0,5	0,5	0,5	0,25
2/1	0,66	0,66	0,66	0,66	0,66	0,66	0,436
3/1	0,75	0,75	0,75	0,75	0,75	0,75	0,563
4/1	0,8	0,8	0,8	0,8	0,8	0,8	0,64
Конфигурация	E ₁	E_{2}	$E_{_3}$	E_4	E_{5}	$E_{_{6}}$	E ₇
1/1	0,75	0,833	0,666	0,646	0,776	0,553	0,25
2/1	0,768	0,775	0,746	0,729	0,748	0,692	0,245
3/1	0,769	0,728	0,786	0,723	0,642	0,761	0,186
4/1	0,713	0,6	0,783	0,599	0,393	0,766	0,04

- 1. С увеличением размера кластера в независимости от используемого критерия оценки идёт резкое падение значений параметров A, S и Q, которое не может быть компенсировано за счёт параметра С, поэтому исследование конфигураций кластера размера больше четырёх не имеет смысла
- 2. Наилучшей по множеству критериев (K_1) (K_7) , является конфигурация кластера 2/1 один контрольный прибор учёта на каждые два прибора учёта потребителей.

Для оценки метода М2 относительно других, как и для метода М1, был предварительно проведен анализ его различных конфигураций для определения наилучшей из них, относительно множеств рассматриваемых параметров и применяемых критериев оценки. Применение различных конфигураций метода для анализа данных, принадлежащих исследуемой выборке, показало, что результат оценки достоверности данных электропотребления методом М2 не зависит от его конфигурации, поскольку в независимости от частоты передачи данных метод М2 находит все недостоверные приборы учёта с неравномерным искажением данных, однако не может определить аналогичные, имеющие равномерное искажение данных. Таким образом значение параметра Q метода M2 не зависит от его конфигурации и критерия оценки. При этом остальные параметры имеют следующие значения:

$$ER1 = 1; ER2 = 0.5; D = 0.875; PL = 0.5; CL = 1; CH = 1.$$

Относительно критериев оценки (K_1) — (K_7) метод M2 имеет значения параметров S, A, Q, C и E приведённые в таблице 3. В таблице 4 приведено сравнение значений эффективности методов M1 и M2 по множеству критериев (K_1) — (K_7).

Как видно из таблицы 4 метод M2 превосходит по всем критериям из множества (K_1) — (K_7) метод M1 за счёт низкой стоимости реализации, однако значительно уступает ему в качестве контроля достоверности данных по причине большого числа ошибок второго

Таблица 3. Оценка параметров метода M2 по множеству критериев (K_1) — (K_7)

Пара- метр	K ₁	K ₂	К ₃	K ₄	K ₅	K ₆	K ₇
S	0,688	0,75	0,625	0,636	0,75	0,549	0,438
Α	0,75	0,833	0,667	0,646	0,776	0,553	0,5
C	1	1	1	1	1	1	1
Q	0,719	0,805	0,639	0,641	0,771	0,55	0,219
Ε	0,8595	0,87	0,88	0,746	0,795	0,799	0,219

Таблица 4. Сравнительная оценка эффективности методов М1 и М2 по множеству критериев (K_1) — (K_7)

Пара- метр	<i>K</i> ₁	K ₂	K ₃	K ₄	K ₅	K ₆	K ₇	K _{SR}
C (M1)	0,66	0,66	0,66	0,66	0,66	0,66	0,436	0,66
C (M2)	1	1	1	1	1	1	1	1
Q (M1)	0,875	0,833	0,917	0,823	0,776	0,888	0,563	0,875
Q (M2)	0,719	0,805	0,639	0,641	0,771	0,55	0,219	0,719
E (M1)	0,762	0,765	0,743	0,723	0,733	0,691	0,229	0,662
E (M2)	0,8595	0,87	0,88	0,746	0,795	0,799	0,219	0,738

рода. Таким образом, проведённый анализ существующих методов контроля достоверности данных электропотребления в АИИС КУЭ позволяет сделать следующие выводы об имеющихся у них недостатках:

- 1. Метод «кластеризация» (М1), помимо очевидного недостатка, связанного с избыточностью приборов учёта, имеет проблемы, связанные со значительным количеством ошибок первого рода.
- 2. Метод «увеличение частоты опроса приборов учёта» (М2) имеет недостатки, связанные с большим количеством ошибок второго рода, что при прочих его достоинствах, требует для устранения источников потерь электроэнергии перепроверки почти всех приборов учёта.

ЛИТЕРАТУРА

- 1. Титов, Н.Н. Исследование достоверности результатов измерений АИИС КУЭ электрической энергии / Н.Н. Титов [и др.] // Законодательная и прикладная метрология. 2008. №5. С. 28–30.
- 2. Забелло, Е.П. Автоматизированные системы контроля и учета энергоресурсов: практикум / Е.П. Забелло, В.Г Булах, А.С. Качалко. Минск: БГАТУ, 2016. 160 с.
- 3. ГОСТ Р ИСО 3534-1-2019 Статистические методы. Словарь и условные обозначения. Часть 1. Общие статистические термины и термины, используемые в теории вероятностей. М.: Стандартинформ, 2020. 70 с.
- 4. Анфилатов, В.С. Системный анализ в управлении: учебник для вузов / В.С. Анфилатов, А.А. Емельянов, А.А. Кукушкин. М.: Финансы и статистика, 2003. 368 с.
- 5. Тымчук, А.И. Сравнительная оценка методики, использующей множество авторегрессионных интегрированных моделей скользящего среднего для контроля достоверности данных приборов учёта в автоматизированных информационно-измерительных системах контроля и учёта электроэнергии / А.И. Тымчук // Международный научно-исследовательский журнал. 2024. № 7(145).
- 6. Отдельнова, К.А. Определение необходимого числа наблюдений в социально-гигиенических исследованиях. / К.А. Отдельнова // Сб. трудов 2-го ММИ. М.:1980. 150(6). С. 18–22.

DOI 10.37882/2223-2966.2025.09.40

РАЗРАБОТКА АЛГОРИТМОВ ОЦЕНКИ НЕОПРЕДЕЛЕННОСТИ ИЗМЕРЕНИЯ И ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ, РЕАЛИЗУЮЩЕГО СОЗДАНИЕ АЛГОРИТМОВ С ПОМОЩЬЮ МЕТОДА МОНТЕ-КАРЛО

DEVELOPMENT OF ALGORITHMS FOR ESTIMATING MEASUREMENT UNCERTAINTY AND SOFTWARE IMPLEMENTING THE CREATION OF ALGORITHMS USING THE MONTE CARLO METHOD

P. Sharonov

Summary. In traditional practice, measurement uncertainty is estimated using the linear propagation method (GUM), which assumes the linearity of the model, independence, and normality of the input quantities. However, in real-world problems of system analysis and management, models are often nonlinear, input distributions are asymmetric, and parameters can be correlated. This leads to a distortion of the results, which necessitates the development of algorithms for estimating uncertainty based on the Monte Carlo method and their software implementation.

The purpose of the study is to develop and test algorithms for estimating measurement uncertainty based on the Monte Carlo method, which ensure the correct accounting of nonlinear dependencies, correlations and non-standard distributions of input quantities. To achieve this goal, software is being created that implements the proposed algorithms and allows for numerical modeling, analysis of results, and visualization of distributions in system analysis and management tasks.

Keywords: monte Carlo method, standard and expanded uncertainty, input correlation, distributions, software implementation.

Шаронов Павел Александрович

Аспирант,

Саратовский государственный технический университет имени Гагарина Ю.А., Саратов stalker-scharonov@mail.ru

Аннотация. В традиционной практике оценка неопределённости измерений выполняется по методу линейного распространения (GUM), который предполагает линейность модели, независимость и нормальность входных величин. Однако в реальных задачах системного анализа и управления модели часто нелинейны, распределения входов асимметричны, а параметры могут быть коррелированы. Это приводит к искажению результатов, что обуславливает необходимость разработки алгоритмов оценки неопределённости на основе метода Монте-Карло и их программной реализации.

Цель исследования заключается в разработке и апробации алгоритмов оценки неопределённости измерений на основе метода Монте-Карло, обеспечивающих корректный учёт нелинейных зависимостей, корреляций и нестандартных распределений входных величин. Для достижения этой цели создаётся программное обеспечение, реализующее предложенные алгоритмы и позволяющее проводить численное моделирование, анализ результатов и визуализацию распределений в задачах системного анализа и управления.

Ключевые слова: метод Монте-Карло, стандартная и расширенная неопределенность, корреляция входов, распределения, программная реализация.

Введение

Всё более остро стоит задача надёжной оценки неопределённости измерений. Неопределённость — это не просто погрешность прибора, это совокупность всех факторов, которые вызывают вариации результата измерения: шум, особенности метода, нелинейности, влияния среды, корреляции между входами, цифровая обработка и т.д. Без качественной оценки неопределённости невозможно корректно интерпретировать результаты измерений, сравнивать их, принимать решения по управлению на основе данных [1, 2].

Классическим подходом является метод, основанный на руководстве GUM (Guide to the Expression of Uncertainty in Measurement) и аналогичных стандартах, где неопределённости отдельных входов (источников) комбинируются через закон распространения неопределённости LPU (linear propagation / law of propagation of uncertainty). Однако такой подход имеет ограничения: он предполагает линейность модели или приближение линейности, нормальные (или близкие к нормальным) распределения входов, независимость влияющих величин, малость высших порядка членов в разложении и пр. [3, 4].

В последние годы стандарт дополняется или частично конкурируется методом Монте-Карло (МС), где не-

определённость оценок входов могут быть распределениями любой формы, могут учитывать корреляции, нелинейности и более сложные модели. Примеры применения метода Монте-Карло в настоящее время можно встретить метрологии, в измерениях формы, в измерениях скорости излучения и др.

В задачах системного анализа и управления часто требуется:

- оценивать надежность измерений, на которых строится управление;
- понимать, как ошибки и неопределённости измерений влияют на устойчивость или качество управления;
- при моделировании систем управления, особенно в реальном времени, желательно иметь оценку, а не просто точечное значение, чтобы управлять процессом с учётом риска.

При практическом применении (например, при работе с датчиками, системами автоматического регулирования, обработке сигналов) появляются нелинейные элементы, цифровая дискретизация, корреляции между сенсорами и т.д., что делает классический LPU-подход (линейная аппроксимация) недостаточным [2, 4].

Цель данного исследования — разработать и реализовать алгоритмы количественной оценки неопределённости измерения на основе метода Монте-Карло, способные работать в условиях:

- нелинейных моделей измерения,
- нестандартных распределений входных величин (не только нормальных),
- коррелированных входов,
- ограниченных вычислительных ресурсов (требуется адаптивный подход к числу симуляций).

Новизна исследования заключается в следующих аспектах:

- 1. Сочетание адаптивного метода Монте-Карло и анализа вклада входных параметров. Многие работы применяют МС при фиксированном числе симуляций, либо исключительно для распределений стандартного вида; наше исследование вводит критерий остановки симуляций при достижении заданной точности и анализ вклада каждого параметра в неопределённость.
- 2. Особое внимание к корреляциям между входными величинами. Хотя стандарты (например, JCGM 101 и 102) предусматривают возможность учёта корреляций, на практике многие исследования пренебрегают ими. В данной работе корреляции моделируются и их влияние на неопределённость тщательно исследуется.
- 3. Разработка модульного программного обеспечения, включающего визуализацию распреде-

- **пения результата, доверительных интервалов и анализ вклада входов.** Это обеспечивает воспроизводимость, прозрачность и возможность практического применения в лабораториях и прикладных системах управления.
- 4. Обоснование вычислительной эффективности. Работа рассматривает методы ускорения (например, уменьшение числа симуляций без потери точности) и демонстрирует, что при тщательно подобранных параметрах можно получить хорошую оценку неопределённости относительно затрат ресурсов.

Неопределённость измерения (measurement uncertainty) — параметр, характеризующий разброс значений, которые могут быть приписаны измеряемой величине, при условии повторяемой процедуры измерения. Включает как случайные, так и систематические источники [1, 3, 5].

Существует стандарт GUM («Guide to the Expression of Uncertainty in Measurement») и его дополнения, в частности JCGM 101:2008 — Supplement 1: Propagation of distributions using a Monte Carlo method — регулирующий распространение распределений входных величин через математическую модель измерения. Так же дополнение JCGM 102:2011 рассматривает модели с любым числом выходных величин (multivariate output quantities).

Подходы к оценке неопределённости:

- Классический подход (по GUM, линейный подход / law of propagation of uncertainty LPU): предполагается, что модель измерения либо линейна, либо может быть линеаризована; входные неопределённости заданы стандартными отклонениями (тип A и тип B), предполагаются независимость и нормальность распределений либо приближение к ним [6].
- Ограничения линейного подхода: при сильной нелинейности модели, сильных корреляциях между входами, нестандартных распределениях (ненормальных, асимметричных, с тяжёлыми хвостами) линейная аппроксимация может давать значительные искажения [1,3].
- Метод Монте-Карло (Monte Carlo Method, MCM) согласно стандарту, JCGM 101: позволяет задать распределения входов (любой формы, с корреляциями), простимулировать большое число реализаций измерительной модели, получить эмпирическое распределение измеряемой величины, оценить параметры этого распределения (среднее, стандартное отклонение, доверительный интервал, расширенную неопределённость) [8].

Постановка задачи и математическая модель

Пусть у нас имеется измерительная система, призванная оценить величину Y (измеряемая величина,

measurand), которая зависит от множества входных величин (влияющих параметров) $X_1, X_2, ..., X_n$ [7]. Эти входы могут быть случайными величинами с определёнными распределениями (тип A) или неопределённостями типа B (например, систематическими эффектами, характеристиками прибора и др.), возможно с корреляциями между ними.

Цель: построить алгоритм, который по заданным распределениям и корреляциям X_i , по математической модели $Y=f(X_1,\ldots,X_n)$ оценит:

- стандартную неопределённость результата U(Y)
- расширенную неопределённость U(Y) при заданном уровне покрытия (coverage factor, например 95 %)
- доверительный интервал результата (или функцию распределения результата)

Дополнительно: если модель f нелинейна, либо есть необходимость учесть коррелированность Xi, или распределения нестандартной формы, нужно, чтобы алгоритм корректно работал в этих условиях.

Математическая модель

Обозначим:

• $X=(X_1,X_2,...,X_n)$ — вектор входных величин

- Каждая X_i имеет распределение P_i, возможно с параметрами: математическое ожидание μ_i, стандартное отклонение σ_i, возможно плотностью p_i(x_i) (если непрерывная) или вероятностной функцией, если дискретная.
- Возможны корреляции между X_;; можно задать их через матрицу ковариаций Σ.

Модель измерения:

$$Y=f(X)$$

где f:Rn ightarrow R — заданная (возможно нелинейная) функция

Применение метода Монте-Карло

В данной работе для реализации выбран язык Python (версия ≥ 3.7), в силу его зрелой экосистемы для научных вычислений. В частности, используются:

- numpy для операций с массивами и генерации случайных величин,
- scipy.stats для распределений и статистических функций,
- matplotlib / seaborn для визуализации (гистограммы, плотности, доверительные интервенты),
- при необходимости библиотеки copulas, pandas, multiprocessing (для параллелизма).

Рис.1. Листинг 1. Фрагмент кода генерации выборок входных параметров X₁ с учётом распределений (Python)

```
def f_model(x):
   X1, X2, X3 = x
   return X1 * np.exp(X2) / (1 + np.sin(X3))
# Пример параметров распределений
dist_info = [
    {'type': 'normal', 'mu': 1.0, 'sigma': 0.1},
   {'type': 'lognormal', 'mean': 0.0, 'sigma': 0.2},
    {'type': 'uniform', 'low': 0.0, 'high': np.pi}
1
# Выполнение симуляции
result = simulate_uncertainty(f_model, dist_info, cov_matrix=None, N=200000)
print("Среднее Y:", result['mean'])
print("Стандартная неопределённость:", result['std_uncertainty'])
print("Доверительный интервал 95 %:", (result['ci_lower'], result['ci_upper']))
# Визуализация
plt.hist(result['samples'], bins=50, color='blue', edgecolor='black')
plt.xlabel('Y')
plt.ylabel('Частота')
plt.title('Гистограмма распределения Y')
plt.tight_layout()
plt.show()
```

Рис. 2. Листинг 2. Вычисление результатов $Y^{(j)} = f(X(j))$ и сбор статистики (среднее, стандартное отклонение, доверительные интервалы)

Такая комбинация обеспечивает балансмежду простотой кода, гибкостью настроек и производительностью.

Функция simulate_uncertainty генерирует N выборок входных параметров, учитывая заданные распределения и корреляции, вычисляет соответствующие значения результата Y, и оценивает статистики: среднее значение, стандартную неопределённость и доверительный интервал. Приведён код реализации, в экспериментальной части применён этот алгоритм к моделям (линейной, нелинейной, с коррелированными входами).

Приведённый выше код демонстрирует, каким образом можно смоделировать процесс распространения неопределённостей от входных параметров к результату измерения. В результате выполнения программы формируется массив значений $Y^{(j)}$, на основании которого вычисляются ключевые характеристики: среднее значение, стандартная неопределённость и доверительные интервалы. Такой подход позволяет учесть не только форму распределений входных параметров, но и их возможные корреляции и нелинейное влияние на выходную величину.

Графическое представление (гистограмма, плотность распределения) является удобным инструментом для визуальной оценки характера распределения результа-

та. В ряде случаев (например, при логнормальном или треугольном распределении входов) распределение результата может быть существенно асимметричным, и в таких ситуациях метод Монте-Карло даёт более реалистичную картину неопределённости по сравнению с классическим линейным подходом [9, 10].

- 1. **Гибкость в выборе распределений.** Возможность моделировать нормальные, логнормальные, равномерные, треугольные и другие распределения без ограничения линейной аппроксимацией.
- 2. **Учёт корреляций.** Реализация позволяет моделировать зависимые входные параметры, что крайне важно в реальных измерительных задачах.
- 3. **Визуализация результатов.** Гистограммы и доверительные интервалы позволяют не только численно, но и наглядно оценивать характер распределения результата.
- 4. **Адаптивность.** При необходимости число симуляций N можно увеличивать до тех пор, пока оценка неопределённости не станет устойчивой.

Заключение

В ходе исследования были рассмотрены проблемы традиционного подхода к оценке неопределённости

```
import numpy as np
import matplotlib.pyplot as plt
# Количество симуляций
N = 10000
np.random.seed(42)
# Генерация случайных входов
X1 = np.random.normal(1, 0.1, N)
X2 = np.random.lognormal(0, 0.2, N)
X3 = np.random.uniform(0, np.pi, N)
# Модель
Y = X1 * np.exp(X2) / (1 + np.sin(X3))
# Построение гистограммы
plt.figure(figsize=(8,5))
plt.hist(Y, bins=50, color='blue', edgecolor='black', alpha=0.7)
plt.xlabel("Значение результата Y")
plt.ylabel("Частота")
plt.title("Гистограмма распределения результата (нелинейная модель, Монте-Карло)")
plt.grid(axis='y', linestyle='--', alpha=0.6)
# Сохранение в PNG
plt.tight_layout()
plt.savefig("mc_histogram.png", dpi=300)
plt.show()
```

Рис. 3. Гистограмма распределения результата нелинейной модели, построенная методом Монте-Карло (N=10⁴). Распределение асимметрично, что подчёркивает необходимость применения численных методов вместо линейной аппроксимации

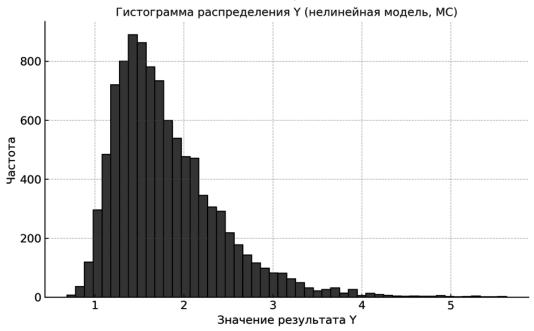


Рис. 4. Гистограмма распределения Ү (нелинейная модель, МС-симуляция)

измерений, основанного на линейной аппроксимации (метод GUM), и показано, что он недостаточен при наличии нелинейных моделей, асимметричных распределений и коррелированных входных величин. В качестве альтернативы разработаны алгоритмы на основе метода Монте-Карло, которые позволяют воспроизводить реальные распределения выходной величины и формировать более надёжные оценки стандартной и расширенной неопределённости [11].

Предложенные алгоритмы реализованы в программном обеспечении, которое поддерживает широкий набор распределений входных параметров, учитывает корреляции и обладает адаптивным механизмом выбора числа симуляций. Это делает метод практически применимым для задач метрологии, инженерных измерений и анализа систем управления.

Проведённые численные эксперименты показали, что:

- для простых линейных моделей с нормальными входами метод Монте-Карло даёт результаты, сопоставимые с классическим методом распространения неопределённостей;
- при усложнении модели (нелинейные зависимости, асимметрия распределений) классический метод существенно занижает неопределённость,

- тогда как Монте-Карло обеспечивает достоверную оценку;
- учёт корреляций между входными величинами в рамках Монте-Карло критически важен, поскольку их игнорирование может привести к серьёзным искажениям итоговой оценки.

Таким образом, применение метода Монте-Карло обеспечивает универсальность и гибкость при оценке неопределённости, а разработанное программное обеспечение делает данный подход доступным для широкого круга специалистов. Разработанный алгоритм может использоваться как в исследовательских целях, так и в практических приложениях:

- в метрологических лабораториях для подтверждения достоверности измерений [12],
- в системах управления для анализа устойчивости алгоритмов к возмущениям,
- в инженерных расчётах для оценки риска выхода параметров за допустимые пределы.

Программная реализация универсальна и может быть интегрирована в существующие системы анализа данных или представлена в виде отдельного модуля для специалистов в области измерений и управления.

ЛИТЕРАТУРА

- 1. Marschall M., Demeyer S., Petit S., Wübbeler G., Fischer N., Elster C. Utilizing prior knowledge about the measurement process for uncertainty evaluation through plain Monte Carlo sampling // International Journal of Metrology and Quality Engineering. 2024. Vol. 15. P. 14.
- 2. Mahmoud G. M., Hegazy R. S. Comparison of GUM and Monte Carlo methods for the uncertainty estimation in hardness measurements // International Journal of Metrology and Quality Engineering. 2017. Vol. 8, No. 6. P. 22.
- 3. Białek A., Vellucci V., Gentil B., Antoine D., Gorroño J., Fox N., Underwood C. Monte Carlo—Based Quantification of Uncertainties in Determining Ocean Remote Sensing Reflectance from Underwater Fixed-Depth Radiometry Measurements // Journal of Atmospheric and Oceanic Technology. 2020. Vol. 37, No. 2. P. 243—258.
- 4. Liu G., Wang H., Han Y., Liu C., Liang M. Application of the adaptive Monte Carlo method for uncertainty evaluation in the determination of total testosterone in human serum by triple isotope dilution mass spectrometry // Analytical and Bioanalytical Chemistry. 2024. Published online: 19 June 2024. DOI: 10.1007/s00216-024-05380-z.
- 5. Гаврилова А.С. МЕТОД МОНТЕ-КАРЛО В МОДЕЛИРОВАНИИ // Форум молодых ученых. 2019. №1-1 (29). URL: https://cyberleninka.ru/article/n/metod-monte-karlo-v-modelirovanii (дата обращения: 30.09.2025).
- 6. Божко Л.М. Использование метода Монте-Карло в имитационном моделировании экономических систем // Интеллектуальные технологии на транспорте. 2023. №1 (33). URL: https://cyberleninka.ru/article/n/ispolzovanie-metoda-monte-karlo-v-imitatsionnom-modelirovanii-ekonomicheskih-sistem (дата обращения: 30.09.2025).
- 7. В.А. Воеводин, Метод Монте-Карло для оценки устойчивости функционирования объекта информатизации в условиях массированных компьютерных атак. Вестн. Астрахан. гос. техн. ун-та. Сер. управление, вычисл. техн. информ., 2022, номер 2, 66—75.
- 8. Рукавишникова, А.И. Методы Монте-Карло и Квази Монте-Карло для решения систем линейных алгебраических уравнений: специальность 01.01.07 «Вычислительная математика»: автореферат диссертации на соискание ученой степени кандидата физико-математических наук / Рукавишникова Анна Игоревна. Санкт-Петербург, 2008. 16 с. EDN NKRMPR.
- 9. Кудряшов, С.Ю. Расчет термодинамических характеристик адсорбции метана и этана на графите методом Монте-Карло / С. Ю. Кудряшов // Журнал физической химии. 2024. Т. 98, № 10. С. 14—23. DOI 10.31857/S0044453724100031. EDN NMKHHW.
- 10. Павленко, Л. В. Параллельная реализация алгоритма прямого метода Монте-Карло для моделирования стационарного течения одноатомного газа / Л.В. Павленко, С.А. Маякова // Параллельные вычислительные технологии (ПаВТ′2010): Труды международной научной конференции, Уфа, 29 марта 02 2010 года / Ответственные за выпуск: Л.Б. Соколинский, К.С. Пан. Уфа: Издательский центр ЮУрГУ, 2010. С. 545—550. EDN RDXQKM.
- 11. Шаронов П.А., Ивженко С.П., Умнова Е.Г., Вагарина Н.С., Мельникова Н.И. Интервальный метод расчета неопределенностей в экспериментальных исследованиях тензодатчиков // Математическое моделирование, компьютерный и натурный эксперимент в естественных науках. 2021. №2. URL: https://cyberleninka.ru/article/n/intervalnyy-metod-rascheta-neopredelennostey-v-eksperimentalnyh-issledovaniyah-tenzodatchikov (дата обращения: 09.10.2025).
- 12. Шаронов П.А., Балабан О.М., Пчелинцева Е.Г., Гулевич Н.А. Математическая модель распространения неопределенности в измерительных системах // Математическое моделирование, компьютерный и натурный эксперимент в естественных науках. 2021. №2. URL: https://cyberleninka.ru/article/n/matematicheskaya-model-rasprostraneniya-neopredelennosti-v-izmeritelnyh-sistemah (дата обращения: 09.10.2025).

DOI 10.37882/2223-2966.2025.09.38

МОДЕЛИ ПРОГНОЗИРОВАНИЯ И АЛГОРИТМЫ АНАЛИЗА ВРЕМЕННЫХ РЯДОВ ДЛЯ УПРАВЛЕНИЯ БИЗНЕС-ПРОЦЕССАМИ В СФЕРЕ РОЗНИЧНЫХ ПРОДАЖ

FORECASTING MODELS AND TIME SERIES ANALYSIS ALGORITHMS FOR BUSINESS PROCESS MANAGEMENT IN RETAIL SALES

M. Shibichenko V. Pavlov

Summary. Retail enterprises strive to use their resources most effectively and make informed strategic decisions in order to survive and increase their income in today's conditions of ever-increasing competition. However, as is known, forecasts are characterized by a certain degree of uncertainty, therefore, in order to obtain the most reliable and accurate data, retailers need to use methods that will minimize this uncertainty. To date, a wide range of approaches has been developed for forecasting the activities of retailers, both using traditional mathematical and static apparatus, and based on modern technologies and capabilities of intelligent data processing. In this regard, the article presents the results of a comparative analysis of forecasting models and time series analysis algorithms for managing business processes in the field of retail sales. In addition, data obtained during a comparison of the accuracy of forecasting some models using the metric of the average absolute percentage error are presented.

Keywords: retail sales, forecasting, model, data, machine learning, statistics, error.

Шибиченко Михаил Иванович ковский финансово-юридический

Аспирант, Московский финансово-юридический университет МФЮА shibmish@yandex.ru

Павлов Валерий Анатольевич

кандидат экономических наук, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет»

Testerpav@gmail.com

Аннотация. Предприятия розничной торговли стремятся наиболее эффективно использовать свои ресурсы и принимать взвешенные стратегические решения, чтобы выжить и увеличить свои доходы в современных условиях постоянно растущей конкуренции. Однако, как известно, для прогнозов характерна та или иная степень неопределенности, поэтому для получения максимально достоверных и точных данных ретейлерам необходимо использовать такие методы, которые позволят минимизировать эту неопределенность. На сегодняшний день наработан широкий спектр подходов для прогнозирования деятельности розничных продавцов, как с использованием традиционного математического и статического аппарата, так и на базе современных технологий и возможностей интеллектуальной обработки данных. В связи с этим в статье представлены результаты сравнительного анализа моделей прогнозирования и алгоритмов анализа временных рядов для управления бизнес— процессами в сфере розничных продаж. Кроме того, приведены данные, полученные в ходе сравнения точности составления прогнозов некоторых моделей с использованием метрики средней абсолютной процентной ошибки.

Ключевые слова: розничные продажи, прогнозирование, модель, данные, машинное обучение, статистика, ошибка.

В XXI веке. В эпоху промышленной революции 4.0, сквозной цифровизации и высокотехнологичных инноваций интуитивное принятие решений заменяется анализом и прогнозным моделированием. Информационные технологии играют ключевую роль в сокращении времени обработки данных и обеспечении точности, надежности и достоверности результатов, что чрезвычайно полезно для многоуровневых прогнозов и принятия бизнес-решений в высоко динамичных секторах экономики, таких как розничная торговля.

Сектор розничной торговли представляет собой сочетание неорганизованных и организованных предприятий. Большинство неорганизованных предприятий принимают решения умозрительно или руководствуясь

опытом владельцев, тогда как организованные предприятия розничной торговли предпочитают вырабатывать программы действий на основе результатов обработки данных/информации [5]. Бесспорным является тот факт, что в современных условиях точное прогнозирование продаж имеет решающее значение для принятия широкого спектра управленческих решений ритейлерами, таких как ценообразование, распределение торговой площади, включение/исключение товаров из ассортимента, заказы и управление запасами.

Точный прогноз — единственный способ, с помощью которого торговые предприятия могут предсказать, какие товары потребуются в каждом магазине и по каждому каналу в любой день, а это, в свою очередь, единственный способ обеспечить высокую доступность продукции для покупателей при минимальном риске накопления избыточных запасов. Надежный прогноз, используемый во всех операциях розничной торговли, помимо этого, может помочь в контроле за мощностями, обеспечении оптимальной численности персонала в магазинах и распределительных центрах, а также облегчить менеджерам управление сложными закупками с длительными сроками поставки. Составить точный прогноз в стабильных условиях довольно просто для чего традиционно используются статистические методы, такие как, линейная регрессия.

Однако, как уже отмечалось ранее, розничная торговля по своей природе динамична, и на спрос постоянно влияют сотни факторов. В таких условиях статистические методы зачастую оказываются недостаточными при работе со сложными и быстро меняющимися данными о розничных продажах, которые включают в себя многочисленные семейства продуктов, различные сезонные модели и другие внешние факторы. Еще несколько десятилетий назад прогноз продаж мог включать в себя несколько переменных, которые отражали основные факторы, оказывающие существенное влияние на результаты работы предприятия, растет интерес к использованию в задачах прогнозирования розничных продаж передовых информационных технологий, методов интеллектуального анализа, машинного обучения для повышения точности и надежности будущих трендов. Учеными и экспертами разрабатывается множество подходов и методов в этом направлении, поэтому изучение современных инструментов, техник и моделей, сфер их использования, ограничений и требований для составления достоверных прогнозов представляет собой актуальную научно-практическую задачу, которая и предопределила выбор темы данной статьи.

В течение последних нескольких десятилетий много усилий было посвящено разработке и совершенствованию моделей прогнозирования продаж в розничной торговле. В данном направлении можно отметить наработки, как отечественных, так и зарубежных ученых, в частности, анализ различных моделей машинного обучения для прогнозирования основных показателей работы торговых предприятий, включая особенности настройки гиперпараметров [1; 9], разработка модельной системы прогнозирования продаж розничными магазинами с учетом рекламной (и другой) информации, которая основана на моделях множественной линейной регрессии и более сложных эконометрических моделях, экзогенные входные данные которых соответствуют сезонности, календарным событиям, погодным условиям, ценам и особенностям рекламных акций [6; 10], подходы к решению задач повышения точности прогнозирования при использовании как нелинейных моделей, так и линейных регрессий [3; 4; 7].

В тоже время, несмотря на значительное количество публикаций и постоянный интерес ученых к рассматриваемой проблематике, ряд вопросов требует более детального анализа. Так, по-прежнему не преодолены трудности с обеспечением эффективной обработки многомерных данных о розничных продажах, таких как, сложная сезонность и огромное количество семейств продуктов. Принимая во внимание тот факт, что на сегодняшний день существуют различные модели машинного обучения, открытым остается вопрос разработки надежного решения, которое бы интегрировало эти подходы для комплексного повышения точности прогнозирования продаж торговыми предприятиями.

Таким образом, цель статьи заключается в рассмотрении различных моделей прогнозирования и алгоритмов анализа временных рядов для управления бизнеспроцессами в сфере розничных продаж.

Традиционно прогнозирование продаж начиналось с несложной формулы — часто линейной регрессионной модели — и аналитики просто подставляли ключевые переменные в эту формулу. Так до сих пор работает часть программного обеспечения для прогнозной аналитики, и это может быть в некоторой степени эффективно. В целом модели прогнозирования продаж на основе временных рядов разделяются на две категории: линейные и нелинейные модели. Среди линейных моделей методы экспоненциального сглаживания и модель авторегрессионных интегрированных скользящих средних имеют множество эффективных применений [8]. В результате они на протяжении долгого времени играют особую роль в прогнозировании продаж. Авторегрессионная дробно интегрированная скользящая средняя это версия модели с длинной памятью. Она позволяет интегрировать ряды дробно, что дает возможность уловить длинную память рядов. Многие временные ряды демонстрируют долгосрочную зависимость, и модели авторегрессионных интегрированных скользящих средних иногда дают значительно более точные прогнозы, чем модели другого типа для различных наборов финансовых и макроэкономических данных, а также для совокупных розничных продаж.

Методы экспоненциального сглаживания используются уже более пятидесяти лет благодаря своей простоте и тому, что они не требуют сложных вычислений. Это особенно выгодно в часто встречающихся случаях, когда требуется надежный метод прогнозирования, способный в кратчайшие сроки формализовать будущий тренд по многим переменным. Методы экспоненциального сглаживания заключаются в отдельном определении форм, принимаемых двумя компонентами данных: трендом и сезонностью. Учитывая различные структуры тренда и сезонности, можно определить несколько компонентов тренда и сезонности, что дает возможность

создать несколько комбинаций, каждая из которых представляет собой отдельный метод экспоненциального сглаживания [10].

Учитывая значительное количество вариаций линейных и нелинейных моделей в таблице 1 представлена их краткая сравнительная характеристика.

Хотя модели регрессии и временных рядов являются мощными, они часто требуют определенных предположений о связях и закономерностях данных, что не всегда возможно осуществить. В данном контексте исследователи отмечают, что более точное и достоверное прогнозирование в сфере розничных продаж начинается с определения переменных, а затем выбора алгоритма интеллектуального анализа данных или комбинации алгоритмов, наиболее подходящих для конкретного запроса и задачи [5]. Фактически, применяя машинное обучение и искусственный интеллект к своим наборам данных, ритейлеры могут эффективно пропускать имеющиеся у них сведения через несколько уровней прогнозных моделей, чтобы учесть все важные факторы и отсеять ненужные.

Алгоритмы машинного обучения и глубокого обучения могут обрабатывать гораздо более сложные данные с меньшим количеством допущений. Они хорошо подходят для ситуаций, когда на модели продаж влияют многие взаимосвязанные факторы. Такие модели наиболее ценны для крупных торговых организаций с большим объемом данных и сложной динамикой продаж. Эти модели могут улавливать тонкие закономерности и взаимодействия, которые не очевидны для других методов и подходов, что дает преимущество предприятиям, работающим в высококонкурентных отраслях.

На рис. 1 систематизированы основные преимущества технологий искусственного интеллекта для прогнозирования временных рядов в сфере розничных продаж.

Значительное количество существующих исследований в области управления бизнес-процессами в сфере розничных продаж сосредоточены на разработке и обосновании универсального метода прогнозирования, который можно применить ко всем исследуемым продуктам, в рамках любого предприятия и отраслевого сегмента [2]. Однако, согласно теореме Вольперта–Макреди о невозможности универсального оптимизатора,

Таблица 1. Сравнительная характеристика алгоритмов анализа временных рядов в сфере розничной торговли (составлено автором)

Алгоритм / метод	Тип модели	Математическая основа	Сильные стороны	Ограничения применения	Область использования
Модель структур- ных временных рядов	Статистическая, компонентная	Декомпозиция на тренд, сезонность и шум	Высокая интерпретируе- мость, применима к нерегу- лярным данным	Требует априорного выбора компонент, менее точна на сложных рядах	Анализ тенденций выруч- ки, сезонных циклов
Коэффициентный метод Холта— Уинтерса	Аддитивная/ Мультипли- кативная	Экспоненциальное сглаживание	Удобна для реализации в ERP-системах, учитывает сезонность	Плохо адаптируется к резким внешним из- менениям в спросе	Прогнозирование товарооборота в условиях регулярных колебаний
Гармонический анализ	Спектральный	Разложение по частот- ным компонентам	Выявляет скрытые циклы и периодичности, высокое разрешение	Неустойчив к выбросам и шуму, требует сглажи- вания	Детектирование скрытых сезонных колебаний спроса
Модели состоя- ния Калмана	Стохастическая	Оценка скрытых пере- менных и шумов	Высокая устойчивость к пропускам, адаптивность к изменениям	Сложность реализации, требует точной настройки матриц	Онлайн-прогнозирование продаж в системах автоматического пополнения
Динамическая регрессионная модель	Статистическая	Множественная регрессия с лагами	Учитывает внешние факторы, динамику и временные связи	Требует подробной инженерии признаков и регуляризации	Оценка влияния внешних событий на продажи
Байесовские временные ряды	Вероятностная, итеративная	Байесовская оценка параметров	Учитывает неопределён- ность, строит интервальные прогнозы	Трудоёмкость в вычислениях, требует экспертизы в статистике	Стратегическое планирова- ние и оценка рисков
Модель с ограниченной памятью	Эвристическая	Адаптивное усечение истории	Подходит для высокочастот- ных данных с обрывами	Меньшая точность при долгосрочном прогнозе	Прогноз трафика и кратко- срочных продаж в элек- тронной коммерции

Структура спроса

Сезонность, тенденции, колебания спроса в зависимости от дня недели

Бизнес-решения

Промоакции и изменения цен, изменения ассортимента, изменения в выкладке и размещении товаров

Внешние факторы

Праздники, посещаемость, погода, местные события, действия конкурентов

Точные прогнозы для всего розничного планирования

Сверхдетальные прогнозы по каждому продукту, дню и магазину или каналу реализации

Горизонт прогнозирования от следующего дня до следующего года

Рис. 1. Возможности ИИ для прогнозирования временных рядов в сфере розничных продаж (составлено автором)

ТЕХНОЛОГИИ ИСКУССТВЕННОГО

ИНТЕЛЛЕКТА

нет гарантии того, что какой-либо метод, каким бы сложным он ни был, будет работать лучше для одного набора серий, чем другой метод. Это означает весьма низкую вероятность того, что один метод будет доминировать над другими для всех продуктов и всех будущих периодов времени. Данные об относительной эффективности того или иного подхода являются специфически-

ми, поскольку розничные продажи имеют уникальные характеристики, которые не соответствуют массовым исследованиям «конкуренции». Это подчеркивает важность выбора метода, соответствующего характеристикам конкретной задачи управления бизнес-процессами в сфере розничных продаж.

Таблица 2. Сравнительная характеристика моделей прогнозирования для управления бизнес-процессами в сфере розничных продаж (составлено автором)

			• • • • • • • • • • • • • • • • • • • •	•	
Модель прогнозирования	Тип модели	Основные данные	Преимущества	Ограничения	Применение в ритейле
Линейная регрессия	Статистическая	Исторические продажи, цена, на- логовые ставки	Простота, интерпрети- руемость	Не учитывает сезонность и нелинейные тренды	Прогноз продаж на основе ценовых изменений
Экспоненциальное сглаживание (ETS)	Временные ряды	Временные ряды продаж	Учитывает тренды и сезон- ность	Не всегда точно при рез- ких колебаниях спроса	Краткосрочные прогнозы по товарным категориям
ARIMA / SARIMA	Временные ряды	Продажи, сезон- ность, лаги	Гибкость, сезонные и трендовые компоненты	Сложность настройки, требует стационарности	Сезонные прогнозы спроса на товары
Решающие деревья / Random Forest	Машинное обучение	Продажи, акции, погода, события	Обнаруживает нели- нейные связи, хорошо работает с шумами	Сложности с интерпретацией результатов, требуется много данных	Оценка влияния промо-кам- паний
XGBoost / CatBoost	Градиентный бустинг	Многофакторные данные	Высокая точность, устой- чивость к переобучению	Сложная настройка, требуется инженерия признаков	Модели прогнозирования ассортимента и выручки
LSTM (нейросеть)	Глубокое об- учение	Последовательности продаж по времени	Учитывает долгосрочную память, тренды, циклы	Требует большого объема данных и времени на об- учение	Долгосрочный прогноз по то- варам или магазинам
Имитационное моделирование	Стохастическая модель	Логистика, поведе- ние покупателей	Учет случайностей, гиб- кость в сценариях	Не даёт точного про- гноза, а только диапазон результатов	Планирование персонала, запасов, доставки

Другой способ получения более точных прогнозов — использование комбинированных методов, основанных на использовании более одной модели для выявления будущих тенденций и трендов. В то время как отдельный метод может представлять свой собственный уникальный механизм построения прогнозов, комбинированные методы позволяют объединять возможности различных подходов и инструментов. Кроме того, благодаря этому преодолеваются недостатки каждой отдельной модели.

Обобщая результаты проведенного выше анализа, в таблице 2 представлена сравнительная характеристика различных моделей прогнозирования в розничной торговле.

Также в контексте проводимого исследования отдельного внимания, по мнению автора, заслуживает не только анализ возможностей, но и анализ точности моделей прогнозирования и алгоритмов анализа временных рядов (см. рис. 2.

На рис. 2 показано сравнение различных моделей прогнозирования по метрике МАРЕ. С использованием указанных моделей составлялся прогноз недельных продаж определённой товарной категории в модельной сети магазинов. Полученные результаты позволяют сделать такие выводы:

Линейная регрессия имеет наибольшую погрешность (~18,2 %). Ее достоинством является простота использования, однако результаты неточные, особенно при нелинейных зависимостях, в условиях большой цикличности, в случае появления нерегулярных событий и влияния неопределённости.

- 2. ETS и SARIMA более точны, хорошо подходят для сезонных данных.
- 3. Random Forest и XGBoost показывают высокую точность при наличии множества факторов.
- 4. LSTM самая точная модель, особенно эффективна при длинных временных рядах.

Подводя итоги проведенного исследования, можно сделать следующие выводы.

В современных рыночных условиях, когда конкуренция растет с каждым днем, а срок службы продукции сокращается, компаниям необходимо быть быстрыми, гибкими и маневренными, чтобы выдержать высокую конкуренцию. В данном контексте прогнозирование продаж на уровне продукта в розничной торговле имеет важное значение для рационального планирования бизнеса, повышения эффективности обслуживания, наращивания прибыльности и укрепления рыночных позиций. С этой целью на сегодняшний день разработан широкий спектр методов и подходов, каждый из которых имеет свои отличительные характеристики, необходимую для моделирования информационную базу, сферы применения и ограничения.

В статье представлены результаты сравнительного анализа моделей прогнозирования и алгоритмов анализа временных рядов для управления бизнес— процессами в сфере розничных продаж. Кроме того, приведены результаты сравнения точности составления прогнозов некоторых моделей с использованием метрики средней абсолютной процентной ошибки.

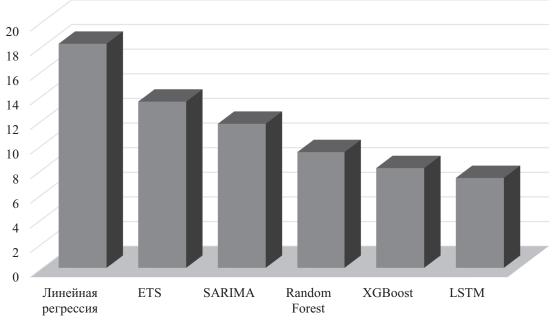


Рис. 2. Сравнений моделей прогнозирования по метрике МАРЕ, % (составлено автором)

ЛИТЕРАТУРА

- 1. Вишневский В.М., Леохин Ю.Л., Фатхулин Т.Д., Занегин А.В. Методы машинного обучения в решении задачи прогнозирования спроса на отдельные виды товаров // T-Comm: Телекоммуникации и транспорт. 2024. Т. 18. № 10. С. 34—43.
- 2. Гончар А.А. Использование предиктивной аналитики для повышения эффективности бизнеса // Актуальные исследования. 2023. № 50-4 (180). С. 22—46.
- 3. Иванов М.Ю., Сыготина М.В., Надршин В.В., Дербенёва А.В. Технологии интеллектуального анализа данных в решении экономических задач // Baikal Research Journal. 2022. Т. 13. № 2. С. 39—44.
- 4. Перстенева Н.П., Гоголев А.О. Обзор текущего состояния использования технологий искусственного интеллекта российскими розничными компаниями для задач прогнозирования // Экономика и предпринимательство. 2022. № 8 (145). С. 864—866.
- 5. Рассохин В.Р., Черкасова Ю.И. Сравнительная оценка моделей прогнозирования продаж в розничной торговле // Торговля, сервис, индустрия питания. 2024. Т. 4. № 3. С. 227—240
- 6. Чувикин П.А., Климов Д.С. Прогнозирование объема продаж с применением адаптивных моделей // Сборник научных трудов вузов России «Проблемы экономики, финансов и управления производством». 2025. № 56. С. 226—229.
- 7. Lei Da., Hu H., Geng D., Zhang J. New product life cycle curve modeling and forecasting with product attributes and promotion: A Bayesian functional approach // Production and Operations Management. 2022. Vol. 32 (2). P. 107–113.
- 8. Lind G., Ramesh K. Using internet search data to predict aggregate retail sales and enhance firm-level revenue expectations // Contemporary Accounting Research. 2025. Vol. 56. P. 19–25.
- 9. Skenderi G., Joppi Ch., Denitto M., Cristani M. Well googled is half done: Multimodal forecasting of new fashion product sales with image-based google trends // Journal of Forecasting. 2024. Vol. 43 (6). P. 45–51.
- 10. Sweeney K., Evers Ph. T., Duan Y., Windle R. Trade-offs between operational performance and sales in a retail environment: The simultaneous impact of product variety on inventory levels, product availability, and sales // Journal of Business Logistics. 2023. Vol. 44 (3). P. 70–75.

© Шибиченко Михаил Иванович (shibmish@yandex.ru); Павлов Валерий Анатольевич (Testerpav@gmail.com) Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.03

НАРУШЕНИЕ РИТМА И ПРОВОДИМОСТИ СЕРДЦА У БОЛЬНЫХ С СЕРОНЕГАТИВНЫМИ СПОНДИЛОАРТРИТАМИ. ЧАСТОТА ВСТРЕЧАЕМОСТИ, ФАКТОРЫ РИСКА

RHYTHM AND CONDUCTION DISORDERS IN PATIENTS WITH SERONEGATIVE SPONDYLARTHRITIDES. INCIDENCE AND RISK FACTORS

V. Bogatyreva N. Morova

Summary. The article presents the results of a study that evaluated the frequency of cardiac arrhythmias and conduction disorders in patients with seronegative spondylarthritis and identified the factors that influenced their development. Materials and methods. The study included 120 patients with seronegative spondylarthritis who were treated at the Rheumatology Department of the Omsk Regional Clinical Hospital. All patients underwent 12-lead electrocardiography and echocardiography. Various rhythm and conduction disorders of the heart were detected in 48 (40 %) of the 120 patients. Supraventricular extrasystoles (p = 0.0525) and ventricular extrasystoles (p = 0.0249) were detected significantly more often. Atrioventricular block of grades 1 and 2 was detected in 8.3±2.5 % of cases (n=10). The analysis of correlation relationships showed that the duration of the PQ interval depends on the age of the patients (r=0.3, p=0.000526) and the weight of the patients (r=0.3, p=0.000976). Arrhythmia and conduction disorders in patients with CnsSpA were associated with the presence of arterial hypertension.

Keywords: seronegative spondylarthritides, cardiac conduction disorders, risk factors.

Богатырева Валентина Александровна

Аспирант, ФГБОУ ВО «Омский государственный медицинский университет» Министерства здравоохранения Российской Федерации; врач-ревматолог ревматологического отделения БУЗОО «Областная клиническая больница» wala.miller1987@mail.ru

Морова Наталия Александровна

д.м.н., профессор, ФГБОУ ВО «Омский государственный медицинский университет» Министерства здравоохранения Российской Федерации nataliya-morova@yandex.ru

Аннотация. В статье представлены результаты исследования, в ходе которого проведена оценка частоты нарушений ритма и проводимости сердца у больных серонегативными спондилоартритами и выявлены факторы, влияющие на их развитие. Материалы и методы. Обследовано 120 пациентов, страдающих серонегативными спондилоартритами, проходившие лечение в отделении ревматологии Омской областной клинической больницы. Всем больным проводилась электрокардиография в 12 отведениях и эхокардиография. У 48 (40 %) человек из 120 обнаружены различные нарушения ритма и проводимости сердца. Достоверно чаще выявлены суправентрикулярные экстрасистолы (р = 0,0525) и желудочковые экстрасистолы (р = 0,0249). Атриовентрикулярная блокада 1 и 2 степени обнаружена в 8,3±2,5 % случаях (п=10). Анализ корреляционных связей показал зависимость длительности интервала PQ от возраста больных (r=0,3 p=0,000526) и веса пациентов (r=0,3 p=0,000976). Нарушение ритма и проводимости у пациентов с СнСпА было ассоциировано с наличием артериальной гипертензии.

Ключевые слова: серонегативные спондилоартриты, анкилозирующий спондилит, псориатический артрит, нарушение проводимости сердца, факторы риска.

ри серонегативных спондилоартритах (СНСПА) возникновение патологии сердца не является редкостью. Ранняя диагностика нарушения ритма и проводимости у пациентов с СНСПА не вызывает сомнений. Представляет интерес выяснение связи между изменениями, регистрируемыми при проведении электрокардиографии и активностью процесса, наличием HLA В 27 антигена, возможностью влияния лекарственной терапии на их развитие.

Есть множество работ, доказывающих высокую частоту встречаемости различных нарушений ритма и проводимости у больных СнСпА. Г.П. Котельникова и соавторы в 1993 году выявляли нарушения проводимости у 21 %

больных анкилозирующим спондилитом [1]. Годзенко О.А. и совт. (2009 г.) выявили нарушения ритма и проводимости у 67 из 344 (19,5 %) человек данной категории пациентов [2]. При сравнительном анализе данных ЭКГ — мониторирования в работе Малых И.А. (2007 г.) отмечено достоверное увеличение частоты выявления наджелудочковых аритмий в виде эктрасистолии и наджелудочковой тахикардии у больных АС по сравнению с группой здоровых лиц и группой больных ревматоидным артритом [3]. D. Lautermann и J. Braun (2002 год) выявили зависимость частоты нарушений проводимости сердца от длительности болезни [4]. Малых И.А. (2007 год) в своей работе отмечал корреляционную взаимосвязь суточного количества и максимальных града-

ций желудочковых экстрасистол с такими показателями, как длительность заболевания АС, уровнем сывороточного СРБ [3]. У зарубежных авторов однозначного мнения о связи между маркерами активности заболевания при СнСпА (СОЭ и СРБ) и развитием нарушений проводящей системы нет [5].

Неоднократно разными авторами обсуждалась ассоциация изменений сердца при АС с антигеном гистосовместимости HLA-B27. По данным L.Bergfeldt (1982 г.), аортит и атриовентрикулярная блокада ассоциированы с носительством HLA-B27-антигена в 67–88 % случаев [6]. Годзенко А.А и соавторы показали, что у больных с HLA-B27-ассоциированным СнСпА чаще встречаются нарушения проводимости сердца как на уровне АВ-соединения, так и в нижележащих отделах проводящей системы [7]. Однако, исследование шведских ученных 2013 года указывает на отсутствие связи между носительством данного антигена и нарушением сердечной проводимости [8].

Вопрос о возможности влияния на сердечный ритм и проводимость антигена HLA B27 и лабораторных маркеров воспаления остается дискутабельным. Работ, показывающих влияние определенного вида терапии на развитие нарушений ритма и проводимости, нам не встретилось, что требует дальнейшего изучения этой проблемы.

Цель исследования: оценка частоты нарушений ритма и проводимости сердца у больных СнСпА и выявление факторов, влияющих на их развитие.

Материалы и методы

Объектом исследования были 120 пациентов, страдающих серонегативными спондилоартритами, проходившие лечение в отделении ревматологии Омской областной клинической больницы. Из них диагноз анкилозирующего спондилита, согласно модифицированным Нью-Йорским критериям 1984 года, установлен 78 (65±4,3 %) пациентам. Псориатический артрит, согласно критериям CASPAR 2006 года, диагностирован у 42 (35±4,3 %) человек. В исследуемой группе было 83 (69,2±4,4 %) мужчины и 37 (30,8±4 %) женщин. Медиана [25-й, 75-й перцентили] возраста больных составили 45,5 (36; 54) лет, медиана продолжительности болезни 9 [3,5; 15] лет. Исследование крови на наличие HLA В 27 антигена выполнено у 71 человека из 120, из них HLA В 27-позитивными оказались 48 (67,6±4,2 %) пациентов, HLA B 27-негативными — 24 (32,4±4,2 %) человека. Высокая клиническая активность заболевания установлена у 89 (74,1±3,9 %) пациентов, низкая активность у 24 (20±3,6 %), в ремиссии были 7 человек из 120 (5,8±2,1 %). Количество пациентов, лечение которых проводилось лишь препаратами группы НПВП, составило 20 (16,5±3,4%) человек. Базисные синтетические противовоспалительные препараты (сульфасалазин или метотрексат) принимали 52 (43,3±4,5 %) пациента. На терапии генно-инженерными биологическими препаратами находилось 48 (40±4,4 %) человек. Из них, терапию этанерцептом получали 12 (25±6,2 %) пациентов, инфликсимабом — 11 (22,9±6,06 %), адалимумабом — 10 (20,8±5,8 %), секукинумабом — 4 (8,4±3,9 %), нетакимабом — (8,4±3,9 %), голимумабом — 3 (6,25±3,4 %), упадацитинибом — 3 (6,25±3,4 %), синепрутогом — 1 (2±2 %) человек. Группу контроля составили пациенты, которые проходили лечение в различных отделениях областной клинической больницы в декабре 2024 года. Больные с ревматологическими заболеваниями, воспалительными заболеваниями кишечника, псориазом в данную группу не включались. Группа контроля состоит из 129 человек, в которой 60 (46,5±4,3 %) мужчин и 69 (53,5±4,3 %) женщин. Медиана [25-й, 75-й перцентили] возраста больных составили 57 (38; 64) лет. Всем больным проводилась электрокардиография в 12 отведениях.

Статистическая обработка данных проведена с использованием статистического пакета Statistica 10. Оценка вида распределения количественных непрерывных данных проведена путём расчёта критерия Шапиро-Уилки. Для сравнения двух групп по количественным показателям использовался U-критерий Манна-Уитни, трех групп критерий Краскела-Уоллиса. Сопоставление групп по качественным бинарным признакам проведена с помощью двустороннего критерия Фишера. Проведен корреляционный непараметрический анализ по Спирмену. Различия считались достоверными при уровне значимости р <0,05.

Результаты

При анализе ЭКГ у больных серонегативными спондилоартритами выявлены следующие нарушения ритма и проводимости сердца (таблица 1): атриовентрикулярная блокада 1 и 2 степени, блокады ножек пучка Гиса, экстрасистолы, тахикардия и брадикардия. В группе пациентов СнСпА они обнаружены у 48 (40±4,4 %) человек из 120, в группе контроля у 39 (30,2±4 %) пациентов из 129 (р = 0,1125). Из них нарушение ритма в виде синусовой тахикардии с частотой более 90 ударов в минуту выявлены у 16 (13,3±3,07 %) человек и у 25 (19,4±3,4 %) соответственно (р = 0,237). Синусовая брадикардия зарегистрирована у 5 (4,2±1,83 %) пациентов в первой группе, и у 9 (7±2,2 %) во второй (p = 0,4148). В группе пациентов с СнСпА обнаружены суправентрикулярные экстрасистолы у 4 (3,3±1,6 %) человек, в контрольной группе данного нарушения ритма сердца не зарегистрировано (р = 0,0525), желудочковые экстрасистолы выявлены у 5 (4,2±1,8 %) пациентов больных СнСпА, в контрольной группе они достоверно не обнаружены (p = 0.0249).

Таблица 1.

Нарушение сердечного ритма и проводимости

у пациентов с СнСпА в сравнении с группой контроля

Клинический признак	Группа пациен- тов с СнСпА	Группа контроля	Р для критерия Фишера, p(F)
Нарушения ритма и проводимости сердца абс., (%±Sp)	47 (40±4,4 %)	39 (30,2±4 %)	p(F)=0,1125
Синусовая тахикар- дия абс., (%±Sp)	16 (13,3±3,07 %)	25 (19,4±3,4 %)	p(F)=0,2327
Синусовая брадикар- дия абс., (%±Sp)	5 (4,2±1,83 %)	9 (7±2,2%)	p(F)=0,4148
Суправентрикуляр- ные экстрасистолы абс., (%±Sp)	4 (3,3±1,6 %)	0	p(F)=0,0525
Желудочковые экстрасистолы абс., (%±Sp)	5 (4,2±1,8 %)	0	p(F)=0,0249
Атриовентрикуляр- ные блокады 1 и 2 степени абс., (%±Sp)	10 (8,3±2,5 %)	0	p(F)=0,0006

Клинический признак	Группа пациен- тов с СнСпА	Группа контроля	Р для критерия Фишера, p(F)
Неполная блокада левой ножки пучка Гиса абс., (%±Sp)	8 (6,7±2,2 %)	7 (5,4±1,9 %)	p(F)=0,7921
Полная блокада левой ножки пучка Гиса абс., (%±Sp)	2 (1,7±1,1 %)	0	p(F)=0,7921
Неполная блокада правой ножки пучка Гиса абс., (%±Sp)	10 (10±0,9 %)	2 (1,6±1,1 %)	p(F)=0,0162

Из таблицы видно, что у больных СнСпА достоверно чаще встретились нарушения проводимости в виде неполной блокады правой ножки пучка Гиса и атриовентрикулярной блокады 1 и 2 степени. Атриовентрикулярная блокада 1 и 2 степени обнаружена в 8,3±2,5 % случаях (n=10). У большинства пациентов определялась АВблокада 1 степени, это 7 (5,8±2,1 %) пациентов из 10, АВблокада 2 степени у 3 (2,5±1,4 %) человек (рисунок 1, 2).

Всем пациентам с атриовентрикулярной блокадой 2 степени потребовалась имплантация ЭКС.

Проведен анализ связей ряда факторов с наличием или отсутствием аритмии (Таблица 2,3).

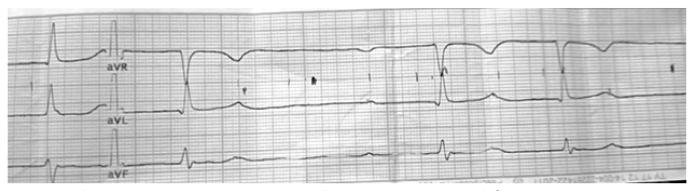


Рис. 1. Пациент K, 53 лет. Анкилозирующий спондилит. Преходящая AB-блокада 2–3 степени (Собственное наблюдение)

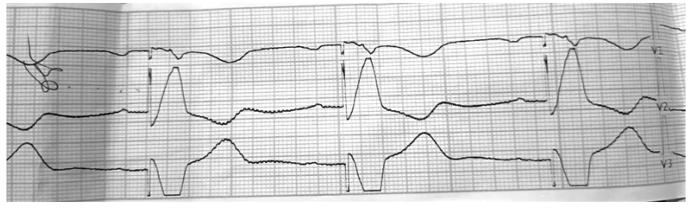


Рис. 2. Пациент К, 53 лет. Анкилозирующий спондилит. Преходящая АВ-блокада 2 степени. Имплантированный ЭКС

Таблица 2. Факторы риска нарушения ритма и проводимости сердца у больных с СнСпА

Клинический признак	Есть нарушение ритма и прово- димости (n=47)	Нет нарушения ритма и прово- димости (n=73)	Р для критерия Фишера, p(F) / для критерия Манна-Уитни, p(U)
Мужской пол	33 (70 ± 6,6 %)	50 (68 ± 5,4 %)	p(F)=1,000
Женский пол	14 (29,7 ± 6,6 %)	23 (31,5 ± 9,7 %)	p(F)=1,000
Наличие анти- гена HLA B 27	19 (40,4±7,1 %)	29 (39,7±5,7 %)	p(F)=0,3105
Высокая активность заболевания	36 (76,5 ±6,1 %)	52 (71,2 ± 5,2 %)	p(F)= 0,4117
Диагноз АС	32 (68 ± 6,8 %)	46 (63 ± 5,6 %)	p(F)=0,8562
Диагноз ПсА	15 (31,9 ±6,7 %)	27 (36,9±5,6 %)	p(F)=0,8562
Артериальная гипертензия	27 (57,4 ± 7,2 %)	26 (35,6%±5,5 %)	p(U) = 0,0481

Таблица 3.

Факторы риска нарушения ритма и проводимости сердца у больных с СнСпА

Клинический признак	Есть наруше- ние ритма и проводимо- сти (n=47)	Нет нарушения ритма и прово- димости (n=73)	Р для критерия Фишера, p(F) / для критерия Манна-Уитни, p(U)
Возраст, годы	50 (39; 59)	44 (34;52)	p(U) = 0,6952
Рост, см	172 (165; 180)	171 (165; 178)	p(U) = 0,5043
Вес, кг	85 (72: 100)	77 (65; 92)	p(U) = 0,5688
Продолжитель- ность болезни	10 (3; 15)	8 (4; 15)	p(U) = 0,8814
СОЭ, мм/час	15 (4; 27)	10 (5, 21)	p(U) = 1,000
СРБ г/л	16 (2,4; 34)	10,3 (3,08; 24,5)	p(U) = 0,7912

При анализе влияния пола на ритм и проводимость у больных СнСпА, значимых различий не выявлено (P=1,000). Не отмечено статистически значимой ассоциации между носительством гена HLA В 27 и наличием нарушений ритма и проводимости сердца у больных СнСпА (p=0,1841). Проведено исследование частоты АВ блокад у HLA В 27 ассоциированных пациентов. Из 10 пациентов с АВ блокадами, 8 человек были носителями гена HLA В 27, однако ассоциация между признаками

также не показала статистически значимых различий (р=0,2545). Закономерным является вопрос о влиянии активности болезни на нарушение ритма и проводимости у пациентов с СнСпА. Высокая активность заболевания в группе пациентов, где наблюдались изменения по электрокардиограмме, встретилась в 76,5 ± 6,1 % случаях, а у пациентов без изменений по электрокардиографии в 71,2 ± 5,2 % (р для двустороннего критерия Фишера 0,6984), различий не обнаружено. Проанализировано влияние диагноза, значимых различий не определено. У пациентов с анкилозирующим спондилитом нарушения ритма и проводимости зарегистрированы в 41 % случаев, а с псориатическим артритом в 35,7 % случаев (р для критерия Фишера 0,8562). Выявлено, что пациентов с наличием АГ было достоверно больше в группе с нарушениями ритма и проводимости сердца у больных СнСпА, чем в группе без нарушений (p(U) = 0,0481). При анализе данного показателя в группе контроля, различий не выявлено.

Проведен анализ связей между продолжительностью болезни и наличием нарушения ритма и проводимости сердца, достоверных различий не получено (p=0,84). Не отмечено статистически значимой корреляции между изменениями частоты и проводимости сердца и таких лабораторных показателей как уровень СОЭ (p=1,000) и уровень СРБ (p=0,7912).

Представляет большой интерес изучение влияния определенного вида терапии на нарушение ритма и проводимости у пациентов с СнСпА. Проведенный анализ представлен в таблице 4.

Таблица 4. Влияние вида терапии на нарушение ритма и проводимости сердца у больных СнСпА

Вид терапии	Есть нарушение ритма и проводимо- сти (n=47)	Нет нарушения ритма и проводимо- сти (n=73)	Критерий Краскела — Уоллиса, р
НПВП	8 (17 ± 5,4 %)	12 (16 ± 4,2 %)	
БПВП	21 (44 ±7,2 %)	31 (42 ± 5,7 %)	0,0933 P = 0,9544
ГИБП	18 (38 ± 7 %)	30 (41 ± 5,7 %)	. 3,7311

Пациенты, получающие терапию только препаратами группы НПВП, имели нарушения ритма и проводимости в $17\pm5,4$ % случаях, пациенты на БПВТ в $44\pm7,2$ % случаев, и у $44\pm7,2$ %, получающих ГИБТ, обнаружены изменения по ЭКГ. Анализ ассоциации по критерию Краскела-Уоллиса не показал значимых различий.

В таблице 5 представлены результаты проведенного корреляционного анализа между интервалом PQ и ростом, весом и возрастом пациентов с CнСпА.

Таблица 5.

Изучение зависимости между возрастом, антропометрическими данными и интервалом PQ у больных с ChCnA в сравнении с группой контроля

	Коэффициент корреляции Спирмена (R) для пациен- тов с СнСпА	Р для коэф- фициента корреляции Спирмена (R) для пациен- тов с СНСпА	Коэффициент корреляции Спирмена (R) для группы контроля	Р для коэф- фициента корреляции Спирмена (R) для группы контроля
Рост, см	0,1	0,2	0,06	0,48
Вес, кг	0,3	0,000976	0,13	0,13
Возраст, годы	0,3	0,000526	0,13	0,14

Анализ корреляционных связей показал зависимость длительности интервала PQ от возраста больных (r=0,3 p=0,000526) и веса пациентов (r=0,3 p=0,000976) в группе больных серонегативными спондилоартритами, в отличие от группы контроля.

Таблица 6. Структурно-функциональные показатели сердца и нарушением ритма и проводимости у больных СНСПА

ЭхоКГ параметры	Есть нарушение ритма и прово- димости (n=47)	Нет нарушения ритма и прово- димости (n=73)	Р для критерия Манна-Уитни, p(U)
КДР, мм/м ²	25 (33;26)	25 (23;27)	p(U) = 0,8107
KCP, mm/m ²	16 (15;18)	16 (15;17)	p(U) = 0,8090
ФВ, %	63 (58;66)	66 (62;68)	p(U) = 0,1002
Масса миокар- да, г/ м²	104 (91;123)	96 (80;111)	p(U) = 1,0000
Правый жеду- дочек, мм/м²	13 (11;14)	12 (11;14)	p(U) = 1,0000

Проведенный анализ зависимости между структурно-функциональными показателями сердца, определяемыми при проведении ЭхоГК и нарушением ритма и проводимости у больных СнСпА значимых ассоциаций не выявил. Отмечена тенденция к увеличению индекса массы миокарда в группе больных с аритмиями в сравнении с группой без аритмий.

Обсуждение

Данные о вовлечении в воспалительный процесс при анкилозирующем спондилите не только опорно-двигательного аппарата, но и сердечно-сосудистой системы впервые появились еще в первой половине XX века [9]. В более поздних работах структурные и функциональ-

ные изменения сердца и сосудов описаны не менее чем у 82 % пациентов с АС [10]. Увеличению частоты встречаемости данных изменений способствовало не только улучшение методов диагностики, но и совершенствование знаний патогенеза серонегативных спондилоартритов. Работы авторов последних лет говорят о высокой частоте встречаемости различных нарушений ритма и проводимости сердца [11–15]. Наше исследование также продемонстрировало высокую частоту данных проявлений СнСпА (в 40 % случаев). Наиболее часто из нарушений проводимости у больных данной патологией в литературе описаны атриовентрикулярные блокады различной степени [16,17]. Шведские ученные, согласно данным своего регистра пациентов с СнСпА выявили наличие АВ блокады в 38 % случаев [16]. Результаты нашей работы соответствует предшествующим исследованиям, и тоже демонстрирует высокую частоту встречаемости атриовентрикулярных блокад у пациентов с СнСпА.

Наше исследование показало, что с увеличением возраста пациента увеличивается длительность интервала PQ, что отсутствовало в группе контроля. Величина интервала PQ, по результатам нашего исследования зависит и от веса пациентов, страдающих СнСпА. В литературных источниках таких сведений не встретилось. При этом следует подчеркнуть, что больные с СнСпА были в среднем моложе пациентов, ЭКГ которых использовали в качестве контроля.

В своей работе мы подтвердили противоречивость имеющихся данных, относительно связи антигена HLA В 27 и нарушений ритма и проводимости сердца. По данным исследования L.Bergfeldt и соавторов (1982 год), атриовентрикулярная блокада ассоциирована с носительством HLA-B27-антигена в 67–88 % случаев, а среди 26 пациентов с водителями ритма 22 оказалось HLA-B27-позитивных (85 %) [6]. Более позднее исследование Helena Forsblad-d'Elia и соавторов (2013 год), показывает отсутствие связи между носительством данного антигена и нарушением сердечной проводимости [8].

Полученные нами данные подтверждают более частое развитие нарушений ритма и проводимости у пациентов СнСпА с наличием артериальной гипертензии. Данные согласуются с раннее опубликованными исследованиями [18].

В нашем исследовании не выявлено зависимости между активностью заболевания и наличием изменений по ЭКГ. Связано это, вероятно с тем, что активность заболевания оценивается по опросникам, которые отражают лишь клинические проявления со стороны позвоночника и суставов, не принимая во внимание внескелетные (кардиальные) проявления.

По данным Малых И.А. (2007 год) количество и тяжесть аритмий зависимы от уровня СРБ, автор в своей

диссертации рекомендует определение уровня сывороточного СРБ в качестве маркера кардиоваскулярного риска [3]. Отсутствие ассоциации между частотой нарушений ритма и проводимости сердца в нашем исследовании с уровнем СОЭ и СРБ может быть обусловлено фактом, что основную часть пациентов, в исследуемой нами группе, составили больные анкилозирующим спондилитом, а согласно ранее опубликованным исследованиям, уровень СОЭ и СРБ малочувствительны для оценки активности заболевания при данной патологии [5, 19, 20].

В изученной литературе нам не встретились сведения о влиянии проводимой терапии на изменение ритма и проводимости сердца при СнСпА. Наше исследование не выявило различий в частоте втсречаемости нарушений ритма и проводимости сердца у больных с СнСпА в зависимости от вида медикаментозного лечения.

Выводы

Нарушение ритма и проводимости сердца являются частыми внескелетными проявлениями серонегативных

спондилоартритов (40%). Наиболее частым изменением проводимости являются АВ-блокады.

Выявлена зависимость между величиной интервала PQ от возраста и веса пациентов с СнСпА. Не выявлено значимых различий по полу, активности болезни, уровню СОЭ и СРБ и нарушениями ритма и проводимости сердца у больных СнСпА.

Не показано связи между наличием антигена HLA В 27 и нарушением ритма и проводимости сердца у пациентов с СнСпА.

Нарушение ритма и проводимости у пациентов с СнСпА было ассоциировано с наличием артериальной гипертензии.

Не выявлено влияния вида медикаментозной терапии на развитие нарушений ритма и проводимости у больных СнСпА.

ЛИТЕРАТУРА

- 1. Котельникова Г.П., Камова Н.Н., Полянская И.П. Характер сердечной патологии при анкилозирующем спондилоартрите (болезни Бехтерева). Тер. архив, 1993, 65, 5, 34—7.
- 2. Годзенко А.А., Бочкова А.Г., Корсакова Ю.О., Бунчук Н.В., Мач Э.С. Поражение сердца при анкилозирующем спондилите. Научно-практическая ревматология. 2009. Т. 47. № 4. С. 4—10.
- 3. Малых, И.А. Состояние сердечно-сосудистой системы у больных анкилозирующим спондилоартритом: автореферат диссертации на соискание ученой степени кандидата медицинских наук / Малых Игорь Анатольевич. Тюмень, 2007. 24 с.
- 4. Lautermann D, Braun J. Анкилозирующий спондилит кардиальные проявления. Clin. Exp. Rheumatol., 2002, 20, 6 (suppl 28), 511–15.
- 5. Dik VK, Peters MJ, Dijkmans PA, Van der Weijden MA, De Vries MK, Dijkmans BA, et al. The relationship between disease-related characteristics and conduction disturbances in ankylosing spondylitis. Scand J Rheumatol., 2010; 39: 38–41.
- 6. Bergfeldt L., Edhag O., Vedin L. et al. Ankylosing spondylitis: an important cause of severe disturbances of the cardiac conduction system. Prevalence among 223 pacemaker-treated men. Am J Med 1982; 73: 187–91.
- 7. Годзенко А.А., Бочкова А.Г., Корсакова Ю.О., Бунчук Н.В., Мач Э.С. Поражение сердца при анкилозирующем спондилите // Научно-практическая ревматология. № 4. 2009. С. 4—10.
- 8. Helena Forsblad-d'Elia, Hanna Wallberg, Eva Klingberg, Hans Carlsten & Lennart Bergfeldt. Cardiac conduction system abnormalities in ankylosing spondylitis: a cross-sectional study. BMC Musculoskeletal Disorders volume 14, Article number: 237 (2013)
- 9. Ребров, А.П. Кардиоваскулярная патология у больных анкилозирующим спондилитом / А.П. Ребров, И.З. Гайдукова, Д.А. Поддубный // Научно-практическая ревматология. 2012. Т. 50, № 2. С. 100—105.
- 10. Roldan C.A., Chavez J., Wiest P.W. et al. Aortic root disease and valve disease associated with ankylosing spondylitis. J Am Coll Cardiol 1998; 32: 1397–404.
- 11. Ozkan Y. Cardiac Involvement in Ankylosing Spondylitis. J Clin Med Res. 2016; 8(6): 427–430. doi:10. 14740/jocmr2488w
- 12. Zochling J, et al. Seronegative spondyloarthritis. Best Pract Res Clin Rheumatol. 2010; 24(6): 747–56. doi:10.1016/j.berh.2011.02.002
- 13. Taurog J.D, et al. Ankylosing Spondylitis and Axial Spondyloarthritis. N Engl J Med. 2016; 374(26): 2563–74. doi:10.1056/NEJMra1406182
- 14. Сердечно-сосудистые изменения при серонегативном спондилоартрите / М. Стоика, А. Скорпан, О. Сарбу [и др.] // One Health & Risk Management. 2022. Т. 3, № 2. С. 18–23. DOI 10.38045/ohrm.2022.2.03.
- 15. Кардиоваскулярная патология при спондилоартритах (обзор литературы) / П.В. Корой, Н.Н. Гладких, А.В. Ягода [и др.] // Медицинский алфавит. 2024. № 29. С. 56–60. DOI 10.33667/2078-5631-2024-29-56-60.
- 16. Лонго Б., Киршнер Л.А., Симиони Дж. и др. Электрокардиографические изменения при спондилоартрите и применение анти-ФНО-α препаратов: ретроспективное исследование с участием 100 пациентов. Эйнштейн (Сан-Паулу). 2019; 17: eA04539.
- 17. Bengtsson K, et al. Risk of cardiac rhythm disturbances and aortic regurgitation in different spondyloarthritis subtypes in comparison with general population: a register-based study from Sweden. Ann Rheum Dis. 2018; 77(4): 541–548. doi:10.1136/annrheumdis-2017-212189/
- 18. Ребров А.П., Гайдукова И.З. Нарушения ритма и проводимости у больных анкилозирующим спондилитом (болезнью Бехтерева) и псориатическим артритом. Неотложная кардиология и кардиооваскулярные риски, 2017, Т. 1, №1, С. 117—124.
- 19. Spoorenberg A, van Tubergen R, Landewe R, Dougados M, van der Linden S, Mielants H, et al. Measuring disease activity in ankylosing spondylitis: Patient and physician have different perspectives. Rheumatology 2005; 44: 789-95.
- 20. O'Neil T., King G., Graham I. Echocardiographic abnormalities in ankylosing spondylitis. Ann Rheum Dis 1991; 51(5): 6652-4.

DOI 10.37882/2223-2966.2025.09.05

КЛИНИЧЕСКИЙ СЛУЧАЙ: ИНФЕКЦИОННЫЙ ПАНКАРДИТ У ПОТРЕБИТЕЛЯ ИНЪЕКЦИОННЫХ НАРКОТИКОВ

CLINICAL CASE: INFECTIOUS PANCARDITIS IN AN INJECTING DRUG USER

V. Vikentev D. Sapunova

Summary. Injecting drug users constitute a special group of patients with infective endocarditis in several classifications, which is characterized by a frequent fatal outcome. Difficulties in timely diagnosis of the most studied infectious endocarditis in injecting drug users are associated with a small sample of observations, atypicity and polymorphism of signs, which forms a contradictory clinical picture. A history of intravenous drug use is a significant criterion for the diagnosis of infectious endocarditis, which indicates a possible route of infection in patients with fever. Infectious endocarditis in injecting drug users is characterized by both damage to the myocardial valves and the parietal endocardium. The article provides a clinical analysis of a rare case of infectious pancarditis, which is a combination of endo-, myo- and pericarditis, against the background of cardiomyopathy in a young patient with drug addiction diagnosed postmortem, where the course of the disease at the beginning was marked by a pattern of community-acquired pneumonia.

Keywords: infectious pancarditis, parietal endocarditis, injecting drug user, atypical and polymorphic signs.

Викентьев Вячеслав Викторович

Кандидат медицинских наук, ФГБОУ ВО «Российский университет медицины» Минздрава России (г. Москва) vvvikentiev@mail.ru

Сапунова Дарья Александровна

Кандидат медицинских наук, ФГБОУ ВО «Российский университет медицины» Минздрава России (г. Москва) sapunova_darya@mail.ru

Аннотация. Потребители инъекционных наркотиков составляет особую группу пациентов с инфекционном эндокардитом в нескольких классификациях, которая отличается частым летальным исходом. Трудности в своевременной диагностики наиболее изученного инфекционного эндокардита у потребителей инъекционных наркотиков связаны с малой выборкой наблюдений, атипичностью и полиморфностью признаков, что формирует противоречивость клинической картины. Анамнез использования внутривенных наркотиков — значимый критерий для диагноза инфекционного эндокардита, который указывает на возможный путь инфицирования у пациентов с лихорадкой. Инфекционный эндокардит у инъекционных наркоманов характеризуется как поражением клапанов миокарда, так и пристеночного эндокарда. В статье приводится клинический разбор редкого случая инфекционного панкардита, что является совокупностью эндо-, миои перикардита, на фоне кардиомиопатии у молодого пациента с наркотической зависимостью, диагностированного постмортально, где течение заболевания в начале ознаменовалась картиной внебольничной пневмонии.

Ключевые слова: инфекционный панкардит, пристеночный эндокард, потребитель инъекционных наркотиков, атипичность и полиморфность признаков.

Введение

В настоящее время инфекционный эндокардит определяется как тяжелое воспалительное заболевание инфекционного генеза с превалирующим поражением клапанов сердца, иногда пристеночного эндокарда и магистральных сосудов, течение которого проходит по типу сепсиса с бактериемией, иммунными отклонениями и осложнениями. Часть когорты пациентов с инфекционным эндокардитом представлена потребителями инъекционных наркотиков, где нередко эта нозология заканчивается летальным исходом [1].

Наркозависимость в России остается серьезной медико-социальную проблему современности, особенно среди представителей молодого возраста. У потребителей инъекционных наркотиков как причины, повреждающими клапанный и пристеночный эндокард при инфекционном эндокардите, выделяют мельчайшие

воздушные пузырьки при частых внутривенных инъекциях, твердые частицы наркотика и веществ для его фильтрации [2]. Отечественные авторы отмечают, что инфекционный эндокардит у потребителей инъекционных наркотиков зачастую выделен в особую форму в нескольких классификациях, при этом по причине разнообразности проявлений и малой выборке наблюдений формируется противоречивость в клинической картине и диагностике [3].

В клиническом разборе истории болезни пациента Э. 30 лет с наркотической зависимостью приводятся особенности течения инфекционного панкардита как у потребителя инъекционных наркотиков.

Клинический случай

Пациент Э., 38 лет, 14.03.2018 бригадой скорой медицинской помощи доставлен в многопрофильный ста-

ционар Ростовской области с диагнозом — острая внебольничная пневмония. В период времени с 14.03.2018 по 09.04.2018 (26 койко-дней) пациент Э. проходил стационарное лечение в терапевтическом отделении.

При поступлении отмечались жалобы на жажду, сухость, повышение температуры тела 39,0°С, боли в грудной клетке слева, одышку. Анамнез заболевания: Ухудшение состояния в течение недели, когда появились вышеуказанные жалобы — постоянно отмечалась высокая температура, нарастала общая слабость. Анамнез жизни: Tbs, вирусный гепатит, травмы, операции, сахарный диабет, гемотрансфузии — отрицает. Опийная наркомания — последняя инъекция наркотиков около 2-х недель назад. Наследственность и аллергологический анамнез не отягощены. Объективное исследование: Общее состояние средней степени тяжести. В сознании. Питание повышенное. Костно-мышечная система без видимой патологии. Периферические лимфоузлы не пальпируются. Зев спокоен. Отсутствие периферических вен. В паху — следы не медицинских инъекций, справа имеются следы от множественных в/в инъекций («шахта»). Температура тела 39,1°С. Отеки: нет. Органы дыхания: перкуторно — легочной звук, аускультативно — дыхание жесткое, хрипы влажные справа, ЧДД 18 в минуту, сатурация 97 %. Тоны сердца приглушены. АД 140/80 мм рт. ст., ЧСС 92 в минуту. Язык чистый, влажный. Живот правильной формы, мягкий, безболезненный. Печень не увеличена, безболезненная, поверхность гладкая. Селезенка не пальпируется. Стул оформлен. Почки не пальпируются. Симптом поколачивания отрицательный. Диурез достаточен.

Результаты обследования от 14.03.2018 г. — см. таблицы 1, 2, 3, 4, 5.

Диагноз на 14.03.2018: Внебольничная правосторонняя пневмония средней степени тяжести. Осложнение: ДН I-0 ст. Ожирение. Наркомания.

Лечение: режим п/п, диета ОВД. ВК 28/13 от 09.01.2018. Эритромицин 0,2 + физ. p-p 250,0 в/в кап. 2 р/д. Цефтриаксон 2,0 + лидокаин 2 % 2,0 в/м 1 р/с. Амброксол 30 мг 1 т. х 3 р/д. Гепарин 5000Ед п/к 2 р/д.

Лабораторные и инструментальные исследования: см. таблицы 1, 2, 3, 4, 5.

Эхокардиография от 16.03.2018 — Заключение: Патологических потоков не выявлено. Недостаточность митрального клапана 1 ст. Недостаточность трикуспидального клапана 1 ст. Полости сердца не расширены. Показатели сократимости в норме. Вегетации не выявлено.

Таблица 1.

Клинический анализ крови

Показатель(норма) ед.изм/ дата	14.03	15.03	16.03	23.03	03.04	14.04	24.04	04.05	05.05
Эритроциты (3,5—5,5)*10 ¹² /л	5,25	5,28	4,99	4,10	4,61	4,82	3,93	2,94	3,03
Гемоглобин (110—160) г/л	153	152	145	119	129	135	113	82	84
Гематокрит (37—54) %	_	49,1	47	39,2	44	39	_	_	24
Лейкоциты (4,0—10,0)*10 ⁹ /л	8,08	8,53	6,49	9,73	4,18	7,19	12,5	10,86	13,4
Эозинофилы (0,02—0,5)	_	0	0	0	0	_	1	_	_
Нейтрофилы (2—7)	_	7	4	8	2	_	_	_	_
палочкоядерные	16	7	4	10	5	12	15	20	_
Сегменто-ядерные	74	76	66	71	48	75	78	62	_
базофилы (0—1)	_	01	0	0	0	_	_	_	_
лимфоциты (0,8—4)	8	0,85	14	0	1	10	5	15	_
моноциты (0,12—1)	2	1	0	0	1	3	1	3	_
Тромбоциты (100—300)*10 ⁹ /л	168	177	211	269	180	145	202	_	82
Тромбокрит (1,08—2,82) мл/л	_	1,81	2,02	2,11	1,59	_		_	_
СОЭ мм/час	40	50	50	40	48	25	_	_	_
Цветной показатель	_	0,92	0,94	0,95	0,95	0,82	_	_	_

Таблица 2. Клинический анализ мочи

Показатель (нор-14.03 14.04 24.04 04.05 ма)ед.изм/ дата Светло-Темно-Цвет Желтый Бурая желтый желтый Прозрачность Неполная Неполная Неполная Мутная Удельный вес 1025 1030 1030 рΗ кислая кислая кислая 6,0 Белок (г/л) 0,033 0,066 0,033 0,099 незначи-Осадок есть есть есть тельно Лейкоциты 18-20 8-10 7-9 25-30 Неизм. Незна-Эритроциты 3-4 1-2 много чит. Эпителий 2-3 немного 3-5 4-7 плоский Кетоновые тела abs abs abs abs Уробилиноиды ++

Таблица 3. Биохимический анализ крови

Показатель(норма) ед.изм/дата	14.03	16.03	23.03	04.03	14.04	05.05
Креатинин (71—115) мкмоль/л	81	94	76	_	122	220
Общий белок (66—87) г/л	73,9	69,6	_	_	_	75
АЛТ (0—40) ед/л	19,4	29,5	44,9	_	32,4	25
АСТ (0—37) ед/л	34,4	55,6	28,8	_	20,6	38
Глюкоза (4,2—6,4) ммоль/л	7,1	_	_	_	9,4	8,9
Мочевина (1,7—8,3) ммоль/л	5,1	_	7,3	_	6,9	7,7
Общий билирубин (0—17) мкмоль/л	13,5	_	8,3	_	30,1	30,6
Прямой билирубин (0—43) мкмоль/л	1,3	_	-	_	10,3	6,82
Амилаза пан. (13—53) г/л	18,2	_	_	_	20,8	26
Калий (3,4—5) ммоль/л	_	_	_	_	_	6,34
Натрий (130—150) ммоль/л	_				_	144
С-реактивный белок (0—5) мг/л	_	130,8	27	3,6	_	_

Таблица 4.

Рентгенограмма органов грудной клетки

Дата	Описание/заключение
14.03.18	В правой проекции определяется в правом легком, в проекции S6 инфильтрация легочной ткани без четких контуров. Корни тяжистые. Синусы свободные. Cor— в норме. Заключение: Правосторонняя сегментарная в S6 пневмония.
21.03.18	Справа в верхнем отделе появляется инфильтрация. Слева без особенностей. Корни тяжистые. Синусы свободные. Cor расширено влево. Заключение: Правосторонняя верхнедолевая пневмония.
09.04.18	В 2-х проекция определяется в правом легком во II межреберье усиление легочной тени за счет пневмофиброза, как последствие перенесенной пневмонии. Корни нечеткие. Синусы свободные. Границы сердца расширены влево. Заключение: Последствия перенесенной пневмонии в верхней доле правого легкого.
14.04.18	Легкие и корни застойные. Синусы свободные. Сердце расширено влево.
24.04.18	В проекции первого и четвертого сегментов правого легкого негомогенную инфильтрацию легочной ткани с неровными нечеткими контурами, имеющую связь с корнем. Корни легких уплотнены, тяжисты. Карманы свободны, тень средостения на обычном месте. Заключение: Правосторонняя бисегментраная пневмония.
04.05.18	В легких без очаговых и инфильтративных изменений. Сосудистый рисунок усилен, деформирован. Тени корней уплотнены. Плевральные синусы свободны. Купол диафрагмы с четким контуром. Срединная тень широко прилежит к куполу диафрагмы.
05.05.18	Признаки застоя в малом круге кровообращения, вероятного перикардита, ХНЗЛ (пневмосклероз), перенесённой специфической (tbc) инфекции, не исключается интерстициальный отек легких.

Электрокардиографическое исследование

Дата	Описание/заключение
14.03.18	(по СМП, имеется наводка): ритм синусовый, правильный, частота сердечных сокращений 110 уд/мин, вертикальная ось сердца. Признаки увеличение левого предсердия («р-pulmonale», увеличение времени активации свыше 0,04 с). Признаки хронического легочного сердца («р-pulmonale», отрицательный зубец Р в aVL, соотношение RV6/ SV6 ≤ 2, поздний R в aVR) — нельзя исключить перегрузки правых отделов сердца.
23.03.18	ритм синусовый, правильный, частота сердечных сокращений 100 уд/мин, вертикальная ось сердца. Признаки увеличения (высокий заостреный зубец Р высотой 3 мм в II и III отведениях) левого предсердия. Признаки перегрузки правых отделов сердца уменьшились в динамике от 14.03.2018 г.
14.04.18	ритм синусовый, правильный, частота сердечных сокращений 140 уд/мин, вертикальная ось сердца. Признаки увеличения левого пред- сердия. Признаки хронического легочного сердца как перегрузки правых отделов сердца.
24.04.18	ритм синусовый, правильный, частота сердечных сокращений 130 уд/мин, вертикальная ось сердца. Признаки увеличения левого пред- сердия. Признаки хронического легочного сердца.
04.05.18	ритм синусовый, признаки гипертрофии левого желудочка. Без острой коронарной патологии.
05.05.18	ЧСС 120 в минуту, ритм синусовый, ось не отклонена, признаки перегрузки левого желудочка, данные за острую коронарную патологию отсутствуют.

Направление на микробиологическое исследование крови:

Результат: Бактериологическое исследование крови на тиф, сыпной тиф, туляремию — отрицательно.

Консультация психиатра-нарколога (16.03.2018) — Со слов больного, впервые употребил наркотики — маковая соломка в 25 лет. Принимал 2 р в неделю по 3,0 мл. Наркотики употреблял до 32 лет. Частота употребления увеличилась до 3–4 раз в неделю. Воровал для получения дозы. В 32 года был осужден и отбывал наказание до 36 лет, это 2016 г. В 2016 году употреблял опиаты 2 раза в год. После этого не употреблял. В настоящее время ремиссия. Место введения пах. Учитывая жалобы, анамнез и объективные данные, у больного: Опийная наркомания в стадии ремиссии.

Направление на микробиологическое исследование мокроты:

Результат исследования: выделена культура Str. pneumoniae 1 x10⁶, грибы не обнаружены. Чувствительность: азитромицин, левофлоксацин, линкомицин, оксациллин — У; амоксиклав, цефотаксим — Ч, ципрофлоксацин — П.

Консультация пульмонолога (от 20.03.2018) — Диагноз: Внебольничная правосторонняя сегментарная S6 пневмония, средней степени тяжести. ДН I ст. Рекомендовано: доснять правый бок, рентгенограмма органов грудной клетки в 2-х проекциях в динамике.

Анализы мокроты (от 22.03.2018): количество 0,2, цвет — бесцветная, консистенция жидкая, характер — слизистая, лейкоциты 10-12, эритроциты — нет, пл. эпителий — незначительно, альвеолярный эпителий — нет, эластические волокна — нет, споры дрож. грибка — нет, спирали Куршмана — нет, АК не обнаружено, ВК не обнаружено.

Осмотр в динамике (19.03.2018, 05.04.2018): Жалобы на общую слабость, ознобы, потливость, кашель, повышение температуры тела до 38,3 °С. Общее состояние средней тяжести. Кожные покровы нормальной окраски, влажные. Отеков нет. Дыхание в легких жесткое, хрипов нет. Тоны сердца ритмичные, приглушены. АД 120/80 мм рт. ст., ЧСС=пульс= 92 в минуту уредился до ЧСС=пульс=70 в минуту, ЧДД уредилась с 21 до 18 в минуту, SpO2=97 %–98 %. Живот мягкий, безболезненный. Физиологические отправления в норме. Лечение по плану. рентгенограмма органов грудной клетки + правый бок — в динамике.

Результаты обследований в динамике — см. таблицы 1, 2, 3, 4, 5.

Температурный лист за период с 14.03 по 09.04.2018: Отмечена ломанная кривая линия с графическим отображением ежедневной термометрии, в соответствии с которой повышение температуры тела выше $37,0^{\circ}$ С зафиксировано: $14.03 - 39,1^{\circ}$ С; $15.03 - 37,1^{\circ}$ С, $17.03 - 37,6^{\circ}$ С, $18.03 - 38,6^{\circ}$ С, $23.03 - 37,2^{\circ}$ С; $25.03 - 39,2^{\circ}$; $29.03 - 38,0^{\circ}$. Отметок ниже $36,0^{\circ}$ нет.

Пациент Э. 09.04.2018 выписан из стационара под наблюдение врача-терапевта по месту жительства и врача пульмонолога. На третий день после выписки из стационара, 12.04.2018, по причине жалоб на слабость, повышение температуры до 39,0 °С и одышку вызвана бригада СМП. Объективно отмечено: АД 140/90 мм рт. ст., рабочее АД 130/80 мм рт. ст., ЧСС=пульс=129 в мин., ЧД=24 в мин., температура тела 39,8 °С, сатурация 96 %. По электрокардиограмме — ритм синусовый с ЧСС=129 в мин. На основании диагноза «О. пневмония. Гипертермический синдром» пациенту оказана помощь (физические методы охлаждения, гипотермическая терапия перорально), в динамике объективно — АД 140/80 мм рт. ст., ЧСС=пульс=110 в мин., ЧД=23 в минуту, температура тела 38,9°С, сатурация 96 %. В связи с отказом от госпитализации даны рекомендации обратиться к участковому терапевту.

Через день, 14.04.2018, пациент повторно вызвал СМП с жалобами на повышение температуры тела до 39,5 °С, мокрый кашель, слабость, одышку, при этом самостоятельно принимал таблетированные жаропонижающие препараты без обращения в поликлинику. Пациент был доставлен по СМП в стационар, где было проведено обследование после клинического осмотра (повышенного питания, в паховых областях следы старых в/в инъекций («шахты»), зев гиперемирован, отеков нет, дыхание жесткое, хрипов нет, ЧДД=19 в мин, сатурация 99 %, температура тела 37,8 °С, тоны сердца приглушенные, ритмичные, АД 120/80 мм рт. ст., ЧСС=пульс=87 в мин.

Результаты обследования от 14.04.2018 г. — см. таблицы 1, 2, 3, 4, 5.

Пациент Э. был выписан из стационара в тот же день 14.04.2018 в стабильном состоянии с рекомендациями лечения у терапевта по месту жительства.

Через 10 дней, в течение которых лечился самостоятельно без обращения в поликлинику, 24.04.2018 пациент Э. вызвал СМП с жалобами на одышку и повышение температуры до 40,2 °С, в связи с чем был доставлен в стационар с направительным диагнозом «Пневмония без уточнения возбудителя. Tbs?». На основе данных клинического осмотра (температура тела 36,6 °С, ЧДД=20 в мин., сатурация 98 %, ЧСС=пульс=75 в мин., АД 130/80 мм рт. ст., в легких дыхание ослаблено в нижних отделах, хрипов нет, тоны сердца ритмичные, приглушенные.) проведено дообследование.

Результаты обследования от 24.04.2018 г. — см. таблицы 1, 2, 3, 4, 5.

По результатам рентгенологического обследования рекомендована консультация фтизиатра.

Учитывая отсутствие дыхательной недостаточности, отсутствие интоксикационного синдрома, наличие

специфических изменений при рентгенограмме ОГК, не позволяющих исключить tbs легких, в экстренной госпитализации в терапевтическое отделение пациент Э. на 24.04.2018 не нуждался, выписан с рекомендациями амбулаторного лечения и наблюдения и консультации фтизиатра с целью дообследования.

Пациент Э. за амбулаторным лечением не обращался, когда 04.05.2018 с жалобами на слабость, одышку в покое, отеки, отсутствие мочеиспускания 4 дня, повышение температуры тела вызвал СМП и был госпитализирован в стационар, где проведено обследование. Объективно: АД=105/40 мм рт. ст., ЧСС=пульс=110 уд./мин. Тоны сердца приглушены, ритмичны. Дыхание ослабленное, влажные хрипы. Живот мягкий, безболезненный. Отеки нижних конечностей. Кожные покровы бледные, влажные.

Результаты обследования от 04.05.2018 г. — см. таблицы 1, 2, 3, 4, 5.

УЗИ мочевыделительной системы. Заключение: УЗИ признаки диффузных изменений паренхимы почек.

Уролог: на момент осмотра данных за острую урологическую патологию не выявлено. Вторичная токсическая нефропатия. Хроническая наркомания (в анамнезе). XCH. Анасарка.

Кардиолог после дообследования: данных за острую коронарную патологию нет. У пациента можно предположить диагноз: Приобретенный порок сердца: недостаточность аортального клапана после перенесенного бактериального эндокардита на фоне хронической наркомании. ХСН III, ФК IV. Хроническая анемия. Рекомендовано: стационарное лечение в терапевтическом отделении по м/ж.

На следующий день 05.05.2018 по причине резкого ухудшения здоровья по причине жалоб на чувство нехватки воздуха, одышку смешанного типа в покое, отеки нижних конечностей был госпитализирован, при клиническом осмотре: положение вынужденное — сидя, одышка смешанного типа с привлечением вспомогательной мускулатуры, отеки нижних конечностей, кожные покровы бледные, аускультативно: крепитация справа в верхних отделах легких, АД=140/90 мм рт. ст., ЧСС=пульс=120 в мин., ЧД=24 в мин, Т 36,0 °C, сатурация 92 %.

Результаты обследования от 05.05.2018 г. — см. таблицы 1, 3, 4, 5.

Трансабдоминальное УЗИ мочевыделительной системы. Заключение: УЗИ признаки диффузных изменений паренхимы почек.

Кардиолог после дообследования: данных за острую коронарную патологию нет. У пациента можно предположить диагноз: ППС: недостаточность АК после перенесенного бак. эндокардита на фоне хронической наркомании. ХСН III, ФК IV. Хроническая анемия. Рекомендовано: стационарное лечение в терапевтическом отделении по м/ж, с зав. отделением согласовано.

Анестезиолог-реаниматолог. ЧД=28 в мин, ЧСС=135 в мин, пульс=120 в мин., температура тела 36,9 °C, АД=120/65 мм рт. ст. Сатурация 88 %. Общее состояние тяжелое. Тяжесть состояние обусловлена сердечно-сосудистой и дыхательной недостаточностью, эндотоксикозом. Жалобы на затруднение дыхание, чувство нехватки воздуха. Объективный статус: после осмотра принято решение о госпитализации в АРО. Общее состояние тяжелое. Уровень нарушения сознания — ясное (15 баллов по шкале Глазго). Доступен вербальному контакту. Зрачки D=S, содружественны, соразмерны. Глотательный, кашлевой рефлексы сохранены. Менингеальных знаков нет. Кожные покровы и видимые слизистые бледные, холодные, физиологической влажности. Выраженные отеки нижних конечностей, передней брюшной стенки. Пастозность верхних конечностей. В паховой области отмечается следы от многочисленных инъекций («шахты»). Грудная клетка правильной формы. Дистанционные хрипы не слышны. Дыхание самостоятельное, ритмичное, с участием дыхательной мускулатуры, ослабленное в нижних отделах. Хрипы не выслушиваются. Начата инсуффляция увлажненным кислородом через лицевую маску, 5 минут. Тоны сердца глухие, аритмичные. Гемодинамика относительно стабильная. Пульс аритмичный, удовлетворительного наполнения, не изменен. Язык влажный, обложен белым налетом. Живот мягкий, увеличен за счет ПЖК, симметрично участвует в акте дыхания. Перистальтика выслушивается вялая. Мочеотделение по катетеру Фолея, получено 100 мл мочи светлого цвета. Начата ИТ, отражена в реанимационной карте пациента. Мониторинг. Динамическое наблюдение. Мероприятия по уходу.

06.05.2018, 01:00. Анестезиолог-реаниматолог. ЧД, ЧСС, температура тела, АД, пульс, сатурация — не определяется. На момент осмотра состояние клинической смерти: уровень сознания — кома 3, зрачки D=S, умеренно расширены; фотореакции нет. Немедленно начаты реанимационные мероприятия. Реанимационные мероприятия без эффекта. На основании признаков: отсутствие сердечной деятельности; ЭКГ — изолиния; зрачки D=S, максимальный мидриаз; отсутствие фотореакции; мышечная атония; арефлексия; гипостатические пятна на теле, в соответствии с постановлением Правительства РФ от 20 сентября 2012 г. №950 «Об утверждении правил определения момента смерти человека, в том числе критериев и процедуры установления смерти человека; правил прекращения реанимационных

мероприятий и формы протокола установления смерти человека», в соответствии со статьей 66 Федерального закона «Об основах охраны здоровья граждан в Российской Федерации» реанимационные мероприятия решено прекратить. Констатирована биологическая смерть в 01:30 06.05.18 г.

Диагноз заключительный клинический: Основное: 1. Острый инфекционный эндокардит с формированием недостаточности АК. Фоновые: Хроническая экзогенная интоксикация. Хроническая полинаркомания. Осложнение: ХСН III. ДН III. Острая сердечно-сосудистая недостаточность. Тромбоэмболические осложнения. Отек легких, отек мозга. Асистолия. Сопутствующие: Хронический вирусный гепатит С? ВИЧ-инфекция?

Постмортальная макроскопия миокарда (выдержка по миокарду):

При вскрытии обращало на себя внимание в первую очередь состояние сердца: 12,0х11,0х9,0 см, дряблое, шаровидное, полости его резко расширены. Эпикард в области желудочков обложен ярко-желтой жировой тканью, толщиной до 0,4 см. В полостях сердца следовое количество жидкой темно-красной крови. Внутренняя оболочка сердца гладкая, блестящая, прозрачная. Створки клапанов белесовато-сероватые, плотные, непрозрачные, утолщены, подвижность их несколько ограничена, край смыкания ровный, створки смыкаются полностью. Толщина стенки левого желудочка 1,4 см, правого 0,8 см, межжелудочковой перегородки — 1,4 см. Мышца сердца на разрезах дряблая, тусклая, бледно-красновато-коричневатая, глинистого вида, неравномерного кровенаполнения. Папиллярные мышцы утолщены, укорочены, сухожильные нити укорочены, уплотнены.

Заключение по гистологическому препарату мио-карда:

Очаговый продуктивный пери- и эндокардит, очаговый гнойно-продуктивный миокардит. Нагноившийся смешанный тромб в одной из вен миокарда с образованием перифокального микроабсцесса. Острое венозное полнокровие, лейкостазы, фибриновые и фибриноволейкоцитарные тромбы в сосудах миокарда. Спазм артериол, очаговая фрагментация, извилистая деформация кардиомиоцитов, гиперэозинофилия отдельных кардиомиоцитов. Очаговый липоматоз миокарда, периваскулярный и мелкоочаговый сетчатый кардиосклероз, очаговые гипертрофия и атрофия кардиомиоцитов.

Обсуждение

Приведенный клинический пример инфекционного панкардита у потребителя инъекционных наркотиков

представляет интерес в первую очередь по причине практически отсутствия в литературе подобных примеров: панкардит представляет собой совокупность эндо-, мио- и перикарда, в то время как в клинической практике обсуждается чаще инфекционный эндокардит на фоне инъекционной наркомании.

Клиническая картина при инфекционном эндокардите у потребителей инъекционных наркотиков чаще всего представлена стафилококовой этиологией и поражением трикуспидального клапана на фоне вирусных гепатитов и/или вируса иммунодефицита человека с риском тромбоэмболии легочной артерии [4, 5]. У пациента Э. в обсуждаемом случае течение заболевания в начале ознаменовалась картиной внебольничной пневмонии, подтвержденной рентгенологически, что согласуется с литературными данными [6, 7], при первичной госпитализации исследование мокроты показало наличие культура Str. pneumoniae 1x10⁶. Через два дня от начала госпитализации пациенту было проведено эхокардиографическое исследование, где отсутствовали визуальные признаки инфекционного эндокардита.

В литературе встречаются обсуждения клинических случаев инфекционного эндокардита, где констатируется, что данное заболевание у большинства потребителей инъекционных наркотиков сопровождается развитием острого диффузного миокардита, где в большинстве случаев отмечена сопутствующие ВИЧ-инфекция и гепатиты В и/или С [8]. В приведенном нами примере пациента Э. следует признать, что фактически ни в одном из медицинских документов за период его болезни с 14.03.2018 до момента летального исхода 06.05.2018 отсутствуют данные о лабораторном подтверждении либо отсутствии у него вирусных гепатитов и/или ВИЧ-инфекции, что значительно ограничивает возможности анализа и выводов по обсуждаемому клиническому примеру инфекционного панкардита у инъекционного наркомана.

В рамках разбора клинического случая следует упомянуть модифицируемые критерии диагноза инфекционного эндокардита Duke. Например, факт использования пациентом внутривенных наркотиков рассматриваются коллегами как «малый», но чрезвычайно значимый критерий диагноза инфекционного эндокардита, который указывает на потенциальный источник инфекции, а наличие лихорадки выше 38 °C уже дает право констатировать два «малых» критерия в соответствии с модифицированными критериями диагноза инфекционного эндокардита Duke, что было подтверждено наличием вегетаций на трикуспидальном клапане и ростом золотистого стафилококка в бактериологическом анализе крови [9]. В нашем случае при первичной госпитализации упомянутые два «малых» критерии инфекционного эндокардита Duke имели место быть, также была проведена эхокардиография, где отсутствие вегетаций на клапанах отвлекло клиницистов от дальнейшего обследования пациента на предмет воспалительного заболевания миокарда и не дало основания к проведению бактериологического анализа крови, ограничившись результатом бактериологического анализа мокроты, где выделена культура Str. Pneumoniae.

Непосредственная причина летального исхода пациента Э. — остановка сердца в результате фибрилляции желудочков, что подтверждается микроскопическим гистологическим исследованием препарата миокарда от трупа морфологического эквивалента данного состояния — очаговая фрагментация, извилистая деформация кардиомиоцитов.

Фибрилляции желудочков является осложнением заболевания сердца, в случае пациента Э. могло быть два заболевания сердца, которыми он страдал при жизни, что подтверждается выявлением при аутопсии трупа и при гистологическом исследовании: 1) кардиомиопатия (гипертрофия миокарда: шаровидная форма и увеличение размеров и расширение камер сердца, толщина левого желудочка 1,4 см, правого 0,8 см, межжелудочковой перегородки 1,4 см), бледно-красновато-коричневатый, глинистый цвет миокарда; сочетание гипертрофии и атрофии кардиомиоцитов, периваскулярный и мелкоочаговый кардиосклероз и очаговый липоматоз миокарда на фоне отсутствия атеросклероза коронарных артерий, гиперэозинофилия отдельных кардиомиоцитов); и 2) хронический активный панкардит (очаговая смешанная — макрофагальная, лимфоцитарная, нейтрофильная — воспалительная инфильтрация оболочек [эпикардит и эндокардит] и мышцы [миокардит] сердца с очагами повреждений кардиомиоцитов и очагами замещения мышечных волокон соединительной тканью, нагноившийся смешанный тромб в одной из вен миокарда с образованием перифокального микроабсцесса).

Этиология кардиомиопатии у пациента Э. — хроническая экзогенная интоксикация, факт существования которой на протяжении многолетнего периода жизни — опийной наркомании — зафиксирован в медицинской документации неоднократно, в том числе подтвержден по результатам консультации врача психиатра-нарколога, имеются данные анамнеза — со слов пациента Э. о дате последней инъекции наркотиков за две недели до поступления в стационар 14.03.2018.

Этиология панкардита у пациента Э. — инфекционная. Начало инфекционного процесса в сердце в рассматриваемом случае могло быть при различных условиях и их комбинациях, в том числе как осложнение предшествовавших перенесенных в марте 2018 года остром респираторном вирусном заболевании и пневмонии, а также в условиях ангиогенного инфицирования, характерного для опийной внутривенной наркомании при

локализацией первичного очага инфекции в сосудистом русле, в том числе в зоне инфицированного деформирующего рубцового изменения кожи и стенки крупного сосуда области давнего многократного внутривенного сосудистого доступа, имевшего место у пациента Э. в паховой области или с поступлением возбудителей непосредственно в кровоток при внутривенных инъекциях инфицированными шприцами и нестерильными растворами.

Таким образом, смерть пациента Э. наступила от взаимоусугубляющих заболеваний сердца — кардиомиопатии и панкардита, развившихся в результате хронической опиоидной наркомании и осложнившихся в своем сочетанном течении декомпенсацией хронической сердечной недостаточности и фибрилляцией желудочков сердца, что и явилось непосредственной причиной смерти.

Таким образом, анамнез наркомании пациента Э. создал предпосылки к трудностям своевременной диагностики инфекционного панкардита. По рентгенограммам и электрокардиограммам на протяжении всего периода обсуждаемого клинического случая прослеживается четкая перегрузка малого круга кровообращения, где эпизоды инъекций наркотиков в паховой области сфор-

мировали предпосылки к внедрению инфекционного агента в венозное русло и как следствие формированию пристеночного поражения эндокарда.

Заключение

В настоящее время особенности воспалительных заболеваний сердца у инъекционных потребителей наркотиков анализируются в литературе через призму клинических примеров по причине отсутствия клинических рекомендаций по данным нозологиям в обозначенной когорте пациентов. В приведенном клиническом примере пациента Э. постмортально верифицирован панкардит без наличия каких-либо изменений клапанов сердца. Панкардит представляет собой сочетание эпи-, эндо- и миокардита. Нами при ретроспективном анализе определяется факт отсутствия поражения клапанов при трансторакальной эхокардиографии на ранних этапах заболевания, что перекликается с мнением коллег о таких особенностях инфекционного эндокардита у наркоманов, как наличие первого проявления инфекционного эндокардита в виде пневмонии, имеющая волнообразное течение [6, 10] и поражение пристеночного эндокарда без вовлечения в патологический процесс клапанного аппарата [1, 2].

ЛИТЕРАТУРА

- 1. Ларина, Т.А. Инфекционный эндокардит при наркомании: клинико-диагностические аспекты / Т.А. Ларина, А.С. Зацепин, М.А. Зацепина [и др.] // Вестник медицинского института «РЕАВИЗ»: реабилитация, врач и здоровье. 2019. № 2(38). С. 88—91.
- 2. Пономарева, Е.Ю. Висцеральные поражения и исходы инфекционного эндокардита у потребителей инъекционных наркотиков / Е.Ю. Пономарева, А.А. Рощина, А.П. Ребров // Лечебное дело: научно-практический терапевтический журнал. 2013. № 6(34). С. 49—56.
- 3. Демко, И.В. Особенности течения инфекционного эндокардита у инъекционных наркоманов / Демко И.В., Пелиновская Л.И., Манхаева М.В. и др. // Российский кардиологический журнал 2019;(6):97—102. DOI: 10.15829/1560-4071-2019-6-97-102.
- 4. Данилов, А.И. Инъекционная наркомания как фактор риска инфекционного эндокардита / А.И. Данилов, С.Н. Козлов, Л.П. Жаркова, А.В. Евсеев, В.В. Младов // Антибиотики и химиотерапия. 2019. №64; 9–10. С. 39–43.
- 5. Бокерия, Л.А. Гендерные и клинико-социальные особенности инфекционного эндокардита у наркозависимых пациентов / Л.А. Бокерия, И.И. Скопин, И.В. Самородская [и др.] // Анналы хирургии. 2012. № 6. С. 15—20.
- 6. Ландышев, Ю.С. Инфекционные осложнения при хронической дезоморфиновой наркомании / Ю.С. Ландышев, Н.Д. Гоборов, Г.Д. Цуканова // Амурский медицинский журнал. 2017. № 1(17). С. 76–81. DOI 10.22448/amj.2017.17.76-81.
- 7. Алескеров, Э.Э. Клинический случай инфекционного эндокардита у наркозависимого пациента / Э.Э. Алескеров, Н.В. Давыдова, Ю.А. Рогожкина [и др.] // Университетская медицина Урала. 2019. Т. 5, № 1(16). С. 54–56.
- 8. Уланова, В.И. Особенности клинического течения и анализ выживаемости ВИЧ-инфицированных наркозависимых больных инфекционным эндокардитом / В.И. Уланова, В.И. Мазуров // Вестник Российской Военно-медицинской академии. 2010. № 3(31). С. 103—107.
- 9. Махнырь, Е.Ф. Инфекционный эндокардит «инъекционных» наркоманов: течение, особенности диагностики и лечения (клинический разбор случая заболевания) / Махнарь Е.Ф., Казаковцева Т.В., Чипигина Н.С., Клименко А.А. Карпова Н.Ю., Анищенко М.О., Мориц В. // Клиницист 2024;18(3):38—47. DOI: https://doi.org/10.17650/1818-8338-2024-18-3-K722.
- 10. Насыбуллина, Р.С. Особенности течения современного инфекционного эндокардита / Р.С. Насыбуллина, Э. Рубанова, Э.В. Пак // Практическая медицина. 2008. № 4(28). С. 30–31.

© Викентьев Вячеслав Викторович (vvvikentiev@mail.ru); Сапунова Дарья Александровна (sapunova_darya@mail.ru) Журнал «Современная наука: актуальные проблемы теории и практики» DOI 10.37882/2223-2966.2025.09.06

ВОЗМОЖНОСТИ ПРОГНОЗИРОВАНИЯ ВОЗНИКНОВЕНИЯ РЕЦИДИВОВ В ПОСЛЕОПЕРАЦИОННОМ ПЕРИОДЕ ПРИ РАКЕ ЩИТОВИДНОЙ ЖЕЛЕЗЫ С ПОМОЩЬЮ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

POSSIBILITIES OF PREDICTING THE OCCURRENCE OF RECURRENCE IN THE POSTOPERATIVE PERIOD IN THYROID CANCER WITH THE HELP OF ARTIFICIAL INTELLIGENCE

K. Volkov R. Petrunkin M. Polidanov E. Dolgova A. Kravchenya S. Kapralov

Summary. Objective. Consideration of predicting the occurrence of recurrence in the postoperative period in thyroid cancer using artificial intelligence. Materials and methods. During the study we analyzed the data of case histories of 106 patients who underwent surgical intervention for thyroid cancer. The average age was 43,54 years. Based on a set of examination results, we selected patients who met the following inclusion criteria: patients with thyroid cancer without confirmed metastases with disease stage from T1N0M0 to T3N0M0; absence of previous and concomitant special treatment (immunotherapy or targeted therapy); informed consent for the surgical intervention. Logistic regression, a binary classifier using a sigmoidal activation function on linear combinations of features, was used as a machine learning model. Results. The majority of patients (60,1 %) underwent thyroidectomy and 39,9 % underwent subtotal thyroid resection. The number of patients with occurrence of postoperative recurrence is 138. The data set was unbalanced, therefore, it was decided to take into account only the fact of presence or absence of postoperative recurrence to reduce the unbalanced data set, i.e. during training and testing the system will use the target feature divided into only two categories — «there is a recurrence» or «no recurrence». It was found that on the selected parameters (total calcium; REA; cytologic classification after TAB according to Bethesda system; parathormone after surgery) the constructed logistic regression model predicts guite well the possible occurrence of recurrences after surgical intervention for thyroid cancer. Conclusions. The obtained results show that on the basis of only 4 parameters (total calcium; REA; cytologic classification after TAB according to the Bethesda system; parathormone after surgery) it is possible to build a good enough model for predicting the occurrence of recurrences after surgical intervention for thyroid cancer on the basis of such a machine learning method as logistic regression.

Keywords: thyroid cancer, diagnosis, recurrence prediction, machine learning, logistic regression, artificial intelligence.

Волков Кирилл Андреевич

Саратовский государственный медицинский университет им. В.И. Разумовского kvolee@yandex.ru

Петрунькин Родион Павлович

Университет «Реавиз», г. Санкт-Петербург rodyj16@mail.ru

Полиданов Максим Андреевич

специалист научно-исследовательского отдела, ассистент, Университет «Реавиз», г. Санкт-Петербург maksim.polidanoff@yandex.ru

Долгова Елена Михайловна

к.м.н., Саратовский государственный медицинский университет им. В.И. Разумовского emdolqova@list.ru


Кравченя Алия Римовна

к.м.н., Саратовский государственный медицинский университет им. В.И. Разумовского aliakrav1973@gmail.com

Капралов Сергей Владимирович

д.м.н., доцент, Саратовский государственный медицинский университет им. В.И. Разумовского sergejkapralov@yandex.ru

Аннотация. Цель. Рассмотрение возможностей прогнозирования возникновения рецидивов в послеоперационном периоде при раке щитовидной железы с помощью искусственного интеллекта. Материалы и методы. В ходе исследования нами были проанализированы данные историй болезни 106 пациентов, которым было выполнено оперативное вмешательства по поводу рака щитовидной железы. Средний возраст составил 43,54 года. Исходя из комплекса результатов обследования, были отобраны пациенты, соответствующие следующим критериям включения: больные раком щитовидной железы без подтвержденных метастазов со стадией заболевания от Т1N0M0 до Т3N0M0; отсутствие предшествующего и сопутствующего специального лечения (иммунотерапия или таргетная терапия); наличие информированного согласия на проводимое оперативное вмешательство. В качестве модели машинного обучения применялась логистическая регрессия — бинарный классификатор, использующий сигмоидную функцию активации на линейные комбинации признаков. Результаты. Большинству пациентов (60,1 %) была проведена тиреоидэктомия, а субтотальная резекция щитовидной железы — 39,9 %. Количество пациентов с возникшим послеоперационным рецидивом составляет 138 человек. Набор данных оказался несбалансированным, в связи с чем, было принято решение учитывать только факт наличия или отсутствия послеоперационных рецидивов для снижения несбалансированности набора данных, т.е. процессе обучения и тестирования система будет использовать целевой признак, разделенный

только на две категории — «есть рецидив» или «нет рецидива». Было установлено, что на отобранных параметрах (кальций общий; РЭА; цитологическая классификация после ТАБ по системе Bethesda; паратгормон после операции) построенная модель логистической регрессии достаточно хорошо предсказывает возможное возникновение рецидивов после оперативного вмешательства при раке щитовидной железы. Выводы. Полученные результаты показывают, что на основе всего 4 параметров (кальций общий; РЭА; цитологическая классификация после ТАБ по системе Bethesda; паратгормон после операции) можно построить достаточно хорошую модель для прогнозирования возникновения рецидивов после оперативного вмешательства при раке щитовидной железы на основе такого метода машинного обучения, как логистическая регрессия.

Ключевые слова: рак щитовидной железы, диагностика, прогнозирование рецидивов, машинное обучение, логистическая регрессия, искусственный интеллект.

Введение

ак щитовидной железы (РЩЖ) — наиболее часто встречающаяся злокачественная опухоль эндокринных органов [1,2]. Он составляет около 1–1,5 % среди всех злокачественных новообразований [3, 4]. РЩЖ диагностируется как узловая патология ЩЖ. Встречаемость узлов ЩЖ крайне высока, они выявляются при пальпации у 4–7 % в популяции, при УЗ-скрининге — в 50 % случаев [5–7]. По гистологическому типу различают папиллярный [3, 8], фолликулярный, медуллярный, анапластический рак [8, 9] и лимфому щитовидной железы, а также ее метастатические поражения. Согласно системе АЈСС (The American Joint Committee on Cancer) [10], показатели Т, N, M комбинируются в 4 четыре стадии РЩЖ [11,12].

В настоящее время много внимания уделяется изучению роли генетических изменений в развитии и диагностике РЩЖ [13]. Они обнаружили, что мутации в определенных генах, таких как BRAF, PTEN, APC, DICER1, MNG, NRAS, KRAS и TERT [14], могут быть связаны с возникновением этой болезни. Новое направление в диагностике — использование анализа ДНК из образцов, полученных при тонкоигольной биопсии щитовидной железы. Это позволяет не только выявить рак на ранних стадиях, но и предсказать его развитие [15, 16]. Внедрение этих молекулярных методов в клиническую диагностику РЩЖ значительно повысит точность диагностики РЩЖ, проводимой с помощью цитологического исследования [17, 18]. Важно отметить, что при своевременном выявлении и правильном лечении рак щитовидной железы может быть успешно излечен в 98 % случаев [19].

Проблематика исследования заключается в необходимости разработки системы прогнозирования возникновения рецидивов после оперативного вмешательства

при РЩЖ, которая позволит повысить эффективность лечения и улучшить качество жизни пациентов. Актуальность данной темы обусловлена необходимостью повышения эффективности лечения РЩЖ и снижения риска возникновения рецидивов. Создание системы прогнозирования позволит своевременно выявлять пациентов с высоким риском рецидива и принимать меры по его предотвращению. Это, в свою очередь, приведёт к улучшению качества жизни пациентов и снижению экономических затрат на лечение.

Таким образом, разработка системы прогнозирования возникновения рецидивов при РЩЖ является актуальной задачей, решение которой позволит повысить качество медицинской помощи и снизить риски для пациентов. В дальнейшем система может быть интегрирована в медицинскую практику и использована для мониторинга состояния пациентов после операции.

В связи с вышесказанным, *целью исследования* является рассмотрение возможностей прогнозирования возникновения рецидивов в послеоперационном периоде при раке щитовидной железы с помощью искусственного интеллекта

Материалы и методы исследования

В соответствии с целью исследования были проанализированы истории болезни 106 пациентов, с выполненным оперативным вмешательством по поводу РЩЖ на территории г. Саратова и Саратовской области. Средний возраст — 43,54 года. Всем включенным в исследование больным было проведено комплексное обследование согласно клиническим рекомендациям по диагностике и лечению больных РЩЖ. Морфологическое исследование полученного материала (после проведенного оперативного лечения) проводилось по стандартной технологии. При обзорном морфологическом

анализе срезы, окрашенные гематоксилином и эозином, использовали для определения гистологического типа опухоли, степени дифференцировки, выраженности вторичных изменений и распространенности опухолевого процесса по классификации ВОЗ. Исходя из комплекса результатов обследования, отобраны пациенты, соответствующие следующим критериям включения: больные РЩЖ без подтвержденных метастазов со стадией заболевания от T1N0M0 до T3N0M0; отсутствие предшествующего и сопутствующего специального лечения (иммунотерапия или таргетная терапия); наличие информированного согласия на проводимое оперативное вмешательство и участие в исследовании. Критериями же исключения явились: больные РЩЖ с подтвержденными метастазами; предшествующее и сопутствующее специальное лечение; а также наличие обострений хронических заболеваний.

В качестве модели машинного обучения применялась логистическая регрессия, являющаяся простым классификатором, позволяющим выяснить наличие линейно-зависимых параметров в наборе данных.

Разрешение на проведение исследования отражено локальным этическим комитетом (ЛЭК) Медицинского университета «Реавиз» (протокол № 10, 10.10.2024). Исследование проводили при наличии добровольных информированных согласий пациентов в соответствии с декларацией о соблюдении международных, а также Российских этических принципов и норм (выписка из протокола №19 заседания комитета по биоэтике от 26 октября 2018 года). Исследование выполнено в соответствии с требованиями Хельсинской декларации Всемирной медицинской ассоциации (в ред. 2013 года).

Результаты и их обсуждение

Во время обработки данных одной из главных задач было найти именно те показатели, которые влияли на возникновение послеоперационных рецидивов. На рис. 1 показано процентное соотношение пациентов по видам проведенной операции, на рис. 2 — распределение пациентов по наличию и отсутствию послеоперационного рецидива.

Исходя из данных, представленных на рис. 1, можно утверждать, что набор сведений несбалансирован. Большинству пациентов (60,1 %) была проведена тиреоидэктомия, а субтотальная резекция щитовидной железы — 39,9 %. При этом, как видно из данных рис. 2, количество пациентов с возникшим послеоперационным рецидивом составляет 138 человек.

Как правило, степень несбалансированности набора данных сильно влияет на качество обученных моделей искусственного интеллекта. Поэтому было принято ре-

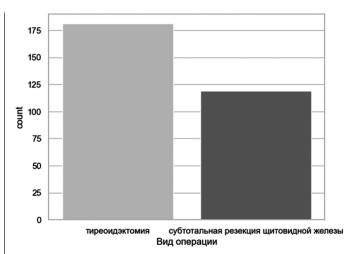


Рис. 1. Процентное соотношение пациентов по видам операции

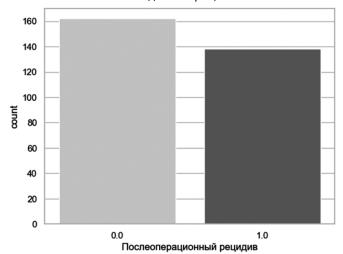


Рис. 2. Распределение пациентов по наличию и отсутствию послеоперационного рецидива: 0 — послеоперационного рецидива не было, 1 — послеоперационный рецидив был

шение учитывать только факт наличия или отсутствия послеоперационных рецидивов для снижения несбалансированности набора данных, т.е. процессе обучения и тестирования система будет использовать целевой признак, разделенный только на две категории — «есть рецидив» или «нет рецидива».

Далее была построена корреляционная матрица на основе формулы корреляции Пирсона, в которой наибольший для нас интерес представляла величина корреляции параметров с вероятностью возникновения послеоперационных рецидивов (рис. 3).

На корреляционной матрице отражаются числовое значение — корреляция между параметрами, указанными по строкам и столбцам. Чем насыщенней цвет, тем корреляция между параметрами ближе к –1 или 1. Порог отсечки был равен 0,25, то есть при корреляции ниже

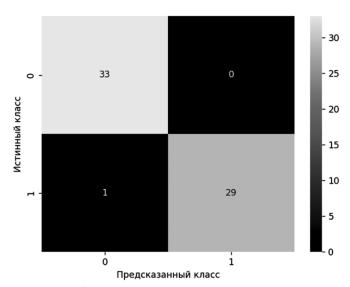


Рис. 3. Корреляционная матрица

этого значения считалось, что корреляции нет. Важным является тот факт, что обученная модель ни разу не оши-

блась. На сегодняшний день уже получено свидетельство о государственной регистрации программ для ЭВМ: «Система для прогнозирования возникновения рецидивов после оперативного вмешательства при раке щитовидной железы» [20].

Заключение

Таким образом, полученные результаты показывают, что на основе всего 4 параметров (кальций общий; РЭА; цитологическая классификация после ТАБ по системе Bethesda; паратгормон после операции) можно построить достаточно хорошую модель [20] для прогнозирования возникновения рецидивов после оперативного вмешательства при раке щитовидной железы на основе такого метода машинного обучения, как логистическая регрессия. При необходимости повысить метрики модели можно увеличить выборку пациентов, предварительно обучив модель работать на более сложных методах машинного обучения.

ЛИТЕРАТУРА

- 1. Davies L., Welch H.G. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA. 2006; 295(18): 2164-7. doi: 10.1001/jama.295.18.2164.
- 2. Чиссов В.И., Решетов Игорь Владимирович, Щетинин В.В., Доценко В.В., Кравцов С.А., Поляков А.П. Первый опыт радикального удаления первичных и метастатических опухолей позвоночника. Хирургия позвоночника. 2005; (1): 85—90.
- 3. Берштейн Л.М. Рак щитовидной железы: эпидемиология, эндокринология, факторы и механизмы канцерогенеза. Практ. онкология. 2007; 8 (1): 1—8.
- 4. Лушников Е.Ф. Рак щитовидной железы в России после Чернобыля. Е.Ф. Лушников, А.Ф. Цыб, С. Ямасита. М.: Медицина, 2006; 128 с.
- 5. Bentz B.G., et. al. B-RAF V600E mutational analysis of fine needle aspirates correlates with diagnosis of thyroid nodules. Otolaryngol. Head Neck Surg. 2009; 140, (5): 709–714.
- 6. Arturi F., et. al. Clin J. lodic symporter gene expression in human thyroid rumors. Endocrinol. Metab. 1998; 83: 2493.
- 7. PapiniE., et.al. Riskofmalignancyinnonpalpablethyroidnodules: Predictive value of ultrasound and color-Doppler features. J. Clin. Endocrinol. Metab. 2002;87:1941–1946
- 8. Клинические рекомендации. Дифференцированный рак щитовидной железы. Кодирование по Международной статистической классификации болезней ипроблем, связанных со здоровьем: С 73. Возрастная группа: взрослые. Год утверждения: 2020 г.
- 9. Барчук А.С. Рецидивы дифференцированного рака щитовидной железы. Практическая онкология. 2007; 8 (1): 35 с.
- 10. Amin M.B., Greene F.L., Edge S.B., et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more «personalized» approach to cancer staging. CA Cancer J Clin. 2017; 67 (2): 93–99. doi: 10.3322/caac.21388.
- 11. Kane S.M., Mulhern M.S., Pourshahidi L.K., et al. Micronutrients, iodine status and concentrations of thyroid hormones: a systematic review. Nutr Rev. 2018; 76 (6): 418—431. doi: 10.1093/nutrit/nuy008.
- 12. Егоров П.И., Цфасман А.З. Радиоактивный йод в диагностике и лечении заболеваний щитовидной железы. М., 1962; 247 с.
- 13. Agretti P., et. al. MicroRNA expression profile helps to distinguish benign nodules from papillary thyroid carcinomas starting from cells of fine-needle aspiration. J. Eur. Endocrinol. 2012; 167 (3): 393–400
- 14. РумянцевП.О., ИльинА.А., РумянцеваУ.В., СаенкоВ.А. Ракщитовиднойжелезы: современные подходык диагностике илечению. М.: ГЭОТАР-Медиа. 2009; 448с.
- 15. Bellevicine C., et. al. Cytological and molecular features of papillary thyroid carcinoma with prominent hobnail features: a case report. Acta Cytol. 2012; 56 (5): 560–564.
- 16. Prescott J.D., et. al. BRAF(V600E) status adds incremental value to current risk classification systems in predicting papillary thyroid carcinoma recurrence. Surgery. 2012; 152 (6): 984–990.
- 17. Румянцева У.В. Клинико-генетические аспекты спорадического немедуллярного рака щитовидной железы. Румянцева У.В., Румянцев П.О., Ильин А.А. Клин. и эксперим. тиреодология. 2006; 2 (1): 16—20.
- 18. Elisei R., et. al. The BRAFV600E Mutation Is an Independent, Poor Prognostic Factor for the Outcome of Patients with Low-Risk Intrathyroid Papillary Thyroid Carcinoma: Single-Institution Results from a Large Cohort Study. J. Clin. Endocrinol. Metab. 2012; 97 (12): 4390—4398
- 19. Макарьин В.А. Рак щитовидной железы. Пособие для пациентов. М. 2016; 168 с.
- 20. Свидетельство о регистрации программы для ЭВМ № 2024689824 / 11.12.2024. Заявка от 28.11.2024. Полиданов М.А., Петрунькин Р.П., Кудашкин В.Н., Масляков В.В., Кравченя А.Р., Волков К.А., Рафеева П.Д., Трухина М.К., Капралов С.В., Амиров Э.В. Система для прогнозирования возникновения рецидивов после оперативного вмешательства при раке щитовидной железы. Ссылка активна на 15.01.2025: https://elibrary.ru/item.asp?id=76404288

© Волков Кирилл Андреевич (kvolee@yandex.ru); Петрунькин Родион Павлович (rodyj16@mail.ru); Полиданов Максим Андреевич (maksim.polidanoff@yandex.ru); Долгова Елена Михайловна (emdolgova@list.ru); Кравченя Алия Римовна (aliakrav1973@gmail.com); Капралов Сергей Владимирович (sergejkapralov@yandex.ru) Журнал «Современная наука: актуальные проблемы теории и практики» DOI 10.37882/2223-2966.2025.09.07

ЛАБОРАТОРНАЯ И ИНСТРУМЕНТАЛЬНАЯ ДИАГНОСТИКА ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ: СРАВНИТЕЛЬНЫЙ АНАЛИЗ

LABORATORY AND INSTRUMENTAL DIAGNOSTICS OF MALIGNANT PROSTATE TUMORS: COMPARATIVE ANALYSIS

R. Gilfanova Z. Afanasyeva

Summary. The article presents a comparative analysis of modern laboratory and instrumental methods for diagnosing prostate cancer (PCa), with an emphasis on the effectiveness of anesthesia during transrectal biopsy. The diagnostic value of PSA and multiparametric MRI, as well as the effect of myofascial blockade of the erector spinae muscle (ESP blockade) on the quality of biopsy samples, the level of pain syndrome, the psychoemotional state of patients and the frequency of complications are assessed. The results indicate the advantages of ESP blockade compared to traditional local anesthesia and confirm the need for its inclusion in standard diagnostic protocols. The prospect of integrating an integrated approach into the algorithm for diagnosing PCa is noted.

Keywords: prostate cancer, PSA, multiparametric MRI, radiomics, transrectal biopsy, ESP blockade, anesthesia.

Введение

ак предстательной железы (РПЖ) является одним из наиболее часто диагностируемых злокачественных новообразований у мужчин во всем мире. В глобальном масштабе заболевание занимает второе место по частоте встречаемости среди всех онкологических патологий у мужского населения, а в развитых странах он выходит на первое место в структуре онкозаболеваемости у мужчин [2]. В России, по данным статистики в 2023 году РПЖ у мужчин составил 19,1 % случаев от всех первично-диагностированных раков, что вывело его на первое место по частоте, на втором месте находится рак легких с показателем 14,5 % у мужчин. В количественном выражении это составило более 58 тысяч первично диагностированных злокачественных поражений предстательной железы в 2023 г., а уровень смертности от него составляет около 12 тысяч ежегодно [1]. Заболеваемость продолжает неуклонно расти, особенно в возрастной группе старше 60 лет.

Гильфанова Рида Анфисовна

врач-хирург отделения рентгенохирургических методов диагностики и лечения № 2 ГАУЗ «Республиканская клиническая больница» МЗ РТ, г. Казань rida-qilfanova@mail.ru

Афанасьева Зинаида Александровна

ГБОУ ДПО «Казанская государственная медицинская академия» МЗ РФ z-afanasieva@mail.ru

Аннотация. В статье представлен сравнительный анализ современных лабораторных и инструментальных методов диагностики рака предстательной железы, с акцентом на эффективность обезболивания при проведении трансректальной биопсии. Оценены диагностическая ценность простатспецифического антигена и мультипараметрической магнитно-резонансной томографии, а также влияние миофасциальной блокады мышцы, выпрямляющей спину (ESP-блокады), на качество биопсийных образцов, уровень болевого синдрома, психоэмоциональное состояние пациентов и частоту осложнений. Полученные результаты свидетельствуют о преимуществах ESP-блокады по сравнению с традиционной местной анестезией и подтверждают необходимость её включения в стандартные диагностические протоколы. Отмечена перспектива интеграции комплексного подхода в алгоритм диагностики РПЖ.

Ключевые слова: рак предстательной железы, ПСА, мультипараметрическая МРТ, радиомика, трансректальная биопсия, ESP-блокада, обезболивание.

Несмотря на совершенствование диагностических возможностей, проблема своевременного выявления РПЖ остаётся актуальной. На ранних стадиях заболевание часто протекает бессимптомно, что усложняет диагностику. Основными скрининговыми и первичными диагностическими методами остаются лабораторное определение простат-специфического антигена (ПСА) [3, 4] и инструментальные методы: трансректальное ультразвуковое исследование (ТРУЗИ). При всей своей доступности ПСА-теста, основным его недостатком является неспецифичность [5].

Широко применяется ТРУЗИ предстательной железы — это безопасный, информативный и малоинвазивный метод диагностики, проводимый амбулаторно, обеспечивающий детальную визуализацию простаты. УЗИ не обладает ионизирующим излучением и широко применяется для раннего выявления заболеваний предстательной железы и выбора тактики лечения. Однако метод имеет и ряд ограничений — дискомфорт для

пациента, ограниченный обзор, зависимость от опыта и квалификации врача [6, 7].

В последние годы активно исследуется потенциал мультипараметрического УЗИ, включающего В-режим (В-mode) и эластографию сдвиговой волны (SWE), в сочетании с радиомическим анализом. По данным Liang и соавт. (2021), разработанная радиомическая модель на основе этих данных продемонстрировала высокую диагностическую точность (AUC = 0,85) при дифференциации доброкачественных и злокачественных поражений предстательной железы. При объединении радиомических признаков с клиническими параметрами (возраст, PSAD и др.) точность модели достигла AUC = 0,90, превзойдя как исключительно клинические, так и чисто радиомические модели по информативности и клинической ценности [7].

Существенной чувствительностью и специфичностью обладает мультипараметрическая магнитно-резонансная томография (MPT) с применением шкалы PI-RADS [7, 8]. Метод сочетает анатомическое Т2-взвешенное изображение с функциональными технологиями — диффузионно-взвешенная визуализация (DWI) и динамическое контрастное усиление (DCE), что позволяет не только локализовать подозрительные очаги, но и оценить степень их злокачественности [9].

Наибольшее значение в предоперационной визуализации РПЖ приобретают критерии, определяемые при мультипараметрической МРТ: экстрапростатическое распространение (ЕРЕ) и инвазия семенных пузырьков (SVI). Наличие этих признаков, по данным современных исследований, ассоциируется с повышенным риском биохимического рецидива и может рассматриваться как независимый прогностический фактор [10].

Кроме того, в многоцентровом исследовании Вао и соавт. (2024) показано, что использование радиомики в сочетании с алгоритмом Random Forest позволяет достоверно прогнозировать клинически значимый рак предстательной железы с высокой точностью (AUC до 0,893) и существенно повышает специфичность при сохранении высокой чувствительности [11]. Внедрение радиомических моделей в клиническую практику не только улучшает стратификацию пациентов группы PI-RADS 3, но и способствует повышению согласованности между врачами разного уровня подготовки, снижая субъективизм в интерпретации МРТ. Радиомика усиливает потенциал визуализирующих методов диагностики, открывая путь к более точной и персонализированной тактике ведения пациентов с подозрением на РПЖ[11,12].

Наряду с традиционными методами диагностики, в последние годы развивается концепция жидкостной биопсии, основанной на анализе циркулирующей

опухолевой ДНК (ctDNA). По данным многоцентрового анализа, уровень ПСА коррелирует с долей опухолевой ДНК в плазме, что позволяет предсказывать успешность молекулярного профилирования: при ПСА выше 5 нг/мл вероятность получения информативного результата превышает 75 % [13].

Мультифокальная трансректальная биопсия предстательной железы [14, 15] остаётся «золотым стандартом» верификации диагноза РПЖ, однако сама процедура может вызывать значительный болевой синдром. Наиболее болезненным является этап апикальной и латеральной биопсии, особенно при повторных вмешательствах [14, 15]. Болезненность процедуры может снижать точность забора материала, ограничивать доступ к труднодоступным участкам и влиять на качество получаемых образцов. Уровень боли и тревожности пациента также оказывает влияние на точность выполнения процедуры и её переносимость [18].

В связи с этим актуальным направлением становится выбор метода анальгезии. На фоне традиционного применения местной анестезии (лидокаин-гель, периапикальные инъекции) в последнее время внимание исследователей привлекает метод миофасциальной блокады мышцы, выпрямляющей спину (ESP-блокады), предложенный Forero M. et al. в 2016 году [16]. Эта техника позволяет достичь качественного регионарного обезболивания при минимальных рисках, она проста в исполнении и может применяться при различных хирургических и диагностических вмешательствах [16].

Первые исследования применения ESP-блокады при трансректальной биопсии предстательной железы показывают значительное снижение выраженности болевого синдрома [17], улучшение качества биопсийных образцов и снижение частоты фрагментации тканей, а также улучшение психоэмоционального состояния пациентов. Кроме того, её применение связано с меньшим количеством осложнений.

Цель настоящей работы — провести сравнительный анализ лабораторных и инструментальных методов диагностики РПЖ с учётом влияния метода обезболивания на результативность и переносимость мультифокальной биопсии, качество полученных образцов и частоту осложнений.

Материалы и методы

Настоящее исследование носило проспективный сравнительный характер и было направлено на анализ эффективности и влияния различных методов обезболивания при выполнении мультифокальной трансректальной биопсии предстательной железы у пациентов с подозрением на рак. В исследование были включены

108 мужчин в возрасте от 45 до 75 лет, обратившихся за медицинской помощью по поводу подозрительных клинико-инструментальных и лабораторных признаков РПЖ. Все пациенты были предварительно обследованы, после чего рандомизированы в две сопоставимые группы в зависимости от способа обезболивания, используемого при выполнении биопсии. Группу наблюдения составили 53 пациента, которым применялась миофасциальная блокада мышцы, выпрямляющей спину (ESP-блокада) под ультразвуковым контролем на уровне L2–L3 с использованием 0,375 % ропивакаина в объеме по 20 мл с каждой стороны. В группу сравнения вошли 55 пациентов, у которых применялась стандартная местная анестезия в виде трансректального введения 2 % раствора лидокаина.

Критериями включения в исследование являлись повышение уровня ПСА выше 4 нг/мл, наличие подозрительных зон при ТРУЗИ или МРТ, а также подписанное информированное согласие. Из числа обследуемых исключались пациенты с аллергией на местные анестетики, инфекционно-воспалительными изменениями кожи в предполагаемой зоне блокады, когнитивными нарушениями, затрудняющими объективную оценку боли, а также лица, которым проводилась повторная биопсия предстательной железы.

Протокол обследования включал лабораторную и инструментальную диагностику. Из лабораторных методов были использованы определение общего и свободного ПСА, а также расчёт их соотношения (индекса свободного ПСА), выполненные методом иммунохемилюминесцентного анализа на автоматическом анализаторе Architect i2000SR (Abbott, США). Инструментальная часть обследования включала трансректальное УЗИ предстательной железы с оценкой эхоструктуры, контуров, объема железы, остаточной мочи и наличия патологических включений. В обязательном порядке выполнялась мультипараметрическая МРТ органов малого таза с внутривенным контрастированием, интерпретируемая по системе PI-RADS v2.1 с определением объема железы, состояния капсулы, наличия лимфаденопатии и узловых образований.

Основной диагностической процедурой была мультифокальная трансректальная биопсия предстательной железы, проводимая под УЗ-навигацией с использованием биопсийной иглы Tru-Cut 18G и пистолета FAST-GUN. Материал забирался из не менее чем 8–12 точек с учетом латеральных и апикальных зон обеих долей железы. Полученные образцы маркировались по порядку и направлялись на гистологическое исследование с обязательным заключением по шкале Глисона при верификации злокачественного процесса.

Качественная оценка полученных биоптатов включала измерение длины каждого образца, регистрацию

случаев фрагментации, а также учет некондиционных образцов, не пригодных для гистологической интерпретации. Диагностическая результативность биопсии оценивалась по частоте подтвержденных случаев РПЖ и их распределению по стадиям и степеням дифференцировки. Уровень болевого синдрома регистрировался с помощью визуально-аналоговой шкалы боли (ВАШ) сразу после процедуры. Для комплексной оценки психоэмоционального состояния пациентов применялся валидизированный тест САН (самочувствие, активность, настроение), заполнявшийся до и после биопсии. Также проводился мониторинг осложнений — как специфических для процедуры (ректоррагия, гематурия), так и общесоматических (головокружение, артериальная гипотензия и др.).

Статистическая обработка данных осуществлялась с использованием программ STATISTICA 6.0 и Microsoft Excel 2016. Количественные переменные проверялись на соответствие нормальному распределению с использованием критерия Шапиро-Уилка. При нормальном распределении применялся t-критерий Стьюдента для сравнения двух независимых выборок, а при его нарушении — непараметрический U-критерий Манна-Уитни. Для анализа категориальных данных использовались χ^2 -критерий Пирсона и точный критерий Фишера, в зависимости от количества наблюдений. Корреляционные связи между психоэмоциональными параметрами и болевыми ощущениями оценивались с использованием коэффициентов Спирмена и Пирсона. С целью определения независимых факторов, влияющих на выраженность болевого синдрома, проводился множественный линейный регрессионный анализ.

Результаты

Результаты лабораторных исследований продемонстрировали достоверные различия в уровне ПСА между пациентами с верифицированным диагнозом РПЖ и теми, у кого злокачественный процесс не был подтверждён. Уровень общего ПСА в группе пациентов с РПЖ был статистически значимо выше по сравнению с группой без опухолевого поражения (р < 0,001), что подтверждает его чувствительность как первичного лабораторного маркера. Кроме того, индекс отношения свободного ПСА к общему показал высокую прогностическую значимость, выступая в качестве значимого дифференциально-диагностического критерия между злокачественными и доброкачественными процессами (р = 0,014).

Среди инструментальных методов диагностики наибольшую диагностическую ценность показала мультипараметрическая MPT. Уровни PI-RADS 4 и 5 по данным MPT достоверно ассоциировались с высокой частотой выявления РПЖ (р <0,01), в то время как ТРУЗИ, несмотря на свою доступность и распространённость, продемонстрировало меньшую специфичность и более низкую прогностическую ценность. Таким образом, сочетание лабораторных маркеров с высокоточной визуализацией (PI-RADS) позволило обоснованно отбирать пациентов для морфологической верификации диагноза.

Важнейшим элементом сравнительного анализа стало исследование влияния метода обезболивания на параметры биопсии предстательной железы. Уровень болевого синдрома, измеренный по ВАШ, был достоверно ниже в группе пациентов, получивших ESP-блокаду, по сравнению с группой местной анестезии (1,93 \pm 1,43 против 3,49 \pm 1,53 балла соответственно; р <0,001). Данный результат указывает на выраженное анальгезирующее преимущество регионарной анестезии.

Кроме того, в группе наблюдения зафиксировано статистически значимое снижение частоты фрагментации биопсийных образцов: 1,9 % против 5,5 % в группе местной анестезии (p = 0,0035), что может свидетельствовать о более высоком качестве забора материала в условиях адекватного обезболивания. Средняя длина биопсийных столбиков также демонстрировала тенденцию к увеличению в группе ESP, а число некондиционных образцов было минимальным. Существенным оказался и показатель диагностической результативности: подтверждение РПЖ по результатам гистологии получено у 60,4 % пациентов, получивших ESP-блокаду, против 50,9 % в группе сравнения. Хотя различие не достигло уровня строгой статистической значимости, выявленная тенденция заслуживает клинического внимания.

Особое внимание в исследовании уделялось анализу психоэмоционального состояния пациентов, оцененно-

го при помощи шкалы САН. В группе ESP-блокады отмечалась стабилизация показателей самочувствия, активности и настроения до и после процедуры, тогда как в группе местной анестезии фиксировалось статистически значимое снижение самочувствия и активности (р <0,05). Эти данные подтверждают, что использование регионарной анестезии способствует не только снижению боли, но и общему эмоциональному комфорту, снижая тревожность и улучшая переносимость вмешательства. На диаграмме 1 представлены показатели САН в динамике.

Частота осложнений, таких как ректоррагия, гематурия, гипотензия и головокружение, также оказалась ниже в группе ESP-блокады — 1,9 % против 9,1 % в группе сравнения, что имеет статистическую и клиническую значимость. Важно отметить, что ни в одном случае не наблюдалось серьёзных побочных эффектов, таких как токсические реакции на анестетики, неврологические осложнения или инфекционные поражения, что дополнительно подтверждает безопасность предложенного метода регионарной анестезии.

Обсуждение

Результаты проведённого исследования подтверждают целесообразность и высокую эффективность комбинированного подхода к диагностике РПЖ, основанного на сочетании лабораторных, визуализирующих и морфологических методов. Современная концепция раннего выявления РПЖ всё чаще базируется на применении алгоритма «ПСА + МРТ + прицельная биопсия», что позволяет не только повысить выявляемость клинически значимых форм рака, но и сократить количество ненуж-

Диаграмма 1. Показатели САН в группах

ных инвазивных вмешательств у пациентов с доброкачественными изменениями предстательной железы.

Несмотря на широкое распространение, определение уровня ПСА остаётся методом с высокой чувствительностью, но ограниченной специфичностью. Повышение ПСА может наблюдаться при простатите, доброкачественной гиперплазии предстательной железы и других неонкологических состояниях, что нередко приводит к гипердиагностике и увеличению числа необоснованных биопсий [5]. В этой связи более точную стратификацию риска обеспечивает мультипараметрическая МРТ органов малого таза с интерпретацией по системе PI-RADS. В частности, выявление зон с оценкой 4–5 баллов по данной шкале позволяет достоверно предсказывать наличие злокачественного процесса, служа основанием для целенаправленного морфологического подтверждения диагноза.

На фоне усиления роли визуализации биопсия остаётся ключевым элементом диагностики РПЖ, сохраняя статус «золотого стандарта» верификации [15]. Однако успешность этой процедуры в значительной степени определяется условиями её проведения, в частности качеством анальгезии. В данной работе продемонстрировано, что применение ESP-блокады, при выполнении трансректальной биопсии не только достоверно снижает уровень болевого синдрома, но и повышает комфортность вмешательства, улучшает психоэмоциональное состояние пациента и способствует получению биопсийного материала высокого качества.

Сравнительный анализ показал, что при использовании ESP-блокады частота фрагментации образцов, а также доля технически неполноценных столбиков статистически значимо ниже. Кроме того, отмечена тенденция к увеличению диагностической результативности, что, вероятно, обусловлено большей неподвижностью пациента и возможностью более точного забора ткани из анатомически сложных и чувствительных участков предстательной железы. Также заслуживает внимания более равномерное распределение опухолевых находок по номерам биопсийных столбиков, что может свидетельствовать о повышенной полноте и репрезентативности получаемого материала, наглядно представлено в таблице 1.

Особый интерес представляет влияние психоэмоционального состояния пациента на восприятие боли и переносимость вмешательства. Корреляционный и регрессионный анализ, проведённый в настоящем исследовании, выявил достоверную связь между предбиопсийной активностью и уровнем болевого синдрома: пациенты с более высоким уровнем внутреннего тонуса и настроения демонстрировали лучшую переносимость процедуры. ESP-блокада, в свою очередь, нивелирова-

Таблица 1. Доля некондиционных образцов в исследуемых группах

Показатели	Группа наблюдения (общее число образцов n=477)	Группа сравне- ния (общее число образ- цов n=495)	p*	Z**	OR***
Фрагменти- рованные/ некондици- онные	9/0,019	27/0,055	0,005	2,79	0,33

Примечание: p^* — уровень статистической значимости; z^{**} — статистический критерий для проверки гипотез о средних величинах; отношение шансов

*** (Odds Ratio, OR) — это статистический показатель, используемый для оценки ассоциации между бинарной независимой переменной и бинарной зависимой переменной.

ла различия, вызванные эмоциональными факторами, стабилизируя общее самочувствие и снижая стрессовую реакцию.

В совокупности полученные данные позволяют сделать вывод о высокой эффективности ESP-блокады как способа обезболивания при трансректальной биопсии предстательной железы. Метод не только снижает выраженность болевого синдрома и частоту осложнений, но и повышает качество получаемого материала и, вероятно, улучшает диагностическую результативность

Надо отметить, что наряду с традиционными методами морфологической верификации, в последние годы активно развиваются подходы автоматизированного анализа гистологических препаратов предстательной железы. Особенно перспективны методы, основанные на извлечении текстурных и цветовых признаков с использованием вейвлет-преобразования и GLCM-анализа. Так, в исследовании Bhattacharjee et al. (2019) применение многослойного перцептрона (MLP) для классификации биопсийных изображений по глисоновским градациям продемонстрировало точность до 98,3 %, что подтверждает потенциал цифровых методов в повышении объективности и воспроизводимости диагностики РПЖ [19].

Кроме того, для прогнозирования течения заболевания, вкупе с традиционными биомаркерами (ПСА), интерес представляют и неспецифические лабораторные показатели, отражающие общее соматическое состояние пациента. В крупном когортном исследовании (Sohlberg et al., 2021), основанном на анализе более 130 тысяч пациентов с РПЖ, применён подход лабораторно-ассоциативного анализа (Laboratory-Wide Association Study, LWAS). В рамках этого метода были вы-

явлены 31 рутинный лабораторный тест, статистически значимо ассоциированный с выживаемостью. Помимо ПСА (HR = 1,07) и щелочной фосфатазы (HR = 1,22), к числу значимых маркеров отнесены показатели воспаления (СОЭ — HR = 1,33; лейкоциты — HR = 1,23), а также альбумин (HR = 0,78) и гемоглобин (HR = 0,81), снижения которых коррелировали с повышенной смертностью. Интеграция таких параметров может повысить точность стратификации риска и персонализации тактики ведения пациентов с РПЖ [20].

Таким образом, результаты исследования подчёркивают важность комплексного подхода к диагностике РПЖ, в рамках которого лабораторный скрининг дополняется высокоточной визуализацией и оптимизированной по качеству и переносимости биопсией. Внедрение ESP-блокады в практику проведения трансректальной биопсии может рассматриваться как эффективное решение, способствующее повышению как медицинской результативности, так и уровня удовлетворённости пациента процедурой.

Заключение

Проведённое исследование подтвердило высокую эффективность комплексного подхода к диагностике РПЖ, сочетающего лабораторные, визуализирующие и морфологические методы. Использование мультипараметрической МРТ с последующей прицельной биопсией, основанной на радиомических и клиниконструментальных данных, обеспечивает оптимальное соотношение чувствительности и специфичности

диагностики, снижая количество ненужных инвазивных вмешательств.

Особое внимание было уделено роли метода обезболивания при трансректальной биопсии, от которой напрямую зависит как качество получаемого биоматериала, так и психоэмоциональное состояние пациента. Введение миофасциальной блокады мышцы, выпрямляющей спину (ESP-блокады), позволило достоверно снизить выраженность болевого синдрома, улучшить качество биопсийных образцов, а также сократить количество осложнений. Это делает ESP-блокаду предпочтительным методом анальгезии в амбулаторной урологической практике.

В условиях стремительного развития радиомики, цифровой морфологии и лабораторных биомаркеров, а также всё более широкого внедрения персонализированного подхода, данное исследование подчеркивает важность оптимизации каждого этапа диагностического процесса. Применение инновационных технологий и методов обезболивания способствует не только повышению точности диагностики, но и улучшению качества медицинской помощи в целом.

Рекомендуется включение ESP-блокады в стандартные протоколы проведения трансректальной биопсии предстательной железы. Перспективным направлением являются многоцентровые исследования, направленные на дальнейшую валидацию и интеграцию современных радиомических, молекулярных и анестезиологических подходов в рутинную клиническую практику.

ЛИТЕРАТУРА

- 1. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность) / под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. Москва: МНИОИ им. П.А. Герцена филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2024. 276 с.: ил. ISBN 978-5-85502-298-8.
- 2. Ferlay, J., Ervik, M., Lam, F. et al. Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer, 2020. URL: https://gco.iarc.fr/today
- 3. Catalona, W.J., Smith, D.S., Ratliff, T.L. et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer // N. Engl. J. Med. 1991. Vol. 324, No. 17. P. 1156–1161.
- 4. Stamey, T.A., Yang, N., Hay, A.R. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate // N. Engl. J. Med. 1987. Vol. 317, No. 15. P. 909—916.
- 5. Каракозов, С.В. Ранняя диагностика рака предстательной железы у пациентов без диузрических симптомов / С.В. Каракозов // Тюменский медицинский журнал. 2023. Т. 25, № 1. С. 44–46.
- 6. Кадрев А.В., Митькова М.Д., Рязанцев А.А., Камалов А.А., Митьков В.В. Количественный анализ трансректального ультразвукового исследования с контрастным усилением в диагностике рака предстательной железы (индексы): предварительные результаты. Ультразвуковая и функциональная диагностика. 2020; 3: 12–25.
- 7. Liang L., Zhi X., Sun Y., Li H., Wang J., Xu J., Guo J. A nomogram based on a multiparametric ultrasound radiomics model for discrimination between malignant and benign prostate lesions // Frontiers in Oncology. 2021. Vol. 11. Article ID 610785. DOI: 10.3389/fonc.2021.610785.
- 8. Weinreb, J.C., Barentsz, J.O., Choyke, P.L. et al. PI-RADS Prostate Imaging Reporting and Data System: 2015, version 2 // Eur. Urol. 2016. Vol. 69, No. 1. P. 16–40.
- 9. Lovegrove C.E., Matanhelia M., Randeva J., Eldred-Evans D., Tam H., Miah S., Winkler M., Ahmed H.U., Shah T.T. Prostate imaging features that indicate benign or malignant pathology on biopsy // Translational Andrology and Urology. 2018. Vol. 7, Suppl. 4. P. S420—S435. DOI: 10.21037/tau.2018.07.06.
- 10. Merriman K.M., Harmon S.A., Belue M.J. et al. Comparison of MRI-based staging and pathologic staging for predicting biochemical recurrence of prostate cancer after radical prostatectomy // AJR Am J Roentgenol. 2023. Vol. 221, No. 6. P. 773—787. DOI: 10.2214/AJR.23.29609.

- 11. Bao J., Qiao X., Song Y., Su Y., Ji L., Shen J., Yang G., Shen H., Wang X., Hu C. Prediction of clinically significant prostate cancer using radiomics models in real-world clinical practice: a retrospective multicenter study // Insights Imaging. 2024. Vol. 15, No. 1. P. 68. DOI: 10.1186/s13244-024-01631-w. PMID: 38424368; PMCID: PMC10904705.
- 12. He D, Wang X, Fu C, Wei X, Bao J, Ji X, Bai H, Xia W, Gao X, Huang Y, Hou J. MRI-based radiomics models to assess prostate cancer, extracapsular extension and positive surgical margins. Cancer Imaging. 2021 Jul 5;21(1):46. doi: 10.1186/s40644-021-00414-6. PMID: 34225808; PMCID: PMC8259026.
- 13. Antonarakis E.S., Tierno M., Fisher V., Tukachinsky H., Alexander S., Hamdani O., Hiemenz M.C., Huang R.S.P., Oxnard G.R., Graf R.P. Clinical and pathological features associated with circulating tumor DNA content in real-world patients with metastatic prostate cancer // Prostate. 2022. Vol. 82, No. 7. P. 867–875. DOI: 10.1002/pros.24331. PMID: 35286728; PMCID: PMC9314037.
- 14. Пушкарь, Д.Ю., Раснер, П.И., Скобелев, П.П. Современные возможности скрининга рака простаты у пациентов с ДГПЖ до и после оперативного лечения // Урология. 2001. № 6. С. 48—54.
- 15. Bjurlin, M.A., Taneja, S.S., Carter, H. B. et al. Optimization of prostate biopsy: review of technique and complications // Urol. Clin. North Am. 2014. Vol. 41, No. 2. P. 299—313.
- 16. Forero, M., Adhikary, S. D., Lopez, H. et al. The erector spinae plane block: a novel analgesic technique in thoracic neuropathic pain // Reg. Anesth. Pain Med. 2016. Vol. 41, No. 5. P. 621–627.
- 17. Ahmed, H.M., Altawil, A.A., Tawfik, A.M. et al. ESP block for prostate biopsy analgesia: a prospective randomized trial // J. Pain Res. 2022. Vol. 15. P. 2335–2342.
- 18. Macleod, L.C., Bhatia, N., Zuniga, J.M. et al. Perceived procedural pain and anxiety during transrectal ultrasound-guided prostate biopsy: a prospective study // Urol. Oncol. 2017. Vol. 35, No. 11. P. 672.e17–672.e22
- 19. Bhattacharjee S., Kim C.-H., Park H.-G., Prakash D., Madusanka N., Cho N.-H., Choi H.-K. Multi-Features Classification of Prostate Carcinoma Observed in Histological Sections: Analysis of Wavelet-Based Texture and Colour Features // Cancers. 2019. Vol. 11, no. 12. P. 1937. DOI: 10.3390/cancers11121937.
- 20. Sohlberg E.M., Thomas I.-C., Yang J., Kapphahn K., Velaer K.N., Goldstein M.K., Wagner T.H., Chertow G.M., Brooks J.D., Patel C.J., Desai M., Leppert J.T. Laboratory-wide association study of survival with prostate cancer // Cancer. 2021. Vol. 127, No. 7. P. 1102—1113. DOI: 10.1002/cncr.33341.

© Гильфанова Римма Анфисовна (rimma-gilfanova@mail.ru); Афанасьева Зинаида Александровна (z-afanasieva@mail.ru) Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.10

АНАЛИЗ МИКРОБНОГО ПУЛА МИОМНЫХ УЗЛОВ И ЭНДОМЕТРИЯ У ПАЦИЕНТОК С РАЗЛИЧНЫМ КЛИНИЧЕСКИМ ВАРИАНТОМ ТЕЧЕНИЯ МИОМЫ МАТКИ В МЕНОПАУЗЕ

ANALYSIS OF THE MICROBIAL POOL OF MYOMATOUS NODES AND ENDOMETRIUM IN PATIENTS WITH DIFFERENT CLINICAL VARIANTS OF UTERINE FIBROID COURSE IN MENOPAUSE

> Yu. Guley Yu. Sidorova L. Davidyan

Summary. The aim of the study was to investigate the composition of the microbial pool of myomatous nodes and endometrium in postmenopausal women with different clinical variants of uterine fibroid course. A retrospective analysis of microbiological data was performed in 167 patients who underwent surgical treatment. The main group included 97 women with rapidly growing uterine fibroids, while the comparison group consisted of 70 patients in whom fibroids were an incidental finding. Microbiological examination was carried out using modern identification methods (MALDI-TOF MS, VITEK 2, WASP). It was found that in the main group, microbiota was predominantly represented by conditionally pathogenic microorganisms (Escherichia coli, Enterococcus faecalis, Staphylococcus epidermidis), with the frequency of microbial mixtures reaching 67.0 % versus 12.9 % in the comparison group (p<0.001). In myomatous nodes of the main group, microbial colonization was detected in 77.3 % of cases, mainly E. coli and Bacteroides. The findings suggest a possible role of microbiota in the pathogenesis of rapid fibroid growth and highlight the need for further research.

Keywords: uterine fibroid, menopause, microbiota, endometrium, myomatous node.

Гулей Юлия Викторовна

Аспирант,

ФГБОУ ВО «Ульяновский государственный университет» uliagulej@gmail.com

Сидорова Юлия Дмитриевна

Аспирант,

ФГБОУ ВО «Ульяновский государственный университет» Yulisik2008@yandex.ru

Давидян Лиана Юрьевна

доктор медицинских наук,

ФГБОУ ВО «Ульяновский государственный университет» dliana2009@mail.ru

Аннотация. Цель исследования заключалась в изучении состава микробного пула миоматозных узлов и эндометрия у женщин в постменопаузе с различными клиническими вариантами течения миомы матки. Проведен ретроспективный анализ микробиологических данных у 167 пациенток, перенесших хирургическое лечение. Основная группа включала 97 женщин с быстрорастущей миомой матки, группа сравнения — 70 пациенток, у которых миома являлась сопутствующей находкой. Микробиологическое исследование осуществлялось с использованием современных методов идентификации (MALDI-TOF MS, VITEK 2, WASP). Установлено, что у пациенток основной группы микробиота представлена преимущественно условно-патогенными микроорганизмами (Escherichia coli, Enterococcus faecalis, Staphylococcus epidermidis), при этом частота выявления микробного микста составила 67,0 % против 12,9 % в группе сравнения (р<0,001). В миомных узлах основной группы в 77,3 % случаев выявлена микробная колонизация, преимущественно E. coli и Bacteroides. Полученные результаты указывают на возможную роль микробиоты в патогенезе быстрого роста миомы матки и определяют необходимость дальнейших исследований.

Ключевые слова: миома матки, менопауза, микробиота, эндометрий, миоматозный узел.

Актуальность исследования

иома матки является одной из наиболее распространенных доброкачественных опухолей репродуктивной системы во всем мире и затрагивает практически все возрастные категории женщин — от репродуктивного периода до глубокой менопаузы [1–3].

Опубликованный в 2023 году анализ распространенности миомы матки, проведенный в 204 странах и территориях в период с 1990 по 2019 год, свидетель-

ствовал о том, что за последние 30 лет число случаев заболевания увеличилось с 5,77 млн до 9,64 млн, то есть на 67,07 % [4, 5].

Наибольший рост наблюдался в регионах с низким и средним индексом развития человеческого потенциала: 0,51 % (95 % ДИ: от 0,38 до 0,63) в год. Российская федерация по заболеваемости миомой матки занимает одну из лидирующих позиций в мире — 586,64 [95 % UI: от 434,96 до 771,37] на 100000 женщин [5]. Исследования распространенности, тяжести течения и влияния миомы матки на систему здравоохранения, показали, что в та-

ких европейских странах, как Германия, Франция или Англия расходы связанные с миомой матки, больше, чем на рак молочной железы и рак яичников вместе взятые [6–8]. Помимо существенной нагрузки на систему здравоохранения, последствия применяемого лечения оказывают существенное влияние на качество жизни и фертильность пациенток с миомой матки [9–12].

Таким образом, исследования патогенеза миомы матки и особенностей ее течения приобретают особую значимость. В последние десятилетия, с развитием лабораторных методов исследования, таких, как метатранскриптомика, метагеномика, метаболомика, применение инструментов биоинформатики и возможностей эндоскопической хирургии, все большее внимание приобретают исследования, связанные с воздействием микробиоты на человеческий организм [13,14]. Появилось значительное количество работ, в которых доказана связь между микробиомом кишечника и матки [15–17].

Доказана связь микробиома миомных узлов с нижним отделом репродуктивного тракта [18]. Отметим, что большинство работ направлено на оценку возможности реализации репродуктивной функции женщин и рассматривается с точки зрения влияния миомы матки и микробиома полости матки на успешность выполнения протоколов ВРТ и вынашивание беременности [19].

В тоже время, незаслуженно мало внимания уделяется исследованию влияния микробиома на клиническое течение миомы матки у женщин в менопаузальном периоде, в том числе на активацию роста миомных узлов и развитие аномальных маточных кровотечений, которые приводят к необходимости хирургического лечения [20].

В связи с изложенным, целью нашей работы явилось изучение состава микробного пула миоматозного узла и эндометрия у женщин в менопаузе с различным клиническим течением миомы матки.

Материал и методы исследования

Проведен ретропроспективный анализ бакпосевов от 167 пациенток, перенесших оперативное лечение миомы матки и находящихся в постменопаузе от года и более. Из них у 97 женщин была диагностирована быстрорастущая миома матки, которая послужила основным показанием к проведению оперативного лечения (основная группа), у 70 пациенток миома матки являлась сопутствующим заболеванием и ампутация (экстирпация) матки была проведена по другим показаниям (группа сравнения).

Критерии включения в группы сравнения: менопауза, наличие миомы матки.

Критерии исключения: сердечно-сосудистые заболевания в стадии декомпенсации (в т.ч. сердечная недостаточность), сахарный диабет, злокачественные новообразования любой локализации, алкогольная и/или никотиновая зависимость; заболевания печени в стадии декомпенсации; заболевания щитовидной железы в стадии декомпенсации; наличие туберкулеза, в том числе в анамнезе; заболевания других органов и систем в стадии декомпенсации, которые могли бы оказать влияние на результат исследования.

Отметим, что выделенные группы женщин были сопоставимы по данным анамнеза и текущего состояния здоровья.

Микробиологическое исследование проводилось путем посева полученного материала на элективные и дифференциально-диагностические среды (с анаэробной технологией). Исследования проводились в соответствие с общепринятой методикой. Использовался времяпролетный масс-анализатор «MALDI-TOF MS» (Bruker, Германия) с применением системы «Microflex LT» (BrukerDaltonics, Германия), прибор автоматизированного микробиологического посева «WASP» (Copan, Италия), автоматический бактериологический анализатор «VITEK 2» (BioMerieux, Франция), анализатор антибиотикограмм диско-диффузного метода «АДАЖИО» (BioRad, Франция).

Выявленные в процессе исследования микроорганизмы верифицировались по роду и виду. Подсчитывалось их количественное соотношение в исходном материале. Определение чувствительность культур к антибиотикам выполняли по стандартной методике — метод бумажных дисков.

Обработка полученных результатов осуществлялась с помощью программных пакетов Microsoft Excel и SPSS Statistics Base v.22.

Статистическая обработка данных исследования проводилась при помощи стандартных методов вариативной статистики (статистически значимым считалось принятое в исследованиях значение достоверности различий данных p<0,05).

Результаты

Проводя анализ микробного пула, отметим, что перед поступлением в стационар всем пациенткам проводился забор материала на бактериологическое исследование из половых путей (цервикального канала). Учитывая физиологическую близость мочевыводящих путей и кишечника, а также возраст пациенток и структуру слизистых оболочек, нами были учтены особенности микробиоты, полученной перед проведением оператив-

ного вмешательства. Отметим, что в таблицу нами были включены те женщины, у которых количество микроорганизмов в бакпосеве превышало лабораторные нормы (больше 10^{2-4} КОЕ/мл).

Анализ микробного пула свидетельствовал о том, что в большинстве исследований, полученных от женщин основной группы, присутствовала условно -патогенная флора, характерная для нижних отделов кишечника. В группе сравнения таких пациенток было статистически значимо меньше (табл. 1).

Рассматривая бактериологические результаты материала, полученного из цервикального канала, отметим, что почти у 65 % пациенток основной группы наблюдался активный рост кишечной палочки, в то время как в группе сравнения таких пациенток было почти в 3 раза меньше. На втором месте в основной группе была Candida albicans (28,9 \pm 4,6 %) и на третьем Staphytlococcus epidermidis (18,6 \pm 4,0 %). В группе сравнения Candida albicans давала активный рост только у 12,9 \pm 4,0 % женщин и у 10,0 \pm 3,6 % регистрировался активный рост Staphylococcus saprophyticus.

Остальные представители микробной флоры давали активный рост у незначительной доли женщин. Такие представители микробной флоры, как Clostridium spp, Klebisella pneumoniae, Proteus и Candida krusei регистрировались только у женщин основной группы. В группе сравнения пациенток с такой микробиотой не было.

Заслуживает внимания тот факт, что у 67,0±4,8 % пациенток основной группы активный рост давали сразу несколько микроорганизмов, в то время, как микробный микст в группе сравнения был выявлен только у 12,9±4,0 % женщин (p<0,001).

После определения чувствительности к антибиотикам, все женщины у которых был выявлен избыточный рост микробной флоры получили в качестве подготовки к оперативному лечению— антибактериальную терапию, после которой был проведен повторный анализ микробиоты и те пациентки, у которых роста патогенной флоры выявлено не было, были прооперированы.

Рассматривая возможность участия определенного сочетания микробной флоры в патогенезе развития опухоли, далее нами было проведено исследование бактериологического содержимого полости матки (табл. 2).

Рассматривая бактериальную флору полости матки отметим, что у пациенток основной группы Escherichia coli 23,7 \pm 4,3 % также занимала лидирующую позицию, достаточно часто определялись представители сапрофитной флоры, в частности Staphytlococcus epidermidis 8,2 \pm 2,8 %, у 11,3 \pm 3,2 % пациенток отмечался

Таблица 1. Структура микробиоты цервикального канала женщин сравниваемых групп

	штиваемых гру					
Возбудитель	Основная группа (n=97)	Группа сравнения (n=70)	P ₁₋₂			
	Число женщин	— M±m%				
Нормальн	Нормальная микрофлора половых путей					
Lactobacillaceae	28 28,9±4,6	39 55,1±5,9	0,000595			
Gardnerella vaginalis	9 9,3±3,0	4 5,7±2,8	0,381625			
Peptostreptococcus spp.	12 12,4±3,4	2 2,9±2,0	0,017134			
Bifidobacterium spp.	5 5,1±2,3	2 2,9±2,0	0,471447			
Clostridium spp.	2 2,1±1,5	_	_			
Propionibacterium spp. — P. acnes	2 2,1±1,5		_			
Усл	овно-патогенная фл	opa				
Escherichia coli	63 64,9±4,9	15 21,4±4,9	<0,001			
Enterococcus faecalis	11 11,3±3,2	5 7,1±3,1	0,347226			
Staphylococcocus heemolyticus	1 1,03±1,03	_	_			
Klebisella pneumoniae	1 1,03±1,03	_	_			
Streptococcus agalactiae (B)	3 3,1±1,8	2 2,9±2,0	0,940839			
Staphylococcus aureus	9 9,3±3,0	1 1,4±1,4	0,018159			
Proteus	2 2,1±1,5	_	_			
Сапрофитная микрофлора						
Staphytlococcus epidermidis	18 18,6±4,0	2 2,9±2,0	0,000577			
Corynebacteria	11 11,3±3,2	2 2,9±2,0	0,027377			
Staphylococcus saprophyticus	5 5,2±2,3	7 10,0±3,6	0,262827			
Дрожжеподобные грибы						
Candida krusei	2 2,1±1,5	_	_			
Candida albicans	28 28,9±4,6	9 12,9±4,0	0,009492			
Микробный микст	65 67,0±4,8	9 12,9±4,0	<0,001			

Таблица 2. Структура микробиоты полости матки женщин сравниваемых групп

Возбудитель	Основная группа (n=97)	Группа сравнения (n=70)	P ₁₋₂		
	Число женщи	н — М±m%			
Нормальная	микрофлора пол	овых путей			
Lactobacillaceae	11 11,3±3,2	7 10,0±3,6	0,787578		
Gardnerella vaginalis	2 2,1±1,5	_	_		
Peptostreptococcus spp.	2 2,1±1,5	_	_		
Bifidobacterium spp.	1 1,0±1,0	_	_		
Clostridium spp.	2 2,1±1,5	_	_		
Propionibacterium spp. — P. acnes	2 2,1±1,5	_			
Условно-патогенная флора					
Escherichia coli	23 23,7±4,3	3 4,3±2,4	0,000121		
Enterococcus faecalis	8 8,3±2,8	2 2,8±2,8	0.166728		
Staphylococcocus heemolyticus	1 1,03±1,03	_	_		
Klebisella pneumoniae	1 1,03±1,03	_	_		
Bacteroides	12 12,4±3,4	3 4,3±2,4	0,053327		
Сапрофитная микрофлора					
Staphytlococcus epidermidis	8 8,2±2,8	_	_		
Corynebacteria	3 3,1±1,8	_	_		
Staphylococcus saprophyticus	_	2 2,9±2,0	_		
Дрожжеподобные грибы					
Candida albicans	5 5,2±2,3	2 2,9±2,0	0,451568		
Микробный микст	25 25,8±4,5	3 4,3±2,4	0,000007		

активный рост нормальной флоры половых путей — Lactobacillaceae. У 12,4±3,4 % пациенток основной группы и 4,3±2,4 % группы сравнения был выявлен активный рост Bacteroides, который отсутствовал в биопрепаратах, взятых из цервикального канала (р=0,053327). Микробный микст был выделен у 25,8±4,5 % пациенток. В группе сравнения только у 10,0±3,6 % пациенток был отмечен активный рост лактобактерий. У большинства женщин группы сравнения (51-72,8 %) активного роста микробной флоры, превышающей нормальные параметры, выявлено не было. Отметим, что состав микрофлоры цервикального канала и полости матки в основной группе, несмотря на проведенное лечение, учитывающее чувствительность бактериальной флоры к антибиотикам, оставался практически неизменным и был представлен, в основном, облигатными анаэробами (лактобактерии), аэробными и факультативно аэробными бактериями (Escherichia coli и Enterococcus faecalis). Особую тревогу вызывает Staphytlococcus epidermidis, который присутствовал у 8,2±2,8 % пациенток основной группы. Несмотря на отсутствие способности продуцировать коагулазу, этот вид стафилококка в определенных условиях может быть причиной развития септических осложнений и несмотря на то, что относится к нормальной микрофлоре человека, является причиной развития внутрибольничной инфекции. Все эти моменты были учтены нами при проведении дальнейшего лечения и профилактики возможных осложнений.

Далее нами был рассмотрен состав микробиоты, полученный в результате бакпосева с удаленных миомных узлов.

Отметим, что в отличии от предыдущих исследований, нами были учтены все выделенные микроорганизмы, полученные в любых количествах, поскольку априори — миоматозный узел мы считали стерильным (табл. 3).

Бактериологические исследования миомных узлов свидетельствовали о том, что у 77,3 % пациенток основной группы имелась колонизация миомных узлов нормальной микрофлорой половых путей и нижнего отдела кишечника. В группе сравнения таких пациенток было всего 8,6 %. Кроме того, имелись существенные различия в видовом составе микрофлоры. Если в основной группе в большинстве узлов регистрировались Escherichia coli и Bacteroides, то в группе сравнения выделить лидирующие микроорганизмы не представлялось возможным, поскольку регистрировались единичные колонии отдельных микроорганизмов.

Таким образом, исследования микробиоты половых путей и миомных узлов женщин сравниваемых групп позволили сделать вывод:

Таблица 3. Структура микробиоты миомных узлов женщин сравниваемых групп

Возбудитель	Основная группа (n=97)	Группа сравнения (n=70)	P ₁₋₂			
	Число женщин — М±т%					
Ној	Нормальная микрофлора половых путей					
Clostridium spp.	5 5,1±2,3	1 1,4±1,4	0,171272			
Условно-патогенная флора						
Escherichia coli	52 53,6±5,1	1 1,5±1,5	<0,001			
Enterococcus faecalis	11 11,3±3,2	2 2,9±2,0	0,027377			
Bacteroides	43 44,3±5,1	_	_			
Дрожжеподобные грибы						
Candida albicans	5 5,1±2,3	2 2,9±2,0	0,471447			
Микробный микст	34 35,1±4,9	_	_			
Стерильный посев	22 22,7±4,3	64 91,4±3,4	<0,001			

- 1. В менопаузе у женщин с миомой матки присутствует преимущественно нормальная микрофлора половых путей, однако у пациенток с быстрыми ростом миомы преобладают условно-патогенные микроорганизмы, присутствующие в дистальных отделах кишечника, такие, как Escherichia coli, Enterococcus faecalis и Staphytlococcus epidermidis. Причем в половых путях этих женщин их число превышает нормальные лабораторные нормы, что требует антибактериального лечения.
- 2. У подавляющего большинства пациенток с быстрорастущей миомой матки в миомных узлах присутствует микробная флора, у 35,1 % пациенток имеется микст из 2-х или 3-х ее представителей.
- 3. В большинстве посевов миомных узлов определяется Escherichia coli и Bacteroides, которые относятся к нормальной флоре человеческого организма.

Полученные результаты инициируют дальнейшее исследования, направленные на определение роли микробиоты половых путей в гормональной рецепции эндометрия, миомных узлов и влиянии микробного пула на пролиферативную активность и клиническое течение миомы матки.

ЛИТЕРАТУРА

- 1. Wise L.A., Laughlin-Tommaso S.K. Epidemiology of uterine fibroids: from menarche to menopause // Clinical Obstetrics and Gynecology. 2016. Vol. 59. P. 2—24. DOI: 10.1097/GRF.00000000000164.
- 2. Pavone D., Clemenza S., Sorbi F., Fabbrini M., Petraglia F. Epidemiology and risk factors of uterine fibroids // Best Practice & Research Clinical Obstetrics and Gynecology. 2018. Vol. 46. P. 3—11. DOI: 10.1016/j.bpobgyn.2017.09.004.
- 3. Giuliani E., As-Sanie S., Marsh E.E. Epidemiology and treatment of uterine fibroids // International Journal of Gynecology & Obstetrics. 2020. Vol. 149, № 1. P. 1–7. DOI: 10.1002/ijgo.13102.
- 4. Yang K., Mariani M.V., Ali M., Elkafas H., Bayer T.G., et al. A comprehensive review of uterine fibroids: origin, pathogenesis and treatment // Endocrine Reviews. 2022. Vol. 43, № 4. P. 678–719. DOI: 10.1210/endrev/bnab039.
- 5. Lu Z., Huang Y., Li S., et al. Global, regional and national trends in morbidity, prevalence and life expectancy with disabilities in uterine fibroids in 1990—2019 // BMC Public Health. 2023. Vol. 23. Article 916. DOI: 10.1186/s12889-023-15765-x.
- 6. Al-Hindi A., Myers E.R., Stewart E. Uterine fibroids: burden and unmet medical needs // Seminars in Reproductive Medicine. 2017. Vol. 35, № 6. P. 473—480. DOI: 10.1055/s-0037-1607264.
- 7. Shi V., Banks E., Benin N.G., Harrington A., Stavki-Meili D., et al. Health resource utilization and costs among women with uterine fibroids compared to women without uterine fibroids // Current Medical Research and Opinion. 2019. Vol. 35, № 11. P. 1871–1878. DOI: 10.1080/03007995.2019.1642186.
- 8. Bonafede M.M., Polman S.K., Miller J.D., Thiel E., Troger K.A., Miller K.E. Women with newly diagnosed uterine fibroids: treatment regimens and cost comparison // Population Health Management. 2018. Vol. 21, № 1. P. 1–8. DOI: 10.1089/pop.2017.0172.
- 9. Fortin K., Flick R., Falcone T. Alternatives to hysterectomy: the burden of fibroids and quality of life // Best Practice & Research Clinical Obstetrics and Gynecology. 2018. Vol. 46. P. 31–42. DOI: 10.1016/j.bpobgyn.2017.10.001.
- 10. Henshaw K.A., Guresh M.H., Gernet M.E., Cross K.I. The effect of uterine fibroids on fertility: how uncertainty increases the gap in reproductive outcomes for black women // Reproductive Sciences. 2022. Vol. 29, № 7. P. 1967–1973. DOI: 10.1007/s43032-022-00882-6.
- 11. Grant M.S., Senguba K.S., Vogelsang R., Lawson A.K., Marsh E.E. An altered view of the norm: understanding the reasons for delaying treatment in women with symptomatic uterine fibroids // Journal of Women's Health. 2016. Vol. 25, № 8. P. 1–7. DOI: 10.1089/jwh.2015.5531.

- American College of Obstetricians and Gynecologists. Treatment of symptomatic uterine fibroids. ACOG Practice Bulletin No. 228 // Obstetrics and Gynecology. 2021.
 Vol. 137, № 6. P. e100—e115. DOI: 10.1097/AOG.00000000004401.
- 13. Navarro A., Bariani M.V., Yang K., Al-Hindi A. Understanding the effect of uterine fibroids on human endometrial function // Frontiers in Cell and Developmental Biology. 2021. Vol. 9. Article 633180. DOI: 10.3389/fcell.2021.633180.
- 14. Baker J.M., Chase D.M., Herbst-Kralovetz M.M. Microbiota of the uterus: residents, tourists or invaders? // Frontiers in Immunology. 2018. Vol. 9. Article 208. DOI: 10.3389/fimmu.2018.00208.
- 15. Korchinskaya L., Zeber-Lyubetskaya N., Zglichinskaya M., Zarykhta E., Zareba K., Wojtyla K., Dabrowska M., Cibea M. The role of microbiota in the pathophysiology of uterine fibroids: a systematic review // Frontiers in Cellular and Infection Microbiology. 2023. Vol. 13. Article 1177366. DOI: 10.3389/fcimb.2023.1177366.
- 16. Simon K. Introduction: Are microbes important in the female reproductive system? // Fertility and Sterility. 2018. Vol. 110, № 3. P. 325–326.
- 17. Mao S., Pan S., Pani C., Zhao S., Yu Z., Xu D. Changes in the intestinal microbiome in patients with uterine fibroids // Frontiers in Cellular and Infection Microbiology. 2022. Vol. 12. Article 863594. DOI: 10.3389/fcimb.2022.863594.
- 18. Никитина Е.С., Рымашевский А.Н., Набока Ю.Л., Рымашевский М.А., Гудима И.А., Свирава Э.Г. Микробиота влагалища и миоматозных узлов при миоме матки // Медицинский вестник Юга России. 2022. Т. 13, № 2. С. 50—58. DOI: 10.21886/2219-8075-2022-13-2-50-58.
- 19. Brandan P., Gonzalves-Henriques M. The effect of female genital microbiota on fertility and assisted reproductive technologies // Journal of Family & Reproductive Health. 2020. Vol. 14, № 3. P. 131–149. DOI: 10.18502/jfrh.v14i3.4666.
- 20. Chen K., Song S., Wei W., Zhong H., Dai J., Lan Z., et al. The microbiota continuum in the female reproductive tract and its relation to uterine diseases // Nature Communications. 2017. Vol. 8. Article 875. DOI: 10.1186/s12958-024-01274-y.

© Гулей Юлия Викторовна (uliagulej@gmail.com); Сидорова Юлия Дмитриевна (Yulisik2008@yandex.ru); Давидян Лиана Юрьевна (dliana2009@mail.ru)

Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.11

РЕКОНСТРУКЦИЯ ДЕФЕКТА ПЕРЕДНЕГО ОТДЕЛА ВЕРХНЕЙ ЧЕЛЮСТИ С ИСПОЛЬЗОВАНИЕМ АУТОЛОГИЧНОГО ЗУБА: КЛИНИЧЕСКИЙ СЛУЧАЙ

RECONSTRUCTION OF AN ANTERIOR MAXILLARY DEFECT USING AN AUTOLOGOUS TOOTH: A CLINICAL CASE

Yu. Gurevich V. Prohorova

Summary. Traditional dentistry has always relied on proven methods for decades. After complete removal of the front tooth, the patient was given a partial removable plate immediate prosthesis, a procedure that was considered standard. However, this habit concealed the complexity, the need for repeated relocation during healing, and even the risks associated with an individual reaction to materials, such as the presence of a residual monomer in polymethylmethacrylate, which can cause local reactions. Our article presents a clinical case for the restoration of an aesthetically significant extracted tooth in the shortest possible time. The treatment was planned as a well-coordinated technological process: removal, preparation of the extracted tooth, installation of their own tooth in the area of the extracted tooth, and implantation will be performed upon completion of the healing period. This approach not only accelerated the restoration of aesthetic function, but also allowed minimizing the psychological discomfort that inevitably accompanies the use of a removable immediate prosthesis.

Keywords: restoration of the removed front tooth, immediate prosthesis.

Введение

мплантологическое лечение при дефектах зубного ряда зарекомендовало себя как надёжный и предсказуемый метод восстановления функции и эстетики, обеспечивающий длительный клинический результат и высокое качество жизни пациентов.

Однако в ряде случаев, особенно при удалении верхних центральных резцов, одномоментная установка имплантата оказывается невозможной. Основными причинами являются хронические воспалительные изменения в зоне удаляемого зуба, такие как кисты, гранулёмы или затяжной периодонтит, а также другие локальные и системные противопоказания. В подобных ситуациях формируется временный эстетический и функциональный дефицит, что существенно отражается на психологическом состоянии пациента и снижает его качество жизни [4].

Гуревич Юрий Юрьевич

к.м.н., ФГБОУ ВО Алтайский Государственный Медицинский Университет Минздрава России ortstomagmu@ya.ru

Прохорова Валерия Олеговна

к.м.н., ФГБОУ ВО Алтайский Государственный Медицинский Университет Минздрава России ortstomagmu@ya.ru

Аннотация. Традиционная стоматология всегда опиралась на проверенные десятилетиями методы. После полного удаления переднего зуба пациенту изготавливали частичный съемный пластиночный иммедиат-протез процедура, которая считалась стандартом. Однако за этой привычностью скрывались трудоемкость, необходимость многократной перебазировки во время заживления и даже риски, связанные с индивидуальной реакцией на материалы, например, присутствие остаточного мономера в полиметилметакрилате, способного вызывать местные реакции. В нашей статье представлен клинический случай по восстановлению эстетически значимого удалённого зуба в кратчайшие сроки. Лечение было спланировано как слаженный технологический процесс: удаление, подготовка удалённого зуба, установка в области удалённого зуба собственного зуба, по завершении периода заживления пациентам будет проведена имплантация. Этот подход не только ускорил восстановление эстетической функции, но и позволил минимизировать психологический дискомфорт, который неизбежно сопровождает пользование съёмным иммедиат-протезом.

Ключевые слова: аутологичный зуб, иммедиат-протез.

Утрата зуба во фронтальном отделе челюсти оказывает значительное влияние на общее психоэмоциональное состояние пациента. Такой дефект воспринимается не только как нарушение функции жевательного аппарата, но и как эстетический изъян, способный привлекать нежелательное внимание окружающих. В результате формируется стойкое чувство дискомфорта и психологической неполноценности, которое при отсутствии современной коррекции способно перерасти в глубокое снижение самооценки или даже затяжные депрессивные реакции. Социальный фактор усугубляет ситуацию: под влиянием как явного, так и скрытого давления пациент стремится минимизировать контакты, избегает общения и публичных мероприятий, что приводит к сокращению социальных связей и снижению активности в повседневной жизни. Подобные изменения неизбежно отражаются на качестве жизни, затрагивая её эмоциональные, коммуникативные и социально-адаптационные компоненты [13, 14].

Несмотря на широкое применение, иммедиат-протезы имеют ряд ограничений, связанных как с процессом адаптации пациента, так и с конструктивными особенностями самих изделий. Использование подобного протеза требует выработки новых моторных и функциональных навыков, в том числе связанных с артикуляцией и приёмом пищи. Конструктивные элементы нередко изменяют фонетические характеристики речи, делая её менее разборчивой. Дополнительным источником дискомфорта становятся болевые ощущения в зоне удалённого зуба, возникающие из-за давления промежуточной части протеза на область альвеолы [2]. В совокупности эти факторы не всегда приводят к улучшению качества жизни, так как устранение одного дефекта сопровождается получением новых проблем. Более того, в отдельных случаях негативное воздействие побочных эффектов может превышать психологическое и функциональное влияние исходного дефекта зубного ряда.

Цель исследования — определить эффективность комплексного клинико-технологического подхода к восстановлению эстетически значимого зуба сразу после его удаления с использованием собственного зуба пациента в качестве временной реставрации, направленного на сокращение сроков лечения и снижение психологического дискомфорта по сравнению с традиционным применением съёмных иммедиат-протезов.

Материал и методы

В клиническое наблюдение включены пациенты с необходимостью планового удаления переднего зуба в эстетически значимой зоне. Перед началом лечения проведено комплексное обследование, включающее клинический осмотр, компьютерную томографию и фотопротокол для последующего анализа эстетических параметров.

Подготовка операционного поля включала механическую отчистку лунки от грануляционных тканей, ирригацию 0,05 % раствором хлоргексидина и тщательную аспирацию. Аутологическая коронка подвергалась механической сепарации от корня, удалению остаточных тканей, финишной шлифовке и обработке внутренней поверхности. Для улучшения адгезии применялось протравливание 37 % ортофосфорной кислотой (15–20с) с последующей промывкой и сушкой.

В качестве адгезивной системы использовался светополимеризуемый бондинг, совместимый с жидкотекучим композитом. Фиксация коронки осуществлялась с ориентацией на центральную линию лица и окклюзионный контакт, полимеризация проводилась пошагово. Для стабилизации конструкции выполнено шинирование соседних зубов металлической ортодонтической проволокой, используемой для ретейнеров, зафиксированной на язычно-нёбной поверхности.

Финишная обработка включала коррекцию окклюзии, полировку реставрации и контроль эстетических и функциональных параметров с фотодокументацией результата.

Результаты исследования

Клиническое вмешательство проведено в условиях амбулаторного приёма с соблюдением асептики и антисептики. На первом этапе выполнено атравматичное удаление центрального верхнего резца с минимальным повреждением альвеолярной стенки (рис. 1). Лунка тщательно ревизована, обеспечен гемостаз. Немедленно проведена адаптация и фиксация подготовленного аутологичного зуба пациента, модифицированного в качестве временной реставрации, с использованием композитного материала и шинирования к соседним зубам для стабилизации конструкции (рис. 2).

Рис. 1. Вид лунки после удаления зуба

Фотодокументация подтверждает сохранение контуров десны и отсутствие значительной рецессии мягких тканей в раннем послеоперационном периоде. На последующих осмотрах (в течение первых суток и на 7-е сутки) отмечены удовлетворительные условия заживления без признаков воспалительной реакции, отёка или инфицирования (рис. 3). Временная реставрация обеспечила полное восстановление фронтальной эстетики и позволила пациенту избежать функциональных и психологических ограничений, характерных при использовании стандартных иммедиат-протезов.

Данный подход продемонстрировал клиническую эффективность в сохранении анатомии альвеолярного отростка, оптимальном формировании десневого конту-

Рис. 2. Вид аутологичного зуба пациента, модифицированного в качестве временной реставрации сразу после фиксации

ра и повышении качества жизни пациента в ранний постэкстракционный период. Планируется переход к этапу дентальной имплантации по завершении полного остеоинтеграционного и мягкотканого заживления.

Рис. 3. Вид аутологичного зуба пациента, модифицированного в качестве временной реставрации на 7-е сутки после фиксации

В другом клиническом наблюдении пациент обратился с жалобами на утрату зуба через 7 дней после удаления в эстетически значимой зоне верхней челюсти, сопровождающуюся выраженным дискомфортом при улыбке и опасением по поводу использования традиционного съёмного протезирования. Целью лечения стало максимально быстрое восстановление функции и внешнего вида с минимальным вмешательством и травмой для окружающих тканей.

На первичном приёме проведён комплексный осмотр и фотопротокол. Обнаружена утрата корня зуба с сохранённой коронковой частью, что позволило реализовать методику временного восстановления с использованием собственной коронки пациента. Хирургический этап включал атравматическое удаление остатков корня с сохранением анатомии альвеолярного гребня, тщательную санацию лунки и подготовку тканей для оптимального заживления (рис. 4).

Собственная коронка была механически очищена от органических остатков, подвергнута протравливанию и обработана по адгезивному протоколу. Временная фиксация выполнена при помощи светополимерного композитного материала в сочетании с шиной, в данном случае металлической закреплённой на нёбной поверхности соседних зубов, что обеспечило жёсткую стабилизацию конструкции и исключило подвижность в период репаративных процессов (рис. 5).

Рис. 4. Вид лунки после удаления зуба на 7-е сутки

При контрольном осмотре через месяц отмечены: стабильность положения конструкции, полноценное восстановление эстетической функции, отсутствие патологичсеких изменений слизистой, полное сохранение межзубных контактов. Пациент сообщил об удовлетворенности эстетическим результатом и психологическим комфортом, что позволило ему вернуться к обычному образу жизни без периода социальной адаптации, характерного для съёмных конструкций.

Таким образом, применённая методика, включающая временную стабилизацию собственной коронкой через 7 дней, доказала свою клиническую эффективность, сочетая высокие эстетические показатели с функциональной надёжностью и минимальной травматичностью.

Этапы восстановления удалённого зуба с применением аутологичной коронки, композитного материала и шинирования:

1. Подготовка операционного поля.

После удаления зуба проведена аспирация и ревизия лунки для исключения костных фрагментов и остатков периодонтальной ткани. Выполнена антисептическая обработка раневой поверхности раствором хлоргексидина 0,05 %.

2. Подготовка аутологичной коронки.

Извлечённый зуб очищен от мягких тканей, корневой части и патологически изменённого цемента. Проводится сепарация коронки от корня с последующей полировкой и обработкой внутренней поверхности для обеспечения оптимальной ретенции композитного материала.

3. Формирование временной конструкции.

Контактные и внутреннюю поверхность коронки протравили ортофосфорной кислотой (37 %) в течение 15–20 секунд, промыли и высушили, обработка поверхности раствором хлоргексидина 2 %, высушивание. Затем нанесён адгезивный слой с полимеризацией по протоколу производителя.

4. Фиксация коронки на место удалённого зуба.

Коронка установлена в область удалённого зуба, ориентируясь по окклюзионной и эстетической линии фронтальных зубов. Для первичной фиксации использован текучий композит, который полимеризован в несколько этапов для минимизации усадки.

5. Шинирование к соседним зубам.

Рис. 5. Вид аутологичного зуба пациента, модифицированного в качестве временной реставрации сразу после фиксации

На язычно-нёбной поверхности соседних зубов выполнено протравливание ортофосфорной кислотой (37 %) в течение 15–20 секунд, промывание и высушивание, обработка поверхности раствором хлоргекседина 2 %, высушивание. Затем нанесён адгезивный слой с полимеризацией по протоколу производителя. Ортодонтическая проволока позиционируется на язычно-нёбную поверхность соседних зубов, выше места смыкания, закрепляется композитом, обеспечивая жёсткую стабилизацию временной конструкции.

6. Окончательная финишная обработка.

Проведена полировка и коррекция окклюзии. Удалены излишки материала. Контрольная фотодокументация показала точное прилегание конструкции, гармоничное совпадение цвета и формы с естественными зубами.

Обсуждение результатов

Восстановление зубов в эстетически значимой зоне традиционно рассматривается как задача, требующая баланса между функциональными, эстетическими и психологическими аспектами. При условиях невозможности одномоментной имплантации классическая тактика предполагает установку временного съёмного протеза. Однако данная стратегия имеет свои недостатки: съёмные конструкции часто вызывают дискомфорт, нарушают дикцию и требуют адаптационного периода, а пользование съёмным протезом сопряжено с риском непредсказуемой реакции мягких тканей и изменением рельефа альвеолярного гребня в процессе заживления.

Представленные клинические случаи демонстрируют гибридный подход, при котором временная конструкция формируется из собственной коронки пациента, что обеспечивает максимальное совпадение формы, цвета и текстуры с утраченной анатомической единицей. Такой метод позволяет не только восстановить эстетику сразу после вмешательства, но и минимизировать психоэмоциональный стресс, который, как показывают

современные исследования, может быть, сопоставим по силе с реакцией на травму [13,14].

Отложенная на 7 дней установка постоянной конструкции позволяет сочетать преимущества немедленного восстановления эстетики с возможностью более точной адаптации протеза к сформировавшемуся профилю мягких тканей. За этот период завершается фаза начального заживления, снижается риск убыли десны и маргинальной потери костной ткани.

Таким образом, описанный клинический алгоритм может рассматриваться, как эффективная альтернатива традиционным подходам, особенно у пациентов с высокими требованиями к эстетике и низкой толерантностью к съёмным протезам. Дальнейшие наблюдения и накопление статистических данных позволят оценить долговременные результаты метода и его влияние на стабильность пародонтальных тканей в отдалённые сроки.

Выводы

Применение клинико-технологического подхода, предусматривающего использование собственного зуба пациента в качестве временной реставрации сразу после его удаления, показало высокую клиническую и психологическую эффективность. Метод позволил сохранить непрерывность эстетической функции в зоне улыбки, минимизировать адаптационный стресс и исключить необходимость ношения съёмного иммедиатпротеза в раннем реабилитационном периоде.

Атравматичная техника удаления в сочетании с немедленной фиксацией подготовленного зуба обеспечила стабильность мягких тканей и благоприятные условия для последующей имплантации. Полученные результаты подтверждают перспективность данной методики как альтернативы традиционным способам временного протезирования, особенно в случаях, требующих максимально быстрой эстетической и психологической адаптации пациента.

ЛИТЕРАТУРА

- 1. Dhariwal N.S., Gokhale N.S., Patel P., Hugar S.M. Natural tooth as an interim prosthesis (Собственный зуб в качестве временного протеза) // Journal of Natural Science, Biology and Medicine. 2016. Vol. 7, No. 2. P. 189—193.
- 2. Adam F.A., Mohamd Tarmizi F.S., Goo C.L. Acrylic tooth splint An immediate provisionalisation following tooth extraction: a series of case reports (Акриловый зубной сплинт немедленное временное восстановление после удаления зуба: серия клинических случаев) // Clinical Case Reports. 2023. Vol. 11, No. 6. e7583.
- 3. Bukhari S.A., AlHelal A., Proussaefs P., Garbacea A., Kattadiyil M.T. Use of patient's own natural teeth as part of the interim prosthesis on immediately placed single implants in a staged surgical approach: A clinical report (Использование собственных зубов пациента как части временного протеза при немедленной установке одиночных имплантатов поэтапным хирургическим методом: клинический случай) // Journal of Oral Implantology. 2018. Vol. 44, No. 5. P. 351—357.
- 4. Dolmatov M. Top tips for the immediate replacement of teeth (Основные советы по немедленной замене зубов) // British Dental Journal. 2023. DOI: 10.1038/s41415-023-6647-2.
- Perminova K. Immediate implantation using the extracted crown (Немедленная имплантация с использованием удалённой коронки) [Электронный реcypc] // OHI-S (RU). — 2018. — Режим доступа: https://uk.ohi-s.com/articles-videos/immediate-implantation-using-the-extracted-crown/ (дата обращения: 13.08.2025).

- 6. Dietrich T., Krug R., Krastl G., Tomson P.L. Restoring the unrestorable! Developing coronal tooth tissue with a minimally invasive surgical extrusion technique (Восстановление «невосстановимого»! Формирование коронковой части зуба с помощью малоинвазивной техники хирургической экструзии) // British Dental Journal. 2019. Vol. 226, No. 10. P. 789—793.
- 7. Custom Healing Abutment Fabrication Using Extracted Teeth (Изготовление индивидуальных формирователей десны с использованием удалённых зубов) // Inside Dentistry. 2023. Vol. 19, No. 1. P. 26.
- 8. Immediate placement or immediate restoration/loading of single implants for molar tooth replacement: a systematic review and meta-analysis (Немедленная установка или немедленное восстановление/нагрузка одиночных имплантатов при замене моляров: систематический обзор и метаанализ) // Oral and Maxillofacial Surgery. 2022. Vol. 26, No. 2. P. 185–194.
- 9. Assila L., Soualhi H., Ismaili Z., El Yamani A. Reattachment of a Crown Fragment: An Immediate Esthetic Alternative (Репозиция фрагмента коронки: немедленная эстетическая альтернатива) // Periodon Prosthodon. 2016. Vol. 2, No. 2.
- 10. Abu-Hussein M., Watted N., Abdulgani A. Dental avulsion Immediate replantation: 8-Year Follow Up (Авульсия зуба немедленная реплантация: 8-летнее наблюдение) // IOSR Journal of Dental and Medical Sciences. 2016. Vol. 15, No. 8. P. 98—104.
- 11. Liu Y., Wang X., Li J., Zhang X., Ma Y. Psychological impact of tooth loss in anterior region: a clinical evaluation. Journal of Dentistry, 2020, vol. 93, p. 103–111. DOI: 10.1016/j.jdent.2020.103277.
- 12. Santos M.J., da Silva R., Marchini L. Patients' perceptions of immediate replacement of anterior teeth with temporary crowns. Journal of Prosthodontics, 2021, vol. 30(4), pp. 310–316. DOI: 10.1111/jopr.13275.

© Гуревич Юрий Юрьевич (ortstomagmu@ya.ru); Прохорова Валерия Олеговна (ortstomagmu@ya.ru) Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.12

ИСТОРИЧЕСКИЕ И СОВРЕМЕННЫЕ АСПЕКТЫ БИОЛОГИЧЕСКОГО МЕТОДА ЛЕЧЕНИЯ ПУЛЬПЫ ЗУБА (ОБЗОР ЛИТЕРАТУРЫ)

THE EVOLUTION AND CURRENT STATE OF THE BIOLOGICAL METHOD FOR DENTAL PULP THERAPY (REVIEW)

M. Zhavoronkova S. Ulitovskiy L. Ermolaeva

Summary. The article explores the historical evolution and current advancements of the biological approach to dental pulp treatment, highlighting its modern interpretation and clinical applications. Emphasis is placed on the importance of preserving pulp vitality as the foundation of this method in contemporary dentistry. The article analyzes the materials used, diagnostic strategies, and the potential of regenerative technologies. The future of the biological approach is seen in the development of clinical treatment protocols aimed at successful pulp regeneration, improved diagnostics of reversible pulpitis, and the creation of innovative bioactive nanomaterials.

Keywords: biological method, dental pulp, vitality, regeneration, pulpitis

Жаворонкова Марина Дмитриевна

кандидат медицинских наук, доцент, Санкт-Петербургский государственный университет mdzhdoc@gmail.com

Улитовский Сергей Борисович

доктор медицинских наук, профессор, Санкт-Петербургский государственный университет; Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова

Ермолаева Людмила Александровна

доктор медицинских наук, профессор, Санкт-Петербургский государственный университет

Аннотация. В статье рассматриваются исторические и современные этапы развития биологического метода лечения пульпы зуба, его современная интерпретация и клиническое применение. Подчёркивается значимость сохранения витальности пульпы как основы биологического подхода в современной стоматологии. Анализируются применяемые материалы, диагностические подходы и возможности использования регенеративных технологий. Перспективы метода связаны с развитием клинических протоколов лечения для успешной регенерации пульпы, интеграцией диагностики обратимых форм пульпита, а также созданием биоактивных наноматериалов.

Ключевые слова: биологический метод, пульпа зуба, витальность, регенерация, лечение пульпита.

Введение

охранение витальности пульпы зуба остаётся одной из центральных задач терапевтической стоматологии. Традиционные методы лечения пульпита, направленные на полное удаление воспалённой ткани, уступают место биологическому подходу, предполагающему восстановление функции пульпы и минимальное вмешательство [1]. Биологическое обоснование консервативного лечения пульпита опирается на современные знания о физиологии и регенеративных возможностях тканей зуба, а также о механизмах воспаления, что позволяет выстраивать клинико-биологические параллели и обеспечивает персонализированный подход к терапии [2]. Разработка новых биосовместимых материалов и технологий усилила интерес к биологическим методам, основанным на возможности самовосстановления ткани.

Целью настоящей статьи является анализ исторических и современных аспектов применения биологиче-

ского метода лечения пульпы, который позволяет сохранить жизнеспособность зубов на протяжении всей жизни и решить стоматологические, соматические и социальные проблемы человека.

Путь от магического удаления зубов до научного подхода к сохранению пульпы занял более 2000 лет. Так, в Древнем Египете, Месопотамии, Индии (3000–1000 гг. до н.э.) лечение зубов сводилось к удалению, прижиганию, использованию растительных препаратов и магических практик. Зубы лечили, не зная о внутреннем строении, а понятие о пульпе отсутствовало.

Гиппократ (V–IV в.до н.э.) считал зубную боль результатом скопления «гнилых соков». В эпоху Возрождения и в XVII–XVIII вв. с изобретением микроскопа анатомия зуба становится объектом изучения. Марчелло Мальпиги и Антони ван Левенгук впервые описали сосуды и нервы внутри зуба. Появляется термин «пульпа» (от лат. риlр, мякоть) — ткань, заполняющая внутреннюю часть

зуба, однако её функции ещё непонятны. Ключевой поворот произошёл тогда, когда пульпу перестали рассматривать как «источник боли», а стали видеть в ней активный, защитный и регенеративный центр зуба. В 1830-х гг. Томас Белл и Карл Рот начинают описывать пульпу как жизненно важную ткань, участвующую в образовании дентина. В конце XIX — начале XX века ученые уже высказывались о возможности консервативного лечения случайно обнаженной гиперемированной пульпы. Так, А.К. Лимберг в 1887 году подчёркивал, что пульпа участвует в обмене веществ в твердых тканях зуба, поддерживает их питание и обеспечивает чувствительность к внешним раздражителям, а сохранение витальной пульпы является центральной задачей специалистов [3].

Пульпа зуба участвует в развитии, росте зубов и обладает способностью дать адекватный ответ на различные воздействия. Физиологические особенности пульпы во многом соответствуют соединительной ткани, однако она обладает уникальными чертами, связанными с функцией одонтобластов, которые формируют дентин и способны образовывать дентинные мостики. Роль одонтобластов в формировании дентина доказана отечественными учеными [4-7], а образование вторичного дентина в виде дентинного мостика даже при гнойном пульпите было описано Грошиковым М.И. и Царинским М.М. [8, 9]. Современные данные свидетельствуют, что одонтобласты не только синтезируют защитный дентин, но и выполняют роль сенсоров патогенов. При обратимом воспалении одонтобласты и макрофаги распознают консервативные компоненты микробов pathogen-associated molecular patterns (PAMP), такие как липополисахариды (ЛПС), липотейхоевые кислоты и пептидогликаны грамположительных и грамотрицательных бактерий посредством толл-подобных рецепторов (TLR), выделяют антимикробные пептиды — дефенсины и кателицидины, которые убивают микробы, и запускают воспаление для защиты пульпы [10].

Варшавский А.И. и Дмитриева Л.А. (1976) детально изучили структурные сосудистые элементы пульпы, активно стимулирующие кровоток и обеспечивающие трофику дентина [11]. Защитная функция пульпы обеспечивается как фагоцитарной активностью макрофагов, так и действием биологически активных веществ (гистамин, холин, лейкотоксин, гиалуронидаза), которые повышают сосудистую проницаемость и активируют обмен веществ [12, 13]. Макрофаги фагоцитируют микроорганизмы, выделяют интерлейкин IL-1β и фактор некроза опухоли (TNF-α), активируя мезенхимальные стволовые клетки для репарации [14]. При остром воспалении нейтрофилы мигрируют в пульпу, формируют сети из своей ДНК, покрытой антимикробными белками, так называемые нейтрофильные внеклеточные ловушки (Neutrophil Extracellular Traps — NETosis). Эти сети физически захватывают и убивают микробов прямо в очаге воспаления

и продуцируют реактивные формы кислорода (reactive oxygen species — ROS) химические вещества с высокой окислительной способностью для уничтожения микробов [15], а активация дендритных клеток способствует формированию адаптивного иммунитета [16]. Накопление кислых мукополисахаридов вокруг очага воспаления представляет собой защитную реакцию, ограничивающую распространение токсинов [17]. В процессе регенерации пульпы восстанавливаются одонтобласты за счет дифференцировки мезенхимальных клеток, при этом разрушенные клетки подвергаются фагоцитозу. Однако уровень медиаторов воспаления при обратимом пульпите значительно ниже, чем при необратимых формах. Это указывает на участие механизмов контроля воспаления и восстановления гомеостаза [18]. Механизм ремоделирования пульпы через превращение мезенхимы в одонтобласты, где ключевую роль играет фермент щелочная фосфатаза, был описан Урбанович Л.И. [19]. Интересные данные получены при нейрогистологическом анализе воспаленной и интактной пульпы: кальцитонинген-связанный пептид (КГРП) выявлен только в зоне предентина воспаленной пульпы, что указывает на его роль как медиатора воспаления [20,21]. Современные исследования дополняют эти знания, описывая участие иммунной регуляции, цитокинов, стволовых клеток и макрофагальной поляризации. Несмотря на анатомические ограничения, пульпа демонстрирует широкий спектр защитных реакций — иммунных, гуморальных и регенераторных — на всех этапах воспаления. Продолжительная инфекция и снижение иммунитета приводят к некрозу: гибели одонтобластов и распространению воспаления за пределы корня. Тем не менее, даже в заключительных стадиях наблюдаются случаи инкапсуляции очага и образования рубцового дентина [22]. Это подтверждает перспективность консервативного биологического лечения и важность сохранения витальной пульпы при обратимых формах пульпита.

Пульпа зуба подвергается возрастным изменениям, которые существенно влияют на ее морфологические, клеточные и функциональные характеристики. В детском возрасте (0–12 лет) она отличается высокой клеточной плотностью, широкой пульпарной камерой, активным кровоснабжением и значительным регенераторным потенциалом. Но иммунная система еще не полностью сформирована, что может способствовать к менее контролируемому воспалению [23,24]. В молодом возрасте (13-25 лет) происходит отложение вторичного дентина, что снижает объем пульпарной камеры и приводит к уменьшению васкуляризации. Однако клеточный состав остается относительно богатым, и регенераторный потенциал сохраняется на высоком уровне [25]. В среднем возрасте (26-50 лет) усиливается формирование вторичного и третичного дентина, уменьшается число одонтобластов и сокращается кровенаполнение пульпы, что обусловливает снижение её регенераторных возможностей [26]. В пожилом возрасте (50 лет и старше) пульпа существенно уменьшается в объеме за счет массивного отложения дентина. Снижается клеточная активность, уменьшается число сосудов и нервных волокон, что существенно ограничивает регенераторный потенциал и изменяет клиническое течение воспалительных процессов [27].

Исследования показывают, что ряд морфологических признаков физиологических возрастных изменений пульпы зуба перекликаются с изменениями после успешного лечения обратимого пульпита. Так, в обоих случаях наблюдается увеличение содержания коллагеновых волокон и уплотнение стромы пульпы — развитие фиброза, отражающее процессы ремоделирования ткани [28]. Так же отмечается снижение плотности клеточных элементов в зонах с фиброзом или вторичным дентином, а именно, фибробластов и одонтобластов [29]. Но механизмы их формирования и клинические последствия принципиально различаются. Возрастные изменения в пульпе происходят как часть физиологического процесса, а после обратимого пульпита изменения начинаются с воспалительного ответа и завершение процесса сопровождается активной репарацией [30,31]. Репаративный дентин после воспаления отличается нерегулярной структурой, часто с атрубулярными участками и локальной минерализацией, в то время как физиологический вторичный дентин формируется равномерно и постепенно. С возрастом снижается функциональная активность стволовых клеток пульпы (Dental Pulp Stem Cells — DPSCs), что ограничивает регенераторный потенциал даже в отсутствии воспаления [32,33]. После лечения в молодом и среднем возрасте мезенхимальные клетки активно участвуют в формировании репаративного дентина. Васкуляризация с возрастом уменьшается глобально, с развитием ишемии и повышением риска кальцификации пульпарной ткани [34], тогда как после успешного лечения обратимого пульпита восстанавливается локальная сосудистая сеть в зоне регенерации. В пульпе пожилых людей наблюдается стойкое снижение плотности нервных элементов, что приводит к снижению болевой чувствительности [35], тогда как после успешного лечения чувствительность, как правило, сохраняется в пределах нормы. Таким образом, несмотря на морфологическое сходство некоторых признаков (фиброз, вторичный дентин), физиологические возрастные изменения являются диффузными, тогда как изменения после успешного лечения носят локальный характер с восстановлением структуры и функции ткани пульпы. Понимание различий и сходств между изменениями пульпы после купирования воспалительного процесса и возрастными изменениями имеет важное значение для прогноза лечения и персонализированной терапии.

Сохранение жизнедеятельности пульпы после консервативного лечения возможно в любом возрасте при

условии качественного удаления раздражителя и адекватного пломбирования. Основанием для применения биологического метода лечения воспаленной пульпы зуба послужили, с одной стороны, данные о морфологии и биологии пульпы, доказывающие ее высокую активность и способность противостоять различным патогенным факторам (микробам, токсинам, травмам и пр.), с другой стороны — появление ряда препаратов с выраженным антимикробным, противовоспалительным действием и стимулирующим дентиногенез. Так, А. Хрущев (1895) с успехом применил для этих целей пасту, состоящую из гвоздичного масла, окиси цинка и танина. С тех пор постоянно ведутся работы по изысканию эффективных средств и методов для достижения этой цели. С 30-х годов XX века началось активное применение гидроксида кальция, что стало поворотным моментом в попытках сохранить витальность пульпы. Основная проблема кальций-содержащих материалов — компромисс между биосовместимостью и антибактериальной активностью.

В нормальных физиологических условиях рН тканей пульпы человека составляет около 7,2-7,4. Это значение поддерживается за счёт кровоснабжения, обмена ионными компонентами и активности одонтобластов, фибробластов, иммунокомпетентных клеток [36]. Современные биоактивные цементы на основе силикатов кальция Biodentine Septodont (Франция), MTA (Mineral Trioxide Aggregate), их pH составляет около 11,5–12,5, что обеспечивает антисептический эффект, индуцирует активацию одонтобластов, стволовых клеток и экспрессию щелочной фосфатазы, но их применение требует осторожности, поскольку прямой контакт с жизнеспособной пульпой может привести к воспалению и некрозу [37,38]. Так, успешность витальной пульпотомии с использованием МТА достигает 90 % и выше [39]. Особое место занимают биоактивные композиты на основе смол TheraCal LC (Bisco, США) и Activa Bioactive Base/liner (Pulpdent, США), обогащённые ионами кальция, фосфора и фтора (рН около 6,5–7,5). Материалы демонстрируют высокую биосовместимость и умеренную антибактериальную активность за счёт ионного обмена. Но в их составе присутствуют смолистые компоненты (Bis-GMA, НЕМА), которые могут быть цитотоксичны при прямом контакте с пульпой или при неполной полимеризации [40]. Российские производители предлагают Альфадент Ca-LC (рН около 6,5–7,5). Препарат имеет умеренное биоактивное действие, эффективен только при обратимом пульпите без признаков воспаления в глубинных слоях. Медитон (Медполимер, Россия), кальцесодержащий цемент, визуально и по свойствам напоминает Dycal, его рН составляет около 10 [41]. Таким образом, кальцийсодержащие прокладки и материалы на основе смол пока остаются важным элементом консервативного лечения пульпита, при этом выбор конкретного прокладочного материала должен быть обоснован клинической ситуацией и степенью воспаления пульпы, также крайне важны диагностика и правильная техника нанесения.

Сегодня активно развиваются регенеративные технологии. Это направление предлагает восстановление ткани пульпы с помощью стволовых клеток, факторов роста (например, TGF-β, IGF-1, FGF), а также биоматериалов в виде каркасов (scaffolds), на которых образуются новые клетки и ткани [42,32,35]. К ним относятся регенеративные биологические методы, основанные на использовании тромбоцитарных факторов роста, выделяемых из собственной крови пациента: фибрина, обогащенного тромбоцитами (Platelet-Rich Fibrin — PRF), и плазмы, обогащенной тромбоцитами (Platelet-Rich Plasma — PRP). Эти факторы играют ключевую роль в заживлении тканей и регенерации тканей пульпы, к тому же имеют минимальный риск иммунного ответа и отсутствие токсичности, что подтверждается клиническими исследованиями [43]. В России PRF всё чаще используется в пародонтологии и хирургии, но его внедрение в терапевтическую стоматологию только начинается. PRF может использоваться как мембрана, укладываемая поверх экспонированной пульпы, также PRP комбинируется с биоматериалами, например МТА, для стимуляции регенерации [44]. Применение регенеративных технологий, основанных на аутологичных продуктах крови, позволяют перейти от традиционного симптоматического подхода к биостимулирующей стратегии лечения пульпита, направленной на восстановление структуры и функции пульпы.

Методики прямого и непрямого покрытия пульпы, пульпотомии и частичной ампутации стали научно обоснованными альтернативами экстирпации в любом возрасте. Однако эффективность этих методов остается ограниченной из-за высокой чувствительности метода к стерильности и ограниченной биосовместимости применяемых материалов, а также из-за трудностей в диагностике между обратимым и необратимым пульпитом [45]. Клиническая классификация пульпита основана на симптомах (тип боли, длительность реакции на раздражитель, наличие спонтанной боли). Под влиянием новых данных о пульпе как о регенерирующей ткани классификация и диагностика претерпевает изменения. Так в рекомендациях Американской Ассоциации эндодонтистов предлагают описывать пульпу как «обратимо воспаленную» или «частично необратимо воспаленную» [39]. Более полная клинико-морфологическая картина пульпитов предоставлена в классификации В.И. Лукьяненко [46]. Согласно данной классификации, к обратимым формам относят острый серозный-гнойный, фиброзный хронический и травматический пульпит. При обратимом остром пульпите наблюдаются самопроизвольные кратковременные болевые ощущения до двух суток в анамнезе. В практике стоматолога эта форма встречается редко, вследствие доступности для пациента большого арсенала обезболивающих препаратов. Напротив, обратимый хронический пульпит более распространен. Его ведущий клинический симптом болезненные ощущения при смене внешней температуры (при переходе из холодного помещения в теплое и наоборот). Так, признаки фиброзного перерождения при гистоморфологическом исследовании пульпы, у зубов с обратимыми формами пульпитов, обнаруживаются в три раза чаще, чем гиперемия и острое воспаление [47,48,14]. Тщательная диагностика необходима для успешного применения биологического метода. В настоящее время в основном применяются традиционные субъективные и объективные методы диагностики. Классическими способами оценки состояния пульпы являются температурные тесты и электроодонтодиагностика (ЭОД). Однако, все чувствительные тесты (термотест, электроодонтодиагностика) проверяют только нервную проводимость, а не кровоток пульпы [49]. Тем не менее, сочетание холодовой пробы и ЭОД считается стандартом обследования при диагностике пульпита. Следует учитывать, что недавняя травма зуба может искажать результаты диагностики, проводя к как ложноположительным, так и ложноотрицательным ответам. Временная потеря чувствительности пульпы может быть обусловлена компрессией или растяжением нервных волокон, разрывом сосудов микроциркуляторного русла или ишемическим повреждением тканей [50]. При обратимом пульпите перкуссия, как правило, безболезненна, что объясняется ограничением воспалительного процесса коронковой частью пульпы. Положительная перкуссионная реакция свидетельствует о вовлечении периодонта, что может указывать на прогрессирование воспаления. Лучевая диагностика при обратимых формах пульпита имеет ограниченное значение, поскольку стандартные рентгенограммы не фиксируют изменений в тканях пульпы. Однако их применение оправдано при подозрении на периапикальные осложнения. проведение пробы на кровоточивость. Диагностическую значимость имеет оценка цвета, консистенции и объёма экссудата при случайном или контролируемом вскрытии пульпы. Жизнеспособная, хорошо перфузируемая пульпа характеризуется ярко-красной окраской и быстро останавливающимся кровотечением после мягкого тампонирования, что служит косвенным подтверждением её функциональной активности [51]. В перспективе разработка быстрых тест-систем на основе анализа корональной крови или тканевых биопроб может повысить точность диагностики пульпарного воспаления. Показано, что IL-6 и TNF-α являются ключевыми медиаторами при пульпите [52,53].

Диагностические тесты (термотест, ЭОД) попрежнему являются основой, однако в настоящее время выполняются исследования нетрадиционных «виталити-тестов», измеряющих кровоток или насыщение кислородом в пульпе, например, с помощью пульсоксиметрии, которую используют для оценки васкуляризации путем определения уровня насыщения кислородом в циркулирующей артериальной крови [54]. Но методика еще не усовершенствована для рутинного клинического использования, она является обнадеживающей и расширяющейся областью исследований [55]. Другой подход — измерение движения кровяных клеток в пульпе при помощи метода лазерной допплеровской флоуметрии (LDF). LDF и подобные оптические техники (импульсная плетизмография, мультиспектральный анализ) безболезненны и объективны, однако внедрение таких подходов на клинический уровень связано с техническими трудностями и нуждается в дополнительной проверке [56].

Заключение

Несмотря на достигнутые успехи в понимании этой темы, исследования остаются ограниченными, что подчёркивает необходимость проведения дополнительных контролируемых исследований. Обратимый пульпит — это потенциально излечимое состояние, при котором точная диагностика и биологически обоснованное лечение обеспечивают восстановление ткани. Консервативное лечение обратимых форм пульпита способствует поддержанию физиологической функции зуба (иннервация, питание дентина), снижает риск переломов корней в долгосрочной перспективе по сравнению

с депульпированными зубами. Минимально инвазивный подход соответствует принципам биологической стоматологии. Условием для успешного применения являются щадящее препарирование полости в условиях асептики и антисептики, минимальное травмирование тканей зуба и герметичность реставрации на всех этапах лечения. Не все клиники пока имеют доступ к современным материалам, и не все врачи обучены их правильно применять, однако с развитием технологий биологический метод всё шире внедряется в практику. Результаты исследований подтверждают, что сохранение пульпы даёт положительные результаты, особенно при лечении на ранних стадиях воспаления. Понимание гистопатологических процессов, клинических признаков и биомаркеров воспаления позволяет выстроить чёткую клинико-биологическую стратегию ведения пациента. Таким образом, усиливается роль консервативной терапии, соответствующей принципам современной биологической стоматологии. Располагая современными знаниями о структуре и функциях пульпы и богатым арсеналом эффективных материалов, каждый стоматолог в своей ежедневной практике может сохранить жизнеспособность уникальной составляющей человеческого организма — пульпы зуба. Метод консервативного лечения пульпита предполагает возможность широкого его распространения с учетом квалификации и подготовленности врача-стоматолога.

ЛИТЕРАТУРА

- 1. Hargreaves K.M., Cohen S. Pathways of the Pulp. 11th ed. St. Louis: Mosby, 2020. 1096 p.
- 2. Zanini M., Meyer E., Simon S. Pulp inflammation diagnosis from clinical to molecular perspectives: a narrative review // Journal of Endodontics. 2017. T. 43, № 11. C. 1599–1611. doi: 10.1016/j.joen.2017.06.002.
- 3. Лимберг А.К. Руководство к изучению зубоврачебного дела. СПб., 1887. 134 с.
- 4. Боровский Е.В., Леонтьев В.К. Клиническая эндодонтия. М.: МЕДпресс-информ, 2004. 384 с.
- 5. Иванов В.С., Снитко Е.В., Пархова Р.Л. Основы эндодонтии. М.: Медицина, 1984. 288 с.
- 6. Окушко В.Р. Морфология и регенерация пульпы зубов при воспалении. Минск: Наука и техника, 1981. 240 с.
- 7. Виноградова Т.Р. Морфология и патология пульпы зуба. М.: Медицина, 1974. 212 с.
- 8. Царинский М.М. Роль пульпы зуба в регенерации дентина. Харьков: Вища школа, 1981. 132 с.
- 9. Farges J-C. Dental pulp innate immunity mechanisms. Mediators Inflamm. 2015; 2015:230251
- 10. Варшавский А.И., Дмитриева Л.А. Кровоснабжение и трофика пульпы зуба. М.: Медицина, 1976. 144 с.
- 11. Пархова Р.Л. Роль биологически активных веществ в воспалении пульпы. // Стоматология. 1978. № 3. С. 12–16.
- 12. Next-generation biomaterials for pulp immunomodulation. PMC. 2023
- 13. Cooper P.R., Takahashi Y., Graham L. et al. Inflammation—regeneration interplay in the dentine—pulp complex. // J Dent. 2010. Vol. 38. P. 687–697.
- 14. NETosis in pulpal infections: neutrophil extracellular traps. J Endod. 2017
- 15. Arora S. Immunotherapy to modulate pulp inflammation. Int Endod J. 2021
- 16. Златева М.И., Королева Л.Н. Защитные реакции пульпы. // Стоматология. 1970. № 5. С. 34—37.
- 17. CooperP.R., Holder M.J., Smith A.J. Inflammation and regeneration in the dentine—pulp complex: Adouble-edged sword. // J Endod. 2007. Vol. 33. P. 1059—1063.
- 18. Урбанович Л.И. Репаративная функция пульпы. // Вопросы стоматологии. 1982. № 1. С. 48—52.
- 19. Мороз Б.Т., Гольдберг И.М. Нейроэндокринные механизмы воспаления пульпы зубов. // Архив патологии. 1993. № 6. С. 51–55.
- 20. Мороз Б.Т., Петров В.В. СGRР как медиатор воспаления пульпы. // Стоматология. 1995. № 4. С. 27—30.
- 21. Yu et al., Liu et al. Immunity cell response in pulpitis, macrophage polarization and stem cell modulation. Int Endod J., 2024.
- 22. Ahmed H.M., Abbott P.V. Age-related changes in dental pulp: A review. Int Endod J. 2020;53(4):529–542. DOI:10.1111/iej.13254.
- 23. Виноградова Т.В., Полякова А.В. Морфологические изменения зубной пульпы в разные возрастные периоды. Вестник новых медицинских технологий. 2017;24(2):135-139. URL: https://elibrary.ru/item.asp?id=29953917

- Федорова Н.В., Кузнецова Е.И. Возрастные изменения пульпы и их значение для эндодонтического лечения. Стоматология. 2019;98(1):34—38. DOI:10.17116/ stomat20199801134
- 25. Григорьев А.Ф., Иванова С.В. Клеточный состав пульпы зуба в различные возрастные периоды. Вестник стоматологии. 2020;99(2):21—25. DOI:10.17116/stomat20209902121
- 26. ChenY., Wang Z., Wang Y. Changes in human dental pulp with aging and their clinical significance. J Dent Res. 2022;101(7):789–797. DOI:10.1177/00220345221076751
- 27. Hirschman J.V. Pulp calcifications and age. Oral Surg Oral Med Oral Pathol. 2016;121(5): e121
- 28. About I. Odontoblast response to dental injury. Arch Oral Biol. 2011;56(12):1615-1622
- 29. Goldberg M., Smith A.J. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med. 2021;33(1):36–52.
- 30. Ricucci D., Sigueira J.F. Biofilm-related pulpal and periradicular diseases. J Endod. 2010;36(8):1278–1287
- 31. Kim S.G., et al. Biological basis for pulp regeneration: complexity of cellular and molecular events. J Endod. 2018;44(4): S19–S27.
- 32. Couve E. Aging of the dental pulp: a narrative review. J Endod. 2014; 40(6):730–736.
- 33. Murray P.E., About I., Lumley P.J. Recombinant human osteogenic protein-1 induces dentinogenesis in vivo. J Dent Res. 2000;79(4):1032-1038
- 34. Garlet G.P., et al. Neuroimmune interactions in the dental pulp: implications for regeneration. Front Immunol. 2022; 13:856304.
- 35. Tziafas D., Smith A.J., Lesot H. Designing new treatment strategies in vital pulp therapy. J Dent. 2000; 28(2):77–92.
- 36. Parinyaprom N., Kohno A., Suda H. Response of human dental pulp to direct pulp capping with MTA and calcium hydroxide. J Endod. 2022; 48(1):65–72.
- 37. Kawashima N. Characterisation of dental pulp stem cells: a new horizon for regenerative endodontics. Int Endod J. 2020; 53(5):556–562.
- 38. American Association of Endodontists. AAE Consensus Conference Recommended Diagnostic Terminology. J Endod. 2021; 47(9):1352–1360.
- 39. Bakhtiar H., Nekoofar M.H., Aminishakib P. Human pulp responses to direct pulp capping with TheraCal LC: A clinical trial. J Endod. 2021; 47(8):1260–1266.
- 40. Михайлова Л.А., Андреев В.В. Сравнительная оценка отечественных кальцийсодержащих прокладок при лечении глубокого кариеса. // Российский стоматологический журнал. 2023. Т. 27, № 1. С. 42—47.
- 41. Islam R., Islam MRR, Tanaka T., Alam MK, Ahmed HMA, Sano H. Direct pulp capping procedures—Evidence and practice. Jpn Dent Sci Rev.2023 Dec;59:48—61. DOI: 10: 1016/j.jdsr.2023:02.002/Epub2023 Feb 26. PMID:36880059 Free PMC article. Review.
- 42. Sharma S., Shrivastava N. Regenerative potential of PRF in direct pulp capping A case report. J Oral Biol Craniofac Res. 2022.
- 43. Bakhtiar H., Rahnama M., Ezoddini-Ardakani F., Kakoei S., Ranjkesh B., Ghanbaran S., Esmaeili S., Ellini M.R. Histological assessment of human pulp response to direct pulp capping with PRF and MTA. Clin Oral Investig. 2020;24(11):4227–4236.DOI: 10.1007/s00784-020-03342-5.
- 44. Хидирбегишвили 0.Э. Селективное и неселективное удаление кариозного дентина и классификация обратимых и необратимых форм пульпита. Dental community, раздел сайта: Актуальные статьи. Стоматология. Организация и здравоохранение. Право. 2024.
- 45. Лукьяненко В.И. Неотложная стоматологическая помощь / В.И. Лукьяненко. М.: Медицина. 1976. 232 с.
- 46. Nair P.N.R. Pathology of pulpal infection Endodontic Topics. 2004;8(1):30-51. DOI: 10.1111/j.1601-1546.2004.00099.
- 47. Скулкин А.М., Селезнева Е.И., Беляев А.Ю. Морфология зубной пульпы при воспалительных процессах. Российский стоматологический журнал. 2018;22(3):29—33.
- 48. AAE Position Statement on Vital Pulp Therapy. J Endod.2021 Sep; 47(9):1340—1344. DOI: 10: 1016/j.joen.2021:07.015. Epub2021 Fug 3. PMID:34352305.
- 49. Андреасен Ф.М. Транзиторный апикальный разрыв и его связь с изменениями цвета и чувствительности после вывихов зубов. Стоматология. Травматология. 1986; 2:9—19. DOI: 10.1111/j.1600-9657. 1986.tb00118.
- 50. Жаворонкова М.Д. Лечение обратимых форм пульпитов нестероидными противовоспалительными препаратами: Автореф. дисс. к.м.н., СПб., 1996. 16 с
- 51. Cheng Y., Chen J., Huang Z. Biomarkers of reversible and irreversible pulpitis: A systematic review // J Pers Biol Syst. 2025. Vol. 10, Suppl. 1. P. 112–119. DOI: 10.1097/JPB.0000000000004
- 52. Zong S.Y., Wang W.F., Shi T.Y., et al. Bioinformatic identification of potential diagnostic markers for pulpitis using gene expression data // BMC Oral Health. 2020. Vol. 20. Article No. 266. DOI: 10.1186/s12903-020-01266-5
- 53. Sabharwal R.J., Dhull K.S., Dutta B. Оценка жизнеспособности пульпы с помощью пульсоксиметрии: систематический обзор и метаанализ // International Journal of Clinical Pediatric Dentistry. 2025. Т. 18, № 4. С. 479—486.
- 54. Mejare I.A., Axelsson S., Davidson T., Frisk F., Hakeberg M., Kvist T., Norlund A., Petersson A., Portenier I., Sandberg H. Диагностика состояния пульпы зуба: систематический обзор // International Endodontic Journal. 2012. Т. 45. С. 597—613. DOI: 10.1111/j.1365-2591.2012.02016. x.
- 55. Igna A., Mircioagă D., Boariu M., Stratul Ş.I. A Diagnostic Insight of Dental Pulp Testing Methods in Pediatric Dentistry // Medicina (Kaunas). 2022. T. 58, № 5. CT. 665. DOI: 10.3390/medicina58050665. PMID: 35630082; PMCID: PMC9145630.

© Жаворонкова Марина Дмитриевна (mdzhdoc@gmail.com); Улитовский Сергей Борисович; Ермолаева Людмила Александровна Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.15

САНАТОРНО-КУРОРТНОЕ ЛЕЧЕНИЕ ДЕТЕЙ С ПАТОЛОГИЕЙ ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА

SANATORIUM-RESORT TREATMENT OF CHILDREN WITH MUSCULOSKELETAL PATHOLOGY

A. Klimova

Summary. In this article, the effectiveness of spa treatment was studied in 120 children aged 4–17 years with pathology of the musculoskeletal system (MSS): secondary osteoarthritis (OA), idiopathic scoliosis (IS). The main focus was on the use of sulfide mud from Lake Tuzluchnoye and brine baths from Lake Razval (Orenburg Region).

As a result of this study, differentiated methods of balneopeloide therapy were developed, taking into account age, diagnosis, temperature regime, and duration of the procedure. To objectively assess the effectiveness of the treatment of children with secondary OA and IS, clinical markers were determined (pain syndrome (points), pain intensity according to the VAS (cm), Richi index (points), limitation of mobility (points), Leken index (points).

Thus, the inclusion of sulfide mud from Lake Tuzluchnoye and highly mineralized sodium chloride water from Lake Razval in the complex treatment of children with MSS prolongs the period of remission and has a positive effect on the clinical course of the disease.

Keywords: spa treatment, musculoskeletal system, children.

Климова Аделя Рестэмовна

кандидат медицинских наук, доцент, Оренбургский государственный медицинский университет adelya_klimova@mail.ru

Аннотация. В данной статье была изучена эффективность санаторно-курортного лечения 120 детей в возрасте от 4—17 лет с патологией опорнодвигательного аппарата (ОДА): вторичный остеоартроз (ОА), идиопатический сколиоз (ИС). Основное внимание уделено применению сульфидных иловых грязей озера Тузлучное и рапных ванн озера Развал (Оренбургская область).

В результате данного исследования были разработаны дифференцированные методики бальнеопелоидотерапии с учетом возраста, диагноза, температурного режима и продолжительности процедуры. Для объективной оценки эффективности проводимого лечения детей с вторичным ОА, ИС были определены клинические маркеры (болевой синдром (баллы), интенсивность боли по ВАШ (см), индекс Ричи (баллы), ограничение подвижности (баллы), тест Ли (баллы), индекс Лекена (баллы).

Таким образом, включение сульфидной иловой грязи озера Тузлучное и высокоминерализованной хлоридной натриевой воды озера Развал в комплексное лечение детей с патологией ОДА удлиняет период ремиссии, благоприятно влияет на клиническое течение заболевания.

Ключевые слова: санаторно-курортное лечение, опорно-двигательный аппарат, дети.

Введение

анаторно-курортное лечение (СКЛ) занимает одно из ведущих мест в этапной терапии (стационар — поликлиника — курорт) больных с хроническим поражением опорно-двигательного аппарата [1, 2, 3, 4].

Однако механизм лечебного действия хлоридных натриевых ванн и пелоидов проявляются в различной степени в зависимости от их физико-химического состава. Известно, что состав грязи и минеральных вод в разных водогрязелечебницах имеют свои специфические особенности [5, 6].

В Оренбургской области на территории Соль-Илецкого района располагаются лечебные грязи озера Тузлучное и соленое озеро Развал [7]. Но, несмотря, на то что эта уникальная природно-климатическая зона уже давно используется для лечения детей с различной патологией до настоящего времени не было изучено влияние сульфидных иловых грязей и рапных ванн на динамику клинических симптомов, состояние иммунной системы у детей и подростков с патологией ОДА, не разработаны оптимальные методики бальнеопелоидотерапии (с учетом возраста ребенка, диагноза, физико-химических особенностей этих природных факторов), не установлены маркеры терапевтической эффективности.

Санаторное лечение в привычном климате имеет определенные преимущества перед курортной терапией, так как исключается медицинская и социальная адаптация детей к новым условиям жизни, нет периода акклиматизации и реакклиматизации, что существенно влияет на результаты оздоровления [8].

Цель исследования — провести бальнеопелоидотерапию детей и подростков с патологией опорно-двигательного аппарата, разработать дифференцированные методики и установить клинические маркеры эффективности.

Для реализации данной цели были поставлены следующие задачи:

1. Провести клиническое обследование детей и подростков в возрасте от 4–17 лет с заболевани-

- ями опорно-двигательного аппарата: вторичный остеоартроз (ОА), идиопатический сколиоз (ИС) до бальнеопелоидотерапии.
- 2. Дать сравнительную оценку эффективности методик бальнеопелоидотерапии в зависимости от диагноза, возраста детей, температурного режима, экспозиции и особенностей физико-химического состава грязи озера Тузлучное и соленого озера Развал.
- 3. Изучить клиническую эффективность бальнеопелоидотерапии у детей с патологией ОДА в процессе, после лечения и в катамнезе через 3, 6 и 12 месяцев.
- 4. Сопоставить динамику клинических данных в процессе бальнеопелоидотерапии и определить маркеры для контроля за эффективностью лечения.

Материалы и методы исследования

Дизайн исследования был разработан в соответствии с принципами доказательной медицины. Выбор методов базировался на необходимости получения объективных данных для реализации поставленной цели.

Исследование проводилось на базе ГАУЗ «Областной центр медицинской реабилитации» г. Соль-Илецка, а также санатория «Дубовая роща» г. Оренбурга.

Нами было проведено обследование 120 детей в возрасте от 4 до 17 лет с патологией ОДА до и после проведения бальнеопелоидотерапии. Все дети были разделены на 2 группы: 1-ю группу составили больные с остеоартрозом, вследствие врожденного вывиха бедра, болезни Пертеса, врожденной косолапости. Во 2-ю группу вошли дети с идиопатическим сколиозом.

Дети каждой из 2-х групп были разделены на 2 подгруппы, рандомизированные по основным показателям: 1-ая подгруппа каждой группы, являлась контрольной (по 20 детей) и получила бальнеопелоидотерапию по стандартной методике, а 2-ая подгруппа детей получала лечение по дифференцированным методикам (в зависимости от нозоологии, особенности клинического течения заболевания и возраста ребенка).

Терапевтическая эффективность бальнеопелоидотерапии оценивалась по выраженности суставного синдрома, который определяли в условных индексах или баллах. Оценку боли проводили по визуально-аналоговой шкале (ВАШ) в см., индексу Ричи (баллы), болевому синдрому (баллы). Определение функциональных возможностей пациента мы проводили с помощью теста Ли. Тяжесть коксоартроза определяли при помощи индекса Лекена [9, 10, 11].

У детей со ИС проводили оценку ортопедического статус: асимметрия лопаток, надплечий, треугольников талии, подвздошных гребней, определяли наличие «мышечного валика». Подвижность сгибательных движений позвоночника исследовали с помощью симптомов Отта, Шобера, Томайера, «подбородок-грудина» [12].

Объективная оценка эффективности бальнеопелоидотерапии проводилась на основании динамики клинических показателей сразу после лечения. Неэффективным лечение признавалось при отсутствии динамики показателей суставного синдрома и наличия хотя бы одного обострения за период наблюдения.

Физико-химический, микробиологический состав сульфидной иловой грязи озера Тузлучное и высокоминерализованной хлоридной натриевой воды озера Развал были изучены Абдрахмановым А.Р., 1999, Абдрахмановым А.Р. 2001 [13,14].

Полученные результаты были подвергнуты статистической обработке с определением средней арифметической величины (М), средней ошибки (m) и среднеквадратического отклонения (δ). По таблице вероятных распределений коэффициента Стьюдента-Фишера определяли вероятность значений разницы (р).

Для выявления статистически значимых различий в сравниваемых группах, в зависимости от результатов теста Барлета по проверке характера распределения данных совокупностей, были использованы параметрический метод и непараметрический метод. Корреляционный анализ проводился методом Пирсона, с расчетом критического значения r.

Результаты и обсуждение

Дети с вторичным ОА: 39 % больных имели 1 стадию ОА, 45,7 % — 2-ю и 15,3 % 3 стадию. У большинства обследованных (50,8 %) отмечалась 1 степень функциональной недостаточности, у 25,4 % — 2 степень и значительно реже встречалась 3 степень недостаточности суставов. При вторичном ОА в 76,6 % имело место поражение тазобедренных и в 23,4 % случаев голеностопных суставов. У 52,5 % детей дегенеративно-дистрофические поражения сустава были представлены в виде олигоостеоартроза, у 44,1 % по типу моноостеоартроза и у 3,4 % по типу полиостеоартроза.

В исследуемой группе детей с ИС чаще встречался грудной тип сколиоза (70 %), реже S-образный, поясничный, пояснично-грудной. У 65 % детей отмечалась 1 степень искривления, реже встречались 2 и 3 степени. Среди обследованных преобладала медленно-прогрессирующая форма заболевания.

При поступлении на СКЛ 82 % детей предъявляли жалобы на боли в суставах, позвоночнике. Интенсивность боли по ВАШ колебалась от слабой до выраженной. Так у детей с ИС отмечался слабый болевой синдром, у детей с вторичным ОА — умеренный и выраженный. 70 % детей предъявляли жалобы на ограничение подвижности. Асимметрия подвздошных гребней встречалась чаще среди у больных с вторичным ОА.

Нами была изучена эффективность комбинированного воздействия сульфидных иловых грязей и рапных ванн при стандартной и разработанным методикам.

Проведение бальнеопелоидотерапии у детей с нарушениями ОДА основано на положительном воздействии биологически активными веществами, ионами органических, неорганических соединений, гормоно- и антибиотикоподобными веществами, минеральными солями.

По стандартной методике бальнеопелоидотерапия [15,16] проводится без учета особенностей физико-химических свойств грязи и минеральной воды, возраста ребенка и особенностей клинического течения заболеваний ОДА. Грязевые аппликации и рапные ванны применяются при одинаковой температуре и времени воздействия у всех больных с патологией ОДА.

Сущность стандартной методики состоит в том, что грязевые аппликации накладывают на область пораженных суставов. Температура грязи составляет 42°С, продолжительность воздействия 15 минут, курс 10 процедур. В дни свободные от пелоидотерапии назначают рапные ванны — температурой 38°С, продолжительностью 15 минут, на курс 10 ванн.

Однако по данным В.М. Боголюбова, Г.Н. Пономаренко, 1998 [17] у больных с различной патологией ОДА необходимо применение природных лечебных физических факторов по конкретным методикам. При этом должны учитываться характер основных клинических проявлений заболевания, исходное функциональное состояние организма и специфичность лечебного действия природных факторов и возрастные особенности ребенка.

Вследствие большого содержания воды кожа детей обладает повышенной способностью к всасыванию веществ, растворенных в минеральных водах, грязевом растворе. Интенсивность обменных процессов, неустойчивость регулирующих механизмов определяют своеобразие системы терморегуляции у детей.

Ускоренное формирование рефлексов, преобладание процессов возбуждения, реакция нервной системы может быть обусловлена так же влиянием химических веществ, содержащихся в минеральной воде. Действие

природных факторов не ограничивается местом их приложения, а распространяется по демиелинизированным нервным волокнам на соседние сегменты спинного мозга быстрее и шире, чем у взрослых. Это ограничивает проведение сегментарных и общих методик у детей.

Данные возрастные особенности диктуют необходимость индивидуализации методики проведения процедур (более щадящая дозировка, время воздействия, длительность курса лечения).

Учитывая, вышеизложенное нами были разработаны собственные методики бальнеопелоидотерапии детей с патологией ОДА. Разработка методик проводилась не только с учетом возрастных особенностей ребенка, диагноза, клинического течения заболевания, но и с учетом специфического состава грязи озера Тузлучное и минеральной воды озера Развал.

Все дети были разделены на 2 подгруппы: первую составили 30 детей с патологией ОДА, получающих бальнеопелоидотерапию по стандартной методике. Вторая подгруппа для отработки оптимальных методик была разделена по диагнозу, возрасту, времени воздействия и температурному режиму (по 60 детей с вторичным ОА, ИС. Сравнительный анализ эффективности бальнеопелоидотерапии оценивался по показателям суставного синдрома до, в процессе и по окончанию курса лечения.

После проведения курса бальнеопелоидотерапии у 75 % детей (2 подгруппы) с вторичным ОА и у 64 % обследованных 1 подгруппы боли в суставах отсутствовали. У 51,7 % больных с ИС 1 подгруппы и у 40 % 2 подгруппы исчезли боли в позвоночнике. Уменьшилась интенсивность боли по ВАШ у детей с вторичным ОА и ИС. После лечения значительно снизился индекс Ричи у детей с вторичным ОА. Параллельно уменьшению болей наблюдалось увеличение амплитуды движений в суставах.

У 73,6 % детей 2 подгруппы с патологией ОДА и у 60 % больных 1 подгруппы после проведенной терапии движения в суставах были в полном объеме. Улучшились показатели функционального теста Ли, уменьшился индекс Лекена. Также имело место уменьшение суставного синдрома у 68 % детей 2 подгруппы с патологией ОДА и 52 % обследуемых, получающих бальнеопелоидотерапию по стандартной методике.

Через 3 месяца после лечения у 22,8 % больных с вторичным ОА 2 подгруппы и у 30 % обследованных 1 подгруппы боли в суставах впервые появились через 6 месяцев после лечения, через год этот показатель увеличился до 40 % и 55 % соответственно.

Показатели осанки у детей со ИС сразу после лечения практически не отличались от исходного уровня, поло-

жительная динамика появилась лишь через 6 месяцев. У 15 % детей 2 подгруппы с вторичным ОА и ИС у 5 % больных 1 подгруппы через 6 месяцев после лечения уменьшилась асимметрия подвздошных гребней.

У 16,6 % детей с ИС через год после проведенного лечения отмечалось улучшение рентгенологической картины, в виде уменьшения дуги искривления более чем на 5°. У 81,6 % детей наблюдалась стабилизация искривления.

Число обострений в течение года после лечения у обследованных нами детей 2 подгруппы снизилось в 2 раза.

На основании комплексного клинико-иммунологического обследования детей с патологией ОДА были определены клинические критерии для контроля за эффективностью лечения.

В качестве клинических маркеров нами установлены показатели суставного синдрома: болевой синдром (баллы), интенсивность боли по ВАШ (см), индекс Ричи (баллы), ограничение подвижности (баллы), тест Ли (баллы), индекс Лекена (баллы).

Оценку параметров проводили по 4-х балльной шкале: нормализация показателя оценивалась в 4 балла, улучшение его не более, чем на 75 % от исходного уровня — 3 балла, на 25–75 % — 2 балла, на 10–25 % — 1 балл, 0 баллов — показатель не изменился (колебания с исходным уровнем \pm 10 %), ухудшение показателя по сравнению с исходным уровнем более, чем на 10 % — (–1 балл).

Затем проводится подсчет общей суммы баллов и делят ее на количество учитываемых признаков. Значение полученного коэффициента от 0 до 1,1 расценивается, как без перемен, от 1,2 до 2,0 — незначительное улучшение, от 2,1 до 3,0 — улучшение, от 2,1 до 3,0 — улучшение, свыше 3,0 — значительное улучшение.

Оценка непосредственных результатов лечения по системе баллов позволяет математически объектив-

но выразить динамику клинических и иммунологических показателей.

Выводы

- 1. Дети с различной патологией опорно-двигательного аппарата (вторичный остеоартроз, идиопатический сколиоз) требуют дифференцированного подхода к проведению бальнеопелоидотерапии. Определены оптимальные параметры воздействия (температурный режим, экспозиция) грязевых аппликаций и рапных ванн с учетом диагноза и возраста. Для детей с дегенеративно-дистрофическими поражениями 38–39°С, 8–12 минут. Температура рапных ванн у детей с нарушениями ОДА составляет 37°С, продолжительность процедуры у детей с вторичным ОА, ИС 8–12 минут.
- Для контроля за эффективностью бальнеопелоидотерапии у больных с патологией опорно-двигательного аппарата рекомендуется использовать клинические маркеры (болевой синдром (баллы), интенсивность боли по ВАШ (см), индекс Ричи (баллы), ограничение подвижности (баллы), тест Ли (баллы), индекс Лекена (баллы).
- 3. Комбинированное применение аппликаций сульфидной иловой грязи озера Тузлучное и высокоминерализованной хлоридной натриевой воды озера Развал по разработанным нами методикам у больных с патологией опорно-двигательного аппарата обладает благоприятным действием на основные клинические симптомы заболевания (у 75 % обследованных уменьшилась интенсивность боли, у 84,4 % индекс Ричи, Лекена, у 56,3 % детей увеличилась амплитуда движений в суставах, показатели теста Ли) и удлиняет период ремиссии.
- 4. На основании комплексного клинического обследования в катамнезе детей и подростков с вторичным остеоартрозом, идиопатическим сколиозом определены сроки проведения повторных курсов бальнеопелоидотерапии (через 8 месяцев).

ЛИТЕРАТУРА

- 1. Смиян И.С., Карачевцева Т.В. Детская курортология. Киев: Вища школа, 1985. 279 с.
- 2. Сто лучших курортов мира / Г.Н. Пономаренко СПб.: ИИЦ Балтика, 2006. 320 с.
- 3. Cutts S., Clark D. Assessment and treatment of scoliosis // Practitioner. Aug., 2002. Vol. 246 (1637). P. 516–521
- 4. Dieppe P., Chard J., Lohmander S., Smith C. Osteoarthritis // Clin. Evid. Jun., 2002. Vol. 7. P. 1071–1090
- 5. Детская курортология: руководство для врачей / М.А. Хан, А.Н. Разумов, И.В. Погонченкова, М.С. Петрова [и др.] Москва: ГЭОТАР-Медиа, 2024. 488 с.: ил.
- 6. Физиотерапия и курортология. Книга І. / Под ред. В.М. Боголюбова. М.: Издательство БИНОМ, 2008. 408 с., ил.
- 7. Соль-Илецкие озера / А.Р. Абдрахманов, И.В. Храмов. Оренбург: Оренбургское книжное издательство им. Г.П. Донковцева, 2017. 224 с.
- 8. Физическая и реабилитационная медицина в педиатрии / М.А. Хан, А.Н. Разумов, И.В. Погонченкова, Н.Б. Корчажкина [и др.] 2-е изд., перераб. доп. Москва: ГЭОТАР-Медиа, 2022. 632 с.: ил.

- 9. Ревматология: национальное руководство / Под ред. Е.Л. Насонова, В.А. Насоновой. М.: ГЭОТАР-Медиа, 2010. 720 с.
- 10. Клиническая ревматология: руководство для врачей: учеб. пособие для системы послевуз. проф. образования врачей / Под общ. ред. В.И. Мазурова. 2-е изд., перераб. и доп. СПб.: Фолиант, 2005. 515 с.
- 11. Ортопедия первых шагов / В.А. Мицкевич. Москва: Бином, 2023. 359 с., ил.
- 12. Клинические рекомендации Общероссийской общественной организации «Ассоциация травматологов-ортопедов России» по диагностике и лечению идиопатического сколиоза у детей и взрослых / М.В. Михайловский, А.С. Васюра Е.В. Губина [и др.] Ассоциация травматологов-ортопедов России. Текст: электронный. 2024. 61 с.
- 13. Абдрахманов А.Р. Антибактериальные свойства лечебной грязи: автореферат дис. кандидата медицинских наук: 03.00.07. / Институт клеточного и внутриклеточного симбиоза. Оренбург, 1999. 19 с.: ил.
- 14. Абдрахманов А.Р. Микрофлора соленого водоема: Озеро Развал Оренбургской области: автореферат дис. кандидата медицинских наук: 03.00.07 / Институт клеточного и внутриклеточного симбиоза. Оренбург, 2001. 20 с.: ил.
- 15. Олефиренко В.Т. Водотеплолечение. М.: Медицина, 1986. 288 с.
- 16. Горчакова Г.А. Перспективы использования пелоидобальнеотерапии при различных патологических состояниях // Актуальные вопросы пелоидотерапии. Тезисы докладов Международного Симпозиума УССР-Венгрия, 24—25 октября. Одесса, 1990. С. 13—15.
- 17. Общая физиотерапия: Учебник. 3-е изд., перераб. / Под ред. В.М. Боголюбова, Г.Н. Пономаренко М., СПб.: СЛП, 1998. 480 с., ил.

© Климова Аделя Рестэмовна (adelya_klimova@mail.ru)

Журнал «Современная наука: актуальные проблемы теории и практики»

ВЛИЯНИЕ ВНУТРИПОЛОСТНОЙ ГИПЕРТЕНЗИИ НА УРОВЕНЬ D-ДИМЕРА ПРИ ЭНДОХИРУРГИЧЕСКИХ ОПЕРАЦИЯХ В ЗАБРЮШИННОМ ПРОСТРАНСТВЕ

INFLUENCE OF INTRACAVITY HYPERTENSION ON D-DIMER LEVEL DURING ENDOSURGICAL OPERATIONS IN THE RETROPERITONEAL SPACE

Yu. Lobanov K. Shapovalov S. Lobanov P. Tereshkov L. Lobanov

Summary. Purpose of the work: to evaluate the dynamics of the thrombosis marker D-dimer depending on the degree of intracavitary pressure during operations in the retroperitoneal space using laparoscopic and retroperitoneal access.

Material and methods: a prospective study was conducted in 85 patients operated on for kidney cysts. In 41 cases (RPG group), the operation was performed from a retroperitoneal approach with the imposition of retropneumoperitoneum, 44 patients (PP group) were operated on from a laparoscopic approach with the creation of pneumoperitoneum. In each of these groups, two comparable subgroups are distinguished, differing in the degree of gas pressure (8–12 mm Hg and 12–16 mm Hg) in the abdominal cavity or retroperitoneal space. D-dimer in the blood was determined before surgery, as well as on the 1st and 3rd days after surgery. The diameter of the lower extremities was also measured before surgery, as well as on days 3 and 5 after surgery.

Results and discussion. It was found that on the first day after surgery, arterial hypertension was above 12 mmHg. There is an increase in the level of D-dimer by 5–5.5 times compared to the initial level both with laparoscopic and retroperitoneal methods. After three days, this indicator decreased in all groups to the initial values. When the mode is below 12 mm Hg. No significant fluctuations in D-dimer levels were detected. For hypertension above 12 mm Hg. Art. after surgery, edema of the lower extremities was observed in 16 patients (18.8 %), and at a rate of up to 12 mm Hg. Art. in 4 (4.7 %).

Conclusion. The data obtained indicate a change in blood circulation in conditions of intracavitary hypertension due to compression of the veins of the abdominal cavity and retroperitoneal space with changes in microcirculation. In this case, we can assume changes in the hemostatic system, the reaction to which is an established increase in the level of de-dimer on the 1st day after surgery.

Keywords: D-dimer, thrombosis, retropneumoperitoneum, pneumoperitoneum.

Лобанов Юрий Сергеевич

кандидат медицинских наук, Читинская государственная медицинская академия yuriilobanov@mail.ru

Шаповалов Константин Геннадьевич

доктор медицинских наук, профессор, Читинская государственная медицинская академия shkg26@mail.ru

Лобанов Сергей Леонидович

доктор медицинских наук, профессор, Читинская государственная медицинская академия slobanov15@mail.ru

Терешков Павел Петрович

к.м.н.,

Читинская государственная медицинская академия slobanov15@mail.ru

Лобанов Леонид Сергеевич

к.м.н., зам. главного врача по хирургии, ГКБ №1, г. Чита leonid.lobanov74@mail.ru

Аннотация. Цель работы: Оценка динамики маркера тромбозов D-димера, в зависимости от степени гипертензии, при операциях в забрюшинном пространстве с использованием лапароскопического и ретроперитонеального доступа.

Материал и методы: проведено проспективное исследование у 85 пациентов оперированных по поводу кист почек. В 41 случае (группа РПП) операция проводилась с применением ретроперитонеального доступа с наложением ретропневмоперитонеума, 44 пациента (группа ПП) оперированы лапароскопическим доступом с созданием пневмоперитонеума. В каждой из указанных групп выделены по две сопоставимые подгруппы, отличающиеся по степени давления газа (8-12 мм рт. ст. и 12-16 мм рт. ст.) в брюшной полости или забрюшинном пространстве. D-димер в крови определяли до операции, а также в 1 и 3 сутки после операции. Также проводили измерение диаметра нижних конечностей до операции и 3 и 5 сутки после операции. Результаты и обсуждение. Установлено, в первые сутки после операций при гипертензии выше 12 мм рт.ст. отмечается повышение уровня D-димера в 5-5,5 раз по сравнению с исходным как при лапароскопическом, так и при ретроперитонеальном методе. Через трое суток данный показатель снижался во всех группах до исходных величин. При режиме ниже 12 мм рт. ст. значимых колебаний уровня D-димера не выявлено. При гипертензии выше 12 мм рт.ст. после операции отеки нижних конечностей наблюдались у 16 пациентов (18,8 %), а при режиме до 12 мм рт.ст. у 4(4,7 %).

Заключение. Полученные данные свидетельствуют о изменении кровообращения в условиях гипертензии, вследствии компрессии вен брюшной полости и забрюшинного пространства с изменением микроциркуляции. При этом можно предположить изменения в системе гемостаза, реакцией на которые является установленный рост уровня де-димера в 1 сутки после операции.

Ключевые слова: D-димер, тромбозы, ретропневмоперитонеум, пневмоперитонеум.

Введение

ак известно операционная травма является одной из причин тромботических осложнений в послеоперационном периоде. Наиболее опасным осложнением является ТЭЛА на фоне тромбоза глубоких вен (ТГВ) [1,2,3]. В пожилом и старческом возрасте частота ТГВ достигает 200 случаев на 100000 в год. Легочную эмболию регистрируют ежегодно с частотой 35-40 на 100000 человек [4, 5]. С развитием эндоскопической хирургии проведены многочисленные исследования, результаты которых свидетельствуют о ряде отрицательных эффектов, возникающих вследствие абдоминальной или забрюшинной гипертензии, необходимой при создании адекватного пространства для хирургических манипуляций [6, 7]. При этом, одним из ключевых факторов, является компрессия венозного русла и паренхимы внутренних органов, приводящая к изменению гемодинамики, функциональным нарушениям со стороны внутренних органов [6, 8]. Вместе с тем, проблема тромбоэмболических осложнений (ТЭО) относительно безопасности эндохирургических вмешательств, в зависимости от факторов, влияющих на риск возникновения указанных осложнений, изучены недостаточно. Несмотря на то, что в клинической практике при стандартных эндохирургических вмешательствах, тромботические осложнения возникают достаточно редко, данная проблема становится все более актуальной по мере расширения арсенала эндохирургических операций, повышения их сложности, продолжительности и увеличении при необходимости степени гипертензии. Для определения риска развития тромботических осложнений необходимы достаточно чувствительные маркеры, позволяющие своевременно прогнозировать опасность ТЭО на доклиническом этапе. Одним из известных маркеров тромботических осложнений, является тест на определение уровня D-димера [9, 10]. В связи с этим, изучение динамики данного показателя, в условиях разной степени гипертензии, а также при использовании различных хирургических методик, дает возможность с большей вероятностью, оценить роль указанных факторов в потенциальной тромбоопасности, что позволит своевременно предпринять адекватные действия лечебно-профилактического характера.

Цель исследования

Оценка динамики маркера тромбозов D-димера, в зависимости от степени интраабдоминальной и ретроперитонеальной гипертензии, при операциях в забрюшинном пространстве с использованием лапароскопического и ретроперитонеального доступа.

Материал и методы

Проведено проспективное клиническое исследование у 85 пациентов оперированных по поводу кист

почек в урологических отделениях Краевой клинической больницы и городской клинической больницы №1 г. Читы в период с 2018 по 2023 гг. Среди них женщин 49 (57,6 %), мужчин 36 (42,4 %). Возраст пациентов от 19 до 67 лет, средний возраст 45,1±5,6 лет. Всем больным проводилось стандартное обследование включающее физикальные, лабораторные и инструментальные методы (УЗИ, КТ). Показанием к операции являлось наличие крупной кисты почки, размеры варьировали от 3.0×4,3 до $11,7 \times 13,5$ (I–II категория по Bosniak), болевого синдрома, вторичного пиелонефрита в стадии ремиссии. Выбор доступа производили исходя из расположения кисты. Операции выполнялись по стандартной методике под эндотрахеальным наркозом. Пациенты были разделены на две группы в зависимости от метода операции. У 41 (48,2 %) больного операция проводилась с применением ретроперитонеального доступа с наложением ретропневмоперитонеума (группа РПП), 44 (51,8 %) пациента оперированы лапароскопическим доступом с созданием пневмоперитонеума (группа ПП). При этом в каждой из указанных групп выделены по две сопоставимые подгруппы (РПП-1, РПП-2 и ПП-1 и ПП-2) по полу, возрасту и характеру патологии, отличающиеся по степени давления газа во время операции. В первой подгруппе, как при трансперитонеальном (ПП-1), так и при ретроперитонеальном доступе (РПП-1) давление было минимальным, поддерживаемое инсуффлятором на уровне 8-12 мм рт.ст. при среднем значении 9,4±2,2 мм рт.ст. В второй подгруппе созданное давление при указанных методах (РПП-2 и ПП-2) было в пределах 12-16 мм рт.ст. при среднем значении 14,5±2,7 мм рт. ст. Продолжительность операций варьировала от 23 до 67 мин, в среднем 43±16 мин.

D-димер определяли непосредственно перед началом операции, а также в первые (утром, на следующий день, т.е. через 16–20 часов после операции) и третьи сутки после операции. С целью диагностики клинических признаков нарушения микроциркуляции проводили измерение диаметра нижних конечностей на уровне средней трети голени и средней трети бедра, в симметричных точках. Измерения проводили с помощью сантиметровой ленты перед операцией, затем на 3 и 5 сутки после операции, в утренние часы, до физической нагрузки. Увеличение объема конечности более 1,5 см на любом уровне от исходного считалось признаком нарушения микроциркуляции и являлось показанием для проведения дуплексного сканирования.

Все пациенты, участвовавшие в исследовании, дали добровольное согласие. Исследование проводилось в соответствии с требованиями Хельсинкской декларации Всемирной медицинской ассоциации (в ред. 2013 г.). Критериями исключения являлись: тяжелая сопутствующая патология, ХСН с нарушением кровообращения III—IV класс по NYHA, операционно-анестезиологический

риск выше II класса по ASA, прием антикоагулянтов, обострение пиелонефрита. отказ от участия в исследовании. Исследование проводили с помощью мультиплексного анализа на проточном цитофлуориметре согласно инструкции фирмы-производителя. Регистрацию данных проводили на приборе CytoFlex LX. Исследования проводили в лаборатории экспериментальной и клинической биохимии и иммунологии НИИ Молекулярной медицины ФГБОУ ВО «Читинская государственная медицинская академия» Минздрава России. Математическая обработка данных проводилась с использованием программ Microsoft Office 2018, с применением параметрических (t-критерий Стьюдента), при сравнении исследуемых групп, с поправкой Бонферрони. Критический уровень значимости при проверке гипотез p=0,05. Величина коэффициента корреляции определялась по методике Пирсона.

Результаты и обсуждение

Полученные данные приведены в таблице 1. Таблица 1. Уровень D-димера (ng/ml) при различных режимах ретропневмоперитонеума(РПП) и пневмоперитонеума (ПП)

Клинические группы (n-85)	Под- группы	До операции	После операции	Через 3 суток после операции	(Р) давление в мм рт.ст.
РПП (ретроп- невмопери-	1 под- группа (n-22)	522±24,1	485±19,9	521±26,7	P≤12
тонеум) n-41	2 под- группа (n-19)	584±29,6	2853±57,4 p=0,003	458±24,1	P>12
ПП (пневмо-	1 под- группа (n-23)	527±24,1	496±19,9	552±23,1	P≤12
перитонеум) n-44	2 под- группа (n-21)	521±20,2	2733±82 2 p=0.01	466±174	P>12

р — статистически значимая связь между факторным и результативным признаками относительно исходных значений.

В обеих подгруппах РПП-1 и ПП-1, при поддерживаемом давлении до 12 мм рт.ст значимых колебаний Д-димера не обнаружено, как в 1-е, так и через 3 суток после операции. Вместе с тем при более высокой гипертензии, выше 12 мм рт.ст. в обеих подгруппах РПП-2 и ПП-2, т.е. независимо от метода оперативного вмешательства, отмечалось резкое увеличение данного показателя в 5–5,5 раз от предоперационного уровня в 1-е

сутки после операции. Через трое суток во всех группах уровень D-димера снижался до исходного.

При изучении частоты отёков нижних конечностей выявлено что в группах РПП -1 и ПП-1, частота увеличения объема конечности более 1,5см от исходного была относительно низкой и составила 1 случай (4,5 %) и 3 (13,0 %) соответственно.

Через трое суток после операции в группах РПП-2 и ПП-2, частота отёков выявлена у 7 (36,8%) и 9 (42,8 %) пациентов. При расчете коэффициента корреляции по Пирсону обнаружена сильная связь между динамикой уровня D-димера и отеком нижних конечностей послеоперационном периоде (r=0,85). Появление отёка нижних конечностей можно объяснить воздействием давления газа на вены брюшной полости и забрюшинного пространства. 20 пациентам (23,5 %) при наличии отека нижних конечностей для исключения тромбоза глубоких вен нижних конечностей, проводилось дуплексное сканирование. Ни у одного из указанных пациентов, не было выявлено тромбоза глубоких вен, отёки носили преходящий характер и исчезали к моменту выписки. К 5 суткам полное исчезновение отеков отмечено у 16 (80 %) больных, что вероятно связано с восстановлением микроциркуляции. Данные изменения свидетельствуют о заметном влиянии создаваемой во время операции гипертензии на микрогемодинамику. D-димер — показатель степени активации системы гемостаза, образующийся при распаде тромба, сам по себе не свидетельствует о развитии тромботических осложнений, а лишь о степени активации гемостаза и фибринолиза. В результате любой хирургической травмы происходит активация системы гемостаза. Создание давления при инсуффляции газа в забрюшинном пространстве или в брюшной полости выше 12 мм.рт.ст., при одной и той же хирургической агрессии, способствует значительному повышению уровня D -димера.

Заключение

Целью исследования была оценка динамики колебаний уровня маркера тромботических осложнений D-димера, в течение послеоперационного периода у пациентов, оперированных в забрюшинном пространстве (по поводу кист почек) с созданием пневмо- или ретропневмоперитонеума, в зависимости от избранного метода, чтобы доказать или опровергнуть тезис о том, влияет ли режим гипертензии на послеоперационные уровни D-димера.

Полученные данные свидетельствуют о том, что динамика колебаний D-димера после лапароскопических и ретроперитонеальных операциях не имела существенных отличий, в зависимости от метода оперативного вмешательства. Более значимым, влияющим на уро-

вень D-димера, является фактор интраабдоминальной и ретроперитонеальной гипертензии. При этом рост данного показателя отмечен только в первые сутки после операции, что связано вероятно с отрицательным воздействием повышенного внутриполостного давления, при котором в большей степени возникают микроциркуляторные изменения, вследствие компрессии венозного русла, в брюшной полости и забрюшинном пространстве. Вероятно, происходит растяжение микрососудов, нарушение целостности сосудистой стенки, разрушение клеток эндотелия, обнажение коллагена, высвобождение вазоактивных веществ [1, 2]. При этом можно предположить изменения в системе гемостаза, реакцией на которые является рост уровня D-димера в 1 сутки после операции. Данные изменения отражают потенциальный риск тромботических осложнений. Несмотря на отсутствие клинически подтвержденных случаев тромбоза у исследуемых групп пациентов, полученные данные необходимо учитывать при проведении длительных операций, сопровождающихся созданием повышенного давления в брюшной полости или забрюшинном пространстве.

Выводы

- 1. Не выявлено зависимости динамики уровня D-димера от метода (трансперитонеального или ретроперитонеального) оперативного доступа в забрюшинное пространство.
- 2. При давлении в интраабдоминальном или же ретроперитонеальномпространстве в диапазоне 12—16ммрт.ст., в первые сутки после операции уровень D-димера возрастает в 5–5,5 раз, а к 3 суткам возвращается к исходным значениям как при трансперитонеальном, так и при ретроперитонеальном методе. При давлении в режиме 8–12 мм рт. ст. изменений уровня D-димера не установлено.
- 3. Имеется сильная корреляционная связь между уровнем D-димера и отеками нижних конечностей в послеоперационном периоде (r=0,85).

ЛИТЕРАТУРА

- 1. Власов Т.Д., Яшин С.М. Артериальные и венозные тромбозы. Всегда ли применима триада Вирхова? Регионарное кровообращение и микроциркуляция. 2022;21(1):78—86. https://doi.org/10.24884/1682-6655-2022-21-1-78-86
- 2. Poredos P., Jezovnik MK. Endothelial Dysfunction and Venous Thrombosis // Angiology. 2018;69(7):564–567. https://doi.org/10.1177/0003319717732238.
- 3. Bytniewski, P., Machała, W., Romanowski, L. The dynamics of D-dimer level fluctuation in patients after the cemented and cementless total hip and total knee replacement. J Orthop Surg Res 9, 89 (2014). https://doi.org/10.1186/s13018-014-0089-0
- 4. Российские клинические рекомендации по диагностике, лечению и профилактике венозных тромбоэмболических осложнений (ВТЭО). Флебология, 2015, 4: 3—52.
- 5. Jacobs B, Henke PK. Evidence-Based Therapies for Pharmacologic Prevention and Treatment of Acute Deep Vein Thrombosis and Pulmonary Embolism. Surg Clin North Am, 2018 Apr, 98 (2): 239—253.
- 6. Лобанов Ю.С., Шаповалов К.Г., Лобанов С.Л. Ретроперитонеоскопическая технология в хирургии забрюшинного пространства. Урология. 2020; 2: 113—117). DOI: https://dx.doi.org/10.18565/urology.2020.2.113—116.
- 7. Lombardo R, Martos R, Ribal M, Alcaraz A. Retroperitoneoscopy in urology: a systematic review. Minerva Urol Nefrol. 2019 Jan 2. Doi: 10.23736/50393-2249.18.03235-6.
- 8. MacDonald C. Small R, Flett M, Cascio S, O'Toole S. Predictors of complications following retroperitoneoscopic total and partial nephrectomy. J Pediatr Surg. 2018;7. pii: S0022-3468(18)30757-7. Doi: 10.1016/j.jpedsurg.2018.10.097.
- 9. Шидловская С.А., Гиляров М.Ю., Богданова А.А., Громыко Г.А., Гогниева Д.Г., Кучина А.Ю., Суворов А.Ю. D-димер как маркер гиперкоагуляции у пациентов с фибрилляцией предсердий. Кардиология и сердечно-сосудистая хирургия. 2019;12(3):222—226. https://doi.org/10.17116/kardio201912031222
- 10. Li-Rui Y, Mei T. The association of high D-dimer level with high risk of ischemic stroke in nonvalvular atrial fibrillation patients. Medicine. 2018;97:43. https://doi.org/10.1097/MD.000000000012622

© Лобанов Юрий Сергеевич (yuriilobanov@mail.ru); Шаповалов Константин Геннадьевич (shkg26@mail.ru); Лобанов Сергей Леонидович (slobanov15@mail.ru); Терешков Павел Петрович (slobanov15@mail.ru); Лобанов Леонид Сергеевич (leonid.lobanov74@mail.ru)

Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.21

ГОДИЧНЫЕ РЕЗУЛЬТАТЫ КОРОНАРНОГО ШУНТИРОВАНИЯ У ПАЦИЕНТОВ С НЕВЕРИФИЦИРОВАННЫМ АНГИОГРАФИЧЕСКИ ДИСТАЛЬНЫМ РУСЛОМ ЦЕЛЕВЫХ КОРОНАРНЫХ АРТЕРИЙ

ONE-YEAR RESULTS OF CORONARY
ARTERY BYPASS GRAFTING IN PATIENTS
WITH ANGIOGRAPHICALLY UNVERIFIED
DISTAL BED OF MAIN CORONARY
ARTERIES

D. Petrovskii
V. Vasiliev
E. Vlasova
L. Ilyina
R. Latypov
D. Galyautdinov
I. Burmistrova
A. Shiryaev

Summary. Active development of percutaneous methods of coronary artery revascularization and evolution of drug therapy for ischemic heart disease lead to more frequent occurrence of severe coronary artery lesions. One of such types of lesions encountered by cardiovascular surgeons is the lack of adequate angiographic visualization of the distal coronary arteries. The article presents the experience of surgical work with patients with such a bed of coronary arteries. For the first time, the quality of life of patients after such operations was assessed. In-hospital and annual results of the interventions performed in patients with coronary arteries that are poorly visualized according to angiography are assessed as good.

Keywords: coronary artery bypass grafting, coronary artery microsurgery, diffuse lesion, arteries less than 1.5 mm in diameter, quality of life, angina, SAQ.

Петровский Дмитрий Владиславович

Аспирант,

ФГБУ «НМИЦК им. ак. Е.И. Чазова» МЗ РФ (Москва) dvpetrovskii@yandex.ru

Васильев Владислав Петрович

К.м.н., заведующий отделением, ФГБУ «НМИЦК им. ак. Е.И. Чазова» МЗ РФ (Москва) vpvasiliev conf@mail.ru

Власова Элина Евгеньевна

К.м.н., врач-кардиолог, ФГБУ «НМИЦК им. ак. Е.И. Чазова» МЗ РФ (Москва) eevlasova conf@mail.ru

Ильина Лариса Николаевна

К.м.н., врач-кардиолог, ФГБУ «НМИЦК им. ак. Е.И. Чазова» МЗ РФ (Москва) Inilina corr@mail.ru

Латыпов Руслан Сергеевич

К.м.н., заведующий отделением, ФГБУ «НМИЦК им. ак. Е.И. Чазова» МЗ РФ (Москва) rslatypov_corr@mail.ru

Галяутдинов Дамир Мажитович

К.м.н., врач-сердечно-сосудистый хирург, ФГБУ «НМИЦК им. ак. Е.И. Чазова» МЗ РФ (Москва) dmgalautdinov_conf@mail.ru

Бурмистрова Ирина Валерьевна

К.м.н., врач-анестезиолог-реаниматолог, ФГБУ «НМИЦК им. ак. Е.И. Чазова» МЗ РФ (Москва) ivburmistrova_articles@mail.ru

Ширяев Андрей Андреевич

Д.м.н., профессор, член-корр. РАН, руководитель отдела, ФГБУ «НМИЦК им. ак. Е.И. Чазова» МЗ РФ (Москва) aashiryayev_conf@mail.ru

Аннотация. Активное развитие чрескожных методов реваскуляризации коронаных артерий и эволюция медикаментозной терапии ишемической болезни сердца ведет к более частой встречаемости тяжелого поражения коронарных артерий. Одним из таких типов поражений, с которым встречаются сердечно-сосудистые хирурги — отсутствие адекватной ангиографической визуализации дистального отдела коронарных артерий. В статье представлен опыт хирургической работы с пациентами с таким руслом коронарных артерий. Впервые оценено качество жизни пациентов после таких операций. Госпитальные и годичные результаты проведенных вмешательств у пациентов с наличием неудовлетворительно визуализирующихся по данным ангиографии коронарных артерий оцениваются как хорошие.

Ключевые слова: коронарное шунтирование, микрохирургия коронарных артерий, диффузное поражение, артерии диаметром менее 1,5 мм, качество жизни, стенокардия, SAQ.

Введение

волюция методов эндоваскулярного лечения атеросклероза привела к закономерному росту числа процедур чрескожного коронарного вмешательства (ЧКВ) в современной практике терапии пациентов ишемической болезнью сердца (ИБС) как в остром периоде заболевания, так и в плановом порядке у пациентов с многососудистым поражением коронарных артерий (КА). Параллельно с этим происходило и развитие терапевтических методов лечения ИБС, что вместе с развитием ЧКВ все чаще приводит к госпитализации на проведение операции коронарного шунтирования (КШ) пациентов с длительным анамнезом ИБС. Такие пациенты не только часто имеют многососудистое поражение, но и осложненные типы поражений дистального русла КА: КА с диаметром (d) менее 1,5 мм [1], окклюзированное русло КА [2], диффузное поражение [3], состояния после множественных стентирований [4]. Также последнее время хирурги стали все чаще сталкиваться с КА с неверифицированным ангиографически дистальным руслом КА (КА с НАДР), когда дистальные отделка КА недостаточно заполняются контрастным веществом как анте- и ретроградно, так и по внутри- и межсистемным коллатералям при проведении стандартной коронароангиографии (КАГ). Такое поражение ставит перед сердечно-сосудистыми хирургами вопрос не только о технической возможности формирования дистального анастомоза шунта к КА, но и вовсе наличие КА в интересуемой зоне [5].

Ангиографическое отсутствие КА с НАДР в зоне жизнеспособного миокарда нередко является причиной в отказе от проведения реваскуляризации. Однако, такие пациенты часто страдают от сохраняющихся приступов стенокардии, не поддающейся медикаметнозной терапии, а дообследование выявляет признаки ишемии жизнеспособного миокарда в областях КА с НАДР. Это отображается в низких показателях результатов Сиэтловского опросника качества жизни пациентов со стенокардией [6], что определяет потребность пациентов в выполнении реваскуляризации миокарда, значимо улучшающей качество жизни пациентов со стабильной стенокардией [7].

На данный момент КА с НАДР является молодой проблемой (частота встречаемости пациентов с таким поражением составляет около 10 % среди больных, госпитализирующихся для проведения КШ на базе ФГБУ «НМИЦК им. ак. Е.И. Чазова»), которая не получила ни объемного освещения в современной литературе, ни представления отдаленных результатов и показателей качества жизни пациентов после подобных операций КШ.

Цель

Целью нашего исследования стало изучение госпитальных и отсроченных годичных результатов КШ

Таблица 1.

Описание исследуемой группы

ИМТ — индекс массы тела, АГ — артериальная гипертензии, СД — сахарный диабет, ХСН — хроническая сердечная недостаточность, ИМ — инфаркт миокарда, ЧКВ — чрескожное коронарное вмешательство, КА — коронарная артерия, НАДР — неверифицированное ангиографически дистальное русло, АИК — аппарат искусственного кровообращения, ИК — искусственное кровообращение.

Параметр	Значение
n	70
Мужской пол, n (%)	52 (74,3 %)
Возраст, лет	64,5 [56; 68]
ИМТ, кг/м ²	28,8 ± 4,2
Ожирение, п (%)	26 (37,1 %)
ΑΓ, n (%)	63, 90 %
СД, n (%)	24 (34,3 %)
XCH, n (%)	4 (5,7 %)
ИМ в анамнезе, п (%)	47 (67,1 %)
ЧКВ в анамнезе, п (%)	20 (28,6 %)
Индекс реваскуляризации	4 [3; 4]
Syntax Score	34 [31; 37]
Высокий Syntax Score, n (%)	43 (61,4 %)
Среднее число КА с НАДР, n	1,24
1 КА с НАДР, n (%)	54 (77,1 %)
2 KA с НАДР, n (%)	15 (21,4 %)
3 KA с НАДР, n (%)	1 (1,4 %)
КШ с АИК, п (%)	66 (94,3 %)
Время операции, мин	266,7 ± 41,5
Время ИК, мин	100,4 ± 22,3
Время Ишемии Миокарда, мин	65 [52; 70,75]
КШ с параллельным ИК, п (%)	1 (1,4 %)
Время операции, мин	310
Время ИК, мин	105
КШ off-pump, n (%)	3 (4,3 %)
Время операции, мин	251,7 ± 10,4
Реанимационный койко-день, д	1 [1; 1]
Послеоперационный койко-день, д	8 [8; 10]

у пациентов, имеющих как минимум одну целевую KA c HAДP.

Материалы и методы

В исследование были включены все пациенты, имеющие не менее одной КА с НАДР, которым была проведена операция КШ в период 09/2022 — 05/2024 (Табл. 1). В исследование включались пациенты без сердечной недостаточности (СН) и фракции выброса левого желудочка (ФВ ЛЖ) < 30 %, легочной гипертензии (ЛГ) и систолическим давлением легочной артерии (СДЛА) > 55 мм. рт. ст., пороков сердца (как врожденных, так и приобретенных, а так же без новообразований), механических осложнений перенесенного инфаркта миокарда (ИМ) (аневризмы левого желудочка, дефектов перегородок сердца). Также пациенты не включались в исследование при наличии следующих хронических заболеваний: почечная или печеночная недостаточность, обструктивная болезнь легких, «свежие» инфаркты миокарда, произошедшие менее 1,5 мес. назад. Описание группы пациентов представлено в табл. 1.

Дооперационно всем пациентам проводилась коронароангиография, по результатам которой пациент включался в исследование. Агиографическими критериями включения пациента в исследование (а также критериями НАДР) являлась крайне неудовлетворительная картина дистального русла коронарной артерии, при которой нельзя достоверно определить диаметр и степень поражения дистального отдела КА, а в некоторых случаях и сам факт наличия КА. К таковым относились ок-

клюзированные (рис. 1) и диффузно пораженные (рис. 2) основные КА, не имеющие адекватного заполнения контрастным веществом по внутри- и межсистемным коллатералям. Также стентированные КА, не имевшие достаточной верификации их дистального отдела (рис. 3).

Перед операцией пациентам давали заполнить Сиэтловский опросник качества жизни для пациентов со стенокардией [8]. Оценивались основные шкалы: ограничений физических нагрузок (PL), стабильности и частоты ангинозных приступов (AS и AF соответственно), удовлетворенности лечением (TS) и отношения к болезни (DP). Измерялся результирующий средний уровень всех шкал, SAQ summary score (SAQ-SS) [9]. Значения шкал считались положительными для пациента при значениях 75–100 %, умеренными при 50–74 %, негативными — 25–49 % и крайне негативными при 0–24 % [10].

Операции КШ выполнялись с использованием операционного микроскопа, микрохирургических инструментов. Часть (3, 4,3 %) операций было выполнено на работающем сердце по методике off-ритр, одна (1,4 %) — на работающем сердце в условиях параллельного искусственного кровообращения (ИК), остальные 66 (94,3 %) — с применением аппарата искусственного кровообращения (АИК) на остановленном сердце (в качестве кардиоплегии применялся раствор по del Nido). В соответствии с рекомендациями мы применяли методику полной реваскуляризации КА, а так же использовали ВГА для шунтирования ПНА [11]. В случае невозможности выполнения шунтирования КА с НАДР оценивались причины такого решения.

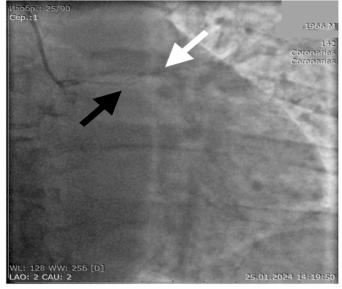


Рис. 1. Коронароангиография пациента с неверифицрованным ангиографически дистальным руслом передней нисходящей артерии (ПНА) и огибающей артерии (ОА).

Стрелкой белого цвета обозначена окклюзированная ПНА, практически не заполняющаяся по коллатералям. Стрелкой черного цвета обозначена окклюзированная ОА, не имеющая заполнения ни по внутрисистемным, ни по межсистемным коллатералям

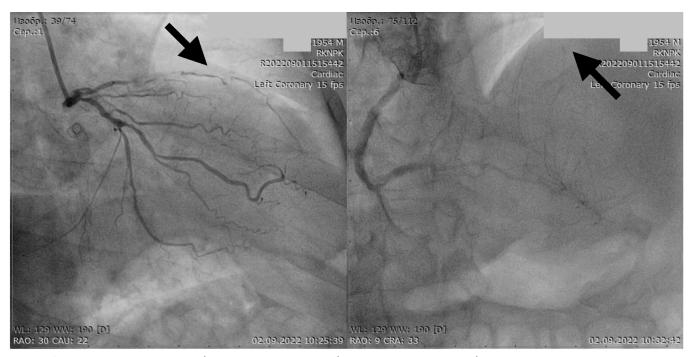


Рис. 2. Коронароангиография пациента с неверифицрованным ангиографически дистальным руслом передней нисходящей артерии (ПНА).

Стрелкой черного цвета обозначена крайне диффузно пораженная ПНА, практически не заполняющаяся контрастным веществом. По такой агиографической картине нельзя сказать о достаточном принимающем дистальном русле ПНА

Рис. 3. Коронароангиография пациента с неверифицрованным ангиографически дистальным руслом стентированной передней нисходящей артерии (ПНА).

Стрелкой черного цвета обозначена крайне диффузно пораженная ПНА, практически не заполняющаяся контрастным веществом. По такой агиографической картине нельзя сказать о достаточном принимающем дистальном русле ПНА. Стент ПНА указан белой стрелкой

В госпитальный период оценивались особенности выполнения КШ, длительность операции, число дистальных анастомозов, послеоперационный период (длительность госпитализации, осложнения операции, такие как рестернотомии, периоперационные ИМ, нарушения мозгового кровообращения, жизнеугрожающие нарушения ритма).

Через год после проведенной операции выполнен телефонный опрос пациентов и их родственников, оценена частота ответов на звонки, летальность за период между операцией и контрольном звонком, включая причины смертей, изучен срок рецидива стенокардии, потребность в реваскуляризации, дистанционно пациенты ответили на SAQ, оценена динамика результатов шкал, разница в показателях считалась имеющейся при изменении более чем на 10 % [8].

Для выполнения статистического анализа применялась программа RStudio (Posit, PBC, Бостон, США). Все числовые величины проверены на нормальность методом Шапиро—Уилка и были представлены в виде средней арифметической величины и стандартного отклонения ($M \pm sd$), если распределение данных было близким к нормальному, а при отклонении — в виде медианы и 1-го и 3-го квартилей (Me [Q1; Q3]). Факторные и логические величины представлены в виде n, %. Данные считались статистически различающимися при уровне значимости (p) < 0,05.

Результаты

По данным КАГ к КА с НАДР было отнесено 87 КА, описание которых представлено в табл. 2. Стоит отметить, что число таких артерий у пациентов не всегда ограничивается одной КА: среднее число КА с НАДР на одного пациента составило 1,24: 54 (77,1 %) пациентов имели 1 КА с НАДР, 15 (21,4 %) — 2 КА с НАДР, и был один (1,4 %) пациент со всеми тремя КА с НАДР. При этом стоит указать, что не все КА с НАДР были реваскуляризированы: 5 (5,7 %) КА с НАДР интраоперационно были признаны неподходящими для выполнения шунтирования. 4 (5,7 %) пациентам, каждый из которых имел 2 КА с НАДР было выполнено шунтирование только одной из них. 2 (2,3 %) КА с НАДР, которые не получили реваскуляризации у этих пациентов не имели достаточного диаметра для выполнения дистального анастомоза и представляли собой сосуд диаметром менее 0,5 мм; а другие 2 (2,3 %) нам не удалось обнаружить на поверхности миокарда, включая зоны, скрытые эпикардиальным жиром. Также был один пациент (1,4 %), которому не было выполнено шунтирование КА с НАДР вовсе. Он имел 1 КА с НАДР, относящуюся к системе ПКА, дооперационно эта КА определялась как окклюзированная, а после ревизии сердца она не была найдена на поверхности миокарда. Однако, пациенту было выполнено шунтирование ПНА,

ДА, ОА, АТК и ОАК, что позволило полностью реваскуляризировать миокард. Таким образом, всего 5 (7,1 %) пациентам не была проведена реваскуляризация всех КА с НАДР.

Таблица 2.

Описание группы коронарных артерий с неверифицированным ангиографически дистальным руслом

КА — коронарная артерия, НАДР — неверифицированное ангиографически дистальное русло, ПНА — передняя нисходящая артерия, ПКА — правая коронарная артерия, ЧКВ — чрескожное коронарное вмешательство

Параметр	Значение
n	87
Система КА	
НАДР (ПНА) , n (%)	43 (52,4 %)
НАДР (ОА) , n (%)	14 (17,1 %)
НАДР (ПКА) , n (%)	25 (30,1 %)
ЧКВ в анамнезе, п (%)	9 (10,3 %)
Не оперированы, п (%)	5 (5,7 %)
Крайне малый диаметр КА (d < 0,5 мм) , n (%)	2 (2,3 %)
Отсутствие артерии, п (%)	3 (3,4 %)

По результатам проведенного за день до операции SAQ-анкетирования отмечалось, что пациенты не имеют хорошего уровня жизни при оценке любой шкалы SAQ (см. табл. 3): шкалы PL, и AF имеют негативные результаты, тогда как остальные шкалы оцениваются как умеренные, хотя и находящиеся на грани с негативными. Относительно высокие показатели шкал AS, TS и DP могут быть объяснены тем фактом, что пациенты, госпитализирующиеся на операцию КШ, чаще всего имеют стабильную стенокардию, подобранную медикаментозную терапию, позволяющую не испытывать регулярных приступов загрудинных болей и позитивно настроенных на проведение операции. Несмотря на это, общий результирующий показатель качества жизни SAQ-SS показал негативный результат, составив 46,5 ± 5,5 %.

Суммарно выполнено 278 дистальных анастомозов шунтов с КА. Из них к КА с НАДР выполнено 82 шунтов, к КА с верифицированным ангиографически дистальным руслом (ВАДР) — 196 шунтов, среднее число шунтированных артерий составило 3,97 (от 2 до 6 дистальных анастомозов). Для шунтирования КА с НАДР применялись как аутовены, так и аутоартерии, при этом маммарно-коронарные шунты нами были применены чаще. Такая особенность выбора кондуита к КА с НАДР трактована в первую очередь значительно более частой встречаемостью ПНА в группе КА с НАДР (37, 42,5 %), тогда как в группе КА с ВАДР ПНА встречалась реже: 33

(17,8 %) из 196 шунтов к КА с ВАДР реваскуляризировали ПНА (р < 0,001). Частота применения сложных хирургических методик (СХМ) формирования анастомозов (продленные анастомозы, шунтопластики, эндартерэктомии) применялись равнозначно часто как в группе КА с НАДР, так и в группе КА с ВАДР (31, 37,8 % против 71, 36,2 %, p = 0,97).

Послеоперационный период у всех членов исследуемой группы прошел гладко за исключением одного пациента, получившего периоперационный инфаркт. ИМ, который развился у пациента, был установлен в отделении анестезиологии и реанимации (ОАиР) в первые сутки после проведенной стандартной операции КШ, во время которой была выполнена реваскуляризация ПНА, которая относилась к КА с НАДР, и трех КА с ВАДР, имеющих значимые поражения (ОА, ПКА и ДА). В ОАиР отмечалась потребность в продленном применении незначительных доз кардиотоников, отмечалось повышение тропонина I в первые сутки после операции до 32,4 нг/мл (повышение тропонина выше 9,67 нг/мл в послеоперационном периоде у пациентов, перенесших КШ в условиях ИК считается признаком повреждения миокарда и развития ИМ [12]). По данным прикроватной ЭхоКГ отмечалась новая зона гипокинезии миокарда в нижнембоковом сегменте ЛЖ и соответствующие ей изменения на ЭКГ в зоне ответственности ОА. При этом глобальная сократимость ЛЖ оставалась в удовлетворительных значениях, показаний к КАК-ШГ установлено не было. На вторые сутки после операции пациент был переведен в палату отделения. Также отмечалось повышение тропонина в первые сутки после операции. Пациенту реваскуляризация не потребовалась и в удовлетворительном состоянии через 2 дня после операции пациент переведен в палату отделения. Через 7 дней после КШ пациенту проведена контрольная мультиспиральная компьютерная томография (МСКТ) КА и шунтов к ним, по результатам которой была диагностирована окклюзия шунта к ОА в зоне дистального анастомоза, остальные шунты были проходимы. На контрольном ЭхоКГ накануне выписки отмечалось восстановление сократимости нижнебокового сегмента ЛЖ («новая» зона, диагностированная в раннем послеоперационном периоде). У всех пациентов, включая больного с периоперационным ИМ, в течение госпитального периода ангинозных приступов, жизнеугрожающих нарушений ритма сердца, клинических признаков ХСН на фоне режима отделения не отмечалось. Послеоперационные раны заживали без особенностей и пациент был выписан на 17-й день после операции. У оставшихся 69 пациентов рецидива стенокардии за время госпитализации не зарегистрировано. В среднем пациенты были выписаны в срок 8 [8; 10] суток после операции КШ, пациент с периоперационным ИМ был выписан на 17-е сутки.

Через год после проведенной операции был проведен телефонный опрос всех пациентов, вошедших в наше исследование. На звонок ответило 67 (95,7 %) пациентов и их родственников. Из них за период после операции скончалось 2 (3,0 %) пациента, 1 (1,5 %) из-за COVID-ассоциированной пневмонии, 1 (1,5 %) — несчастный случай. Со слов родственников оба пациента не жаловались на рецидивы стенокардии и не обращались за кардиологической помощью с новыми жалобами, таким образом, эти смерти были признаны не имеющими кардиологического генеза. 3 (4,5 %) пациента пожаловались на рецидив стенокардии, возникший через 9 месяцев после операции КШ, 2 (3,0 %) из которых потребовали госпитализации и реваскуляризации методом ЧКВ. Один (1,5 %) из них признался, что не соблюдал рекомендации лечащего врача, продолжал нарушать диету, график приема лекарств и курил.

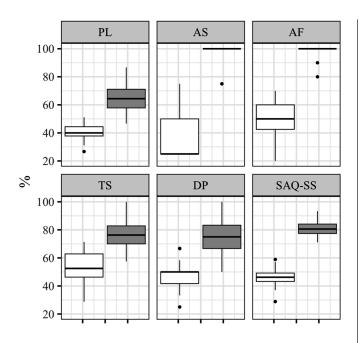

Также по телефону выполнен опрос пациентов по SAQ. Полученные результаты позволили оценить отдаленные изменения качества жизни пациентов в послеоперационном периоде. Результаты показателей по шкалам представлены в табл. 3 и рис. 4. По сравнению с дооперационным заполнением SAQ отмечалось улучшение показателя всех шкал в положительную сторону. Таким образом, изменение всех шкал по SAQ в положительную сторону составило более чем 10 %, что говорит о наличии значимого улучшения качества жизни.

Таблица 3.

Результаты шкал Сиэтловской анкеты для пациентов со стенокардией

PL (Physical limitation) — шкала ограничений физических ограничений, AS (Angina stability) — шкала стабильности приступов, AF (Angina frequency) — шкала частоты приступов, TS (Treatment satisfaction) — шкала удовлетворенности лечением, DP (Disease perception) — шкала отношения к болезни, SAQ-SS (SAQ summary score) — результирующее среднее качества жизни

Параметр	До операции	Через год после операции	Разница средних	p-value
n	70	65	_	н.д.
PL, %	40,5 ± 5,1	66,1 ± 9,0	+ 25,6	< 0,01
AS, %	50 [42,5; 60]	100 [100; 100]	+ 58,1	< 0,01
AF, %	25 [25; 50]	100 [100; 100]	+ 48,3	< 0,01
TS, %	53,2 ± 10,6	77,2 ± 9,9	+ 24,0	< 0,01
DP, %	50 [41,7; 50]	75 [66,7; 83,3]	+ 30,9	< 0,01
SAQ-SS, %	46,5 ± 5,5	81,1 ± 4,9	+ 34,8	< 0,01

Опрос 둳 До КШ 🖨 После КШ

Рис. 4. Результаты шкал Сиэтловской анкеты для пациентов со стенокардией

PL — шкала ограничений физических ограничений, AS — шкала стабильности приступов, AF — шкала частоты приступов, TS — шкала удовлетворенности лечением, DP — шкала отношения к болезни, SAQ-SS — результирующее среднее качества жизни

Обсуждение

Золотым стандартом оценки КА при ИБС является КАГ — метод исследования сосудов путем прямого введения в них контрастного вещества. При этом исследовании у врачей появляется возможность оценить состояние КА, степень и распространенность стеноза и атеросклероза, что позволяет судить о выборе реваскуляризации миокарда методом ЧКВ (при однососудистых локальных и, преимущественно, проксимальных стенозах) или КШ (при многососудистом поражении) [11]. КАГ является удобным методом визуализации и в большинстве случаев позволяет оценить все сегменты КА. Однако, у части пациентов ангиографическую картину коронарного русла оценить не представляется возможным ввиду крайне тяжелого поражения. Несмотря на то, что потребность в реваскуляризации таких артерий нередко ставят под сомнение, аргументируя подозрением на отсутствие артерии или недостаточный её диаметр для формирования дистального анастомоза, пациенты, имеющие КА с НАДР, продолжают страдать от стенокардии и имеют жизнеспособный миокард в зонах ответственности этих артерий. Таким образом, существует необходимость в реваскуляризации невизуализированных артерий, а использование операционного микроскопа позволяет выполнить дистальный анастомоз к артериям мелкого диаметра (вплоть до 1,0 мм) [5].

При возникновении окклюзии КА ангионеогенез практически не происходит, а за счет перераспределения кровотока происходит постепенное расширение коллатеральных сосудов, что приводит к их визуализации при выполнении КАГ [13]. Таким образом, часть пациентов с окклюзированными КА, дистальное русло которых не визуализируется должным образом получили окклюзию сравнительно недавно и коллатерали не успели стать достаточно полнокровными. При этом в дооперационном периоде возможно выполнение МСКТ в отсроченную фазу, что позволяет изучить дистальный конец окклюзии для проведения ЧКВ при однососудистом поражении [14] или оценить дистальный отдел КА для подготовки к шунтированию.

Диффузное поражение КА всё чаще встречается среди пациентов, госпитализирующихся для проведения КШ. Разумеется, качественное терапевтическое лечение вкупе с эндоваскулярными методами реканализации КА, позволяет лечить пациентов достаточно длительное время. Однако, атеросклероз, который является патогенетической основной ИБС, имеет прогрессивное течение, а современные методы лечения не позволяют остановить, а лишь замедляют патологический процесс. При этом многие пациенты с ИБС имеют и другие сопутствующие заболевания, которые влияют на образование атеросклеротических бляшек в КА, такие как СД и АГ.

При этом стоит отметить, что несмотря на более частую потребность в применении СХМ для реваскуляризации миокарда, отдаленные результаты таких процедур не имеют значимой разницы по сравнению с пациентами с локальными неосложненными повреждениями КА [5]. При этом по нашему опыту КА с НАДР чаще всего находятся на поверхности миокарда и не только имеют достаточный размер для выполнения КШ. Шунты к таким артериям имеют хорошие результаты интраоперационной флуометрии и проходимы по данным МС-КТ-шунтографии через неделю после вмешательства. Следует отметить, что адекватное функционирование шунтов к КА с НАДР не является показателем отношения пациента к заболеванию и своему состоянию и не показывает уровень качества жизни.

Для оценки дооперационного состояния пациентов со стенокардией могут использоваться различные шкалы и анкеты. Так, в 1995 г. была предложена шкала Сиэтловского опросника (Сиэтловской анкеты) качества жизни при стенокардии, состоящая из 19 вопросов, ответы на которые пациенты дают по шкале от 1 до 6 для первых 9 вопросов и с 11 по 13 вопросы, и от 1 до 5 для оставшихся 10 и 14–19 вопросов. Анкета имеет 5 шкал, показывающих различные аспекты жизни пациентов со стенокардией: PL (Physical limitation) — шкала ограничений физических ограничений (1–9-й вопросы), АЅ (Angina stability) — шкала стабильности приступов (10-й во-

прос), AF (Angina frequency) — шкала частоты приступов (11-й и 12-й вопросы), TS (Treatment satisfaction) шкала удовлетворенности лечением (13-16-й вопросы) и DP (Disease perception) — шкала отношения к болезни (17–19-й вопросы) [8]. Несколько позже появилось предложение использовать среднее результирующее показание основных 3-х шкал — SAQ-SS (на основе короткой формы SAQ из 7 вопросов — SAQ-7) для оценки общего качества жизни пациентов со стенокардией, которое представляет среднее значение шкал PL, AF и DP [9]. Применение SAQ и дополнительной шкалы SAQ-SS на различных этапах лечения ИБС представляет удобную почву для проведения сравнения до- и послеоперационного состояния пациентов, перенесших КШ, а также сравнения с ЧКВ [15]. Кроме того, имеются данные о прямой взаимосвязи результатов SAQ (в первую очередь касающихся физических ограничений) и исходов КШ [16]. Ограничивающим фактором применения SAQ у пациентов в ранние сроки после операции КШ мы видим формулировку вопросов, касающихся последних 4-х недель жизни. Таким образом, заполнение SAQ через неделю после операции не только затронет и дооперационную жизнь пациента, но и не сможет учесть недавнюю операцию, сопряженную с постстернотомной болью и искусственному ограничению подвижности за счет потребности ношения грудного бандажа и рекомендаций в отсутствии нагрузки на верхний плечевой пояс. Так, по данным исследований отмечаются различия в качестве жизни пациентов в долгосрочной перспективе между ЧКВ и КШ: качество жизни и ограничения физических нагрузок в раннем периоде (1 месяц) значимо различаются в пользу преимущества ЧКВ, однако, с отметки в 6 месяцев шкала ограничения физической нагрузки показывает сопоставимые результаты, а шкала качества жизни — значимое преимущество КШ. При этом шкала частоты приступов стенокардии хоть и показывает вираж преимущества КШ перед ЧКВ на моменте 12 месяцев, одно— и шестимесячные результаты, а также результаты через 3–5 лет показывают схожие исходы [17].

Заключение

Недостаточная верификация дистального русла КА по данным дооперационной КАГ нередко не совпадает с действительностью, которую видят сердечно-сосудистые хирурги во время операций КШ. В большинстве случаев КА с НАДР не только визуализируются на поверхности миокарда, но и часто имеют достаточный диаметр для выполнения анастомозов даже без применения СХМ. Госпитальные результаты, отсутствие кардиальных смертей в течение года, а также положительная динамика по всем шкалам как, собственно, SAQ, так и SAQ-SS позволяет сделать вывод об успешности и необходимости выполнения КШ пациентам с КА с НАДР и сохраняющейся стенокардии.

ЛИТЕРАТУРА

- 1. Зайковский В.Ю., Ширяев А.А., Акчурин Р.С., Васильев В.П., Галяутдинов Д.М., Власова Э.Е., Мукимов Ш.Д. Шунтирование коронарных артерий диаметром менее 1,5 мм. Аналитический обзор. // Ангиология и сосудистая хирургия. 2022. vol 28 (1) Р. 163—168.
- 2. Weintraub W.S., Garratt K.N. Should Chronic Total Occlusion Be Treated With Coronary Artery Bypass Grafting? Chronic Total Occlusion Should Not Routinely Be Treated With Coronary Artery Bypass Grafting. / Circulation. 2016 vol. 133(18) P. 1818—1825.
- 3. Акчурин Р.С., Ширяев А.А., Андреев А.В., Васильев В.П., Галяутдинов Д.М., Зайковский В.Ю., Мукимов Ш.Д. Коронарное шунтирование при диффузном поражении коронарных артерий: использование аутоартериальных трансплантатов. // Кардиологический вестник. 2021 vol. 16(4) P. 5—10.
- 4. Кремнева Л.В., Суплотов С.Н., Абатурова О.В., Стогний Н.Ю., Шалаев С.В. Госпитальные исходы коронарного шунтирования у больных со стабильной стено-кардией с предшествующим чрескожным коронарным вмешательством. // Терапевтический архив. 2022 vol. 94(7) P.822—826.
- 5. Петровский Д.В., Васильев В.П., Власова Э.Е., Латыпов Р.С., Галяутдинов Д.М., Ширяев А.А. Госпитальные результаты коронарного шунтирования, проведенного пациентам с ИБС и наличием коронарных артерий с неверифицированным ангиографически дистальным руслом. // Кардиологический вестник. 2025 vol. 20(1) P. 81–89.
- 6. Стабильная ишемическая болезнь сердца. Клинические рекомендации 2020. // Российский кардиологический журнал. 2020 vol. 25(11) P. 4076.
- 7. Creber, R.M., Dimagli, A., Spadaccio, C., Myers, A., Moscarelli, M., Demetres, M., Little, M., Fremes, S., & Gaudino, M. Effect of coronary artery bypass grafting on quality of life: a meta-analysis of randomized trials. / European heart journal. Quality of care & clinical outcomes. 2022 vol 8(3) P. 259—268.
- 8. Асадуллин И.Ш., Каменских М.С., Филиппов А.А., Ефремов С.М., Никитина Т.П., Ионова Т.И., Шматов Д.В. Факторы, определяющие качество жизни у пациентов с ишемической болезнью сердца, которым планируется операция аортокоронарного шунтирования. // Сибирский журнал клинической и экспериментальной медицины. 2023 vol. 38(4) p. 213—221.
- 9. Spertus, J.A., Winder, J.A., Dewhurst, T.A., Deyo, R.A., Prodzinski, J., McDonell, M., & Fihn, S. D. Development and evaluation of the Seattle Angina Questionnaire: a new functional status measure for coronary artery disease. / Journal of the American College of Cardiology. 1995 vol 25(2) P. 333—341.
- 10. Thomas, M., Jones, P.G., Arnold, S.V., & Spertus, J.A. Interpretation of the Seattle Angina Questionnaire as an Outcome Measure in Clinical Trials and Clinical Care: A Review. / JAMA cardiology. 2021 vol. 6(5) P. 593–599.
- 11. Марцевич С.Ю., Лукина Ю.В., Кутишенко Н.П., Акимова А.В., Воронина В.П., Лерман О.В., Гайсенок О.В., Гомова Т.А., Ежов А.В., Куимов А.Д., Либис Р.А., Матюшин Г.В., Митрошина Т.Н., Нечаева Г.И., Резник И.И., Скибицкий В.В., Соколова Л.А., Чесникова А.И., Добрынина Н.В., Якушин С.С. Изменение показателей качества жизни при применении никорандила у больных стабильной ишемической болезнью сердца (результаты наблюдательной программы «НИКЕЯ»). // Кардиоваскулярная терапия и профилактика. 2017 vol. 16(6) Р. 57—64.

- 12. Буненков Н.С., Комок В.В., Белый С.А., Соколов А.В., Лукашенко В.И., Немков А.С., Хубулава Г.Г. Прогностическое значение тропонина I после операций коронарного шунтирования (по результатам исследования AMIRI-CABG). // Вестник трансплантологии и искусственных органов. 2021 vol. 23(1) P. 91—100.
- 13. Верин В.В., Селютин С.М., Качалов С.Н. Коллатеральный коронарный кровоток при атеросклерозе венечных артерий. // Дальневосточный медицинский журнал. 2011 vol. 2 Р. 121–126.
- 14. Opolski, M.P., Nap, A. & Knaapen, P. A computed tomography algorithm for crossing coronary chronic total occlusions: riding on the wave of the proximal cap and distal vessel segment. / Neth Heart J. 2021 vol 29 P. 42–51.
- 15. Cohen, D.J., Van Hout, B., Serruys, P.W., Mohr, F.W., Macaya, C., den Heijer, P., Vrakking, M. M., Wang, K., Mahoney, E. M., Audi, S., Leadley, K., Dawkins, K.D., Kappetein, A.P., & Synergy between PCI with Taxus and Cardiac Surgery Investigators. Quality of life after PCI with drug-eluting stents or coronary-artery bypass surgery. / The New England journal of medicine. 2011 vol. 364(11) P. 1016–1026
- 16. Bishawi, M., Hattler, B., Almassi, G.H., Quin, J.A., Grover, F.L., Collins, J.F., Ebrahimi, R., Wolbrom, D.H., Shroyer, A.L., & Veterans Affairs Randomized On/Off Bypass Follow-up Study (ROOBY-FS) Group. Health-related quality of life impacts upon 5-year survival after coronary artery bypass surgery. / Journal of cardiac surgery. 2022 vol. 37(12) P. 4899—4905.
- 17. Dimagli, A., Spadaccio, C., Myers, A., Demetres, M., Rademaker-Havinga, T., Stone, G.W., Spertus, J.A., Redfors, B., Fremes, S., Gaudino, M., & Masterson Creber, R. Quality of Life After Percutaneous Coronary Intervention Versus Coronary Artery Bypass Grafting. / Journal of the American Heart Association. 2023 vol 12(22) e030069.

© Петровский Дмитрий Владиславович (dvpetrovskii@yandex.ru); Васильев Владислав Петрович (vpvasiliev_conf@mail.ru);
Власова Элина Евгеньевна (eevlasova_conf@mail.ru); Ильина Лариса Николаевна (Inilina_corr@mail.ru);
Латыпов Руслан Сергеевич (rslatypov_corr@mail.ru); Галяутдинов Дамир Мажитович (dmgalautdinov_conf@mail.ru);
Бурмистрова Ирина Валерьевна (ivburmistrova_articles@mail.ru); Ширяев Андрей Андреевич (aashiryayev_conf@mail.ru)
Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.23

ОСОБЕННОСТИ КЛИНИЧЕСКОГО ТЕЧЕНИЯ БЕРЕМЕННОСТИ У ЖЕНЩИН С ГИПЕРПЛАЗИЕЙ ЭНДОМЕТРИЯ В АНАМНЕЗЕ

CLINICAL FEATURES OF PREGNANCY IN WOMEN WITH A HISTORY OF ENDOMETRIAL HYPERPLASIA

M. Podgornyaya R. Balter T. Ivanova L. Tselkovich O. Ilchenko A. Bogdasarov

Summary. Clinical and ultrasound features of pregnancy development in patients with endometrial hyperplasia are considered. Examined 139 pregnant patients. Through the processing of statistical data, it was determined that some women with GE had chronic diseases that could affect pregnancy.

Keywords: pregnancy, endometrial hyperplasia with atypia, endometrial hyperplasia without atypia, risk factors for pregnancy complications.

Подгорняя Милла Сергеевна

Соискатель,

Самарский государственный медицинский университет samaraobsgyn2@yandex.ru

Балтер Регина Борисовна

Д.м.н., профессор,

Самарский государственный медицинский университет regina.balter@yandex.ru

Иванова Татьяна Владимировна

К.м.н., доцент,

Самарский государственный медицинский университет t.v.ivanova@samsmu.ru

Целкович Людмила Савельевна

Д.м.н., профессор,

Самарский государственный медицинский университет samaraobsgyn2@yandex.ru

Ильченко Олеся Андреевна

Аспирант,

Самарский государственный медицинский университет врач — акушер-гинеколог ГБУЗ СО СГП № 3, г. Самара olesay.ilchenko@gmail.com

Богдасаров Азат Юрьевич

Д.м.н., профессор, Ульяновский государственный университет azat-01@mail.ru

Аннотация. Рассматриваются клинические и ультразвуковые особенности развития беременности у пациенток с гиперплазией эндометрия в анамнезе. Обследовано 139 беременных пациенток. Путем обработки статистических данных определено, что у части женщин с ГЭ имелись хронические заболевания, способные влиять на течение беременности.

Ключевые слова: беременность, гиперплазия эндометрия с атипией, гиперплазия эндометрия без атипии, факторы риска развития осложнений беременности.

меющиеся литературные данные о гиперплазии эндометрия (ГЭ) показывают, что данное заболевание у женщин является одной из основных причин аномальных маточных кровотечений в структуре гинекологической патологии [1–3]. Несмотря на тот факт, что большинство случаев гиперплазии приходится на поздний детородный и перименопаузальный возраст, начало патологических изменений связано с репродуктивным периодом женщины, что существенно влияет на возможности зачатия и вынашивания беременности [4–7].

В литературе приводятся сведения [8–11], что, помимо структурных изменений эндометрия, непосредствен-

но влияющих на процессы имплантации, у большинства пациенток имеется ряд сопутствующих заболеваний, относящихся к факторам риска развития гиперплазии эндометрия и оказывающих влияние на течение беременности в случае ее наступления [12–14]. На сегодняшний день активно обсуждаются вопросы консервативного лечения женщин с атипической гиперплазией и начальными стадиями рака эндометрия [15, 16]. Авторы приводят примеры успешной гестации и рождения жизнеспособных детей после проведенного лечения [17, 18]. Появились термины «онкофертильность» и «онкорепродукция» [19]. Вместе с тем вопросы, касающиеся гиперплазии эндометрия без атипии, практически не рассма-

триваются, хотя доказано, что данный диагноз является одной из стадий патологических изменений, приводящих к раку эндометрия в финале [13, 14, 20]. В связи с изложенным, вопросы, касающиеся течения беременности у женщин с гиперплазией эндометрия, как с атипией, так и без нее, являются значимыми, так как позволяют оценить влияние ранних патологических изменений эндометрия на формирование хориона и дальнейшее развитие фето-плацентарного комплекса.

Целью данного исследования стало выделение клинических и ультразвуковых особенностей развития беременности у пациенток с гиперплазией эндометрия в анамнезе. Для этого было обследовано 139 беременных пациенток. В основной группе, состоящей из 64 пациенток, 52 женщины в анамнезе имели гиперплазию эндометрия без атипии, атипическую гиперплазию эндометрия — 12 человек. Диагноз гиперплазии выставлялся согласно бинарной классификации ВОЗ 2014 г.

Все женщины основной группы перед наступлением беременности испытывали трудности с зачатием, соответственно, им проводилось лечение, в результате которого часть пациенток забеременела самостоятельно — 45 человек, для другой части женщин — 19 пациенток — было проведено ЭКО. В контрольную группу вошли 75 здоровых женщин, 52 из которых были с самостоятельно наступившей физиологической беременностью, а 23 — прошли процедуру ЭКО по причине фактора мужского бесплодия. Такое распределение позволило учесть все факторы возможного риска развития осложнений беременности, в том числе, связанных с влиянием протоколов ЭКО на течение гестационного процесса.

Критерии включения в основную группу:

- беременность,
- наличие в анамнезе гиперплазии эндометрия (с атипией и без атипии).

Критерии исключения из основной группы:

- возраст моложе 18 и старше 45 лет,
- отсутствие гиперплазии эндометрия,
- отсутствие беременности.

В группу контроля вошли здоровые женщины в возрасте от 18 до 45 лет с физиологической беременностью.

Ведение беременных осуществлялось на площадке единственного лечебного учреждения, что позволило устранить различия в стандартах оказания медицинской помощи, способных оказать влияние на течение беременности из-за неодинакового материального оснащения и квалификации медицинского персонала. Обследование и ведение женщин осуществлялось в со-

ответствии с действующими приказами Министерства здравоохранения РФ и актуальными клиническими рекомендациями. Все пациентки дали письменное согласие на участие в исследовании.

Полученные данные объединялись в единую базу, фиксировались в электронных таблицах Exel и рассчитывались при помощи программы медицинской статистики MedCalc (версия 15.2). Для выбора методов расчета проводилась оценка нормальности распределения показателей в группах в соответствии с критериями Колмого-

Таблица 1. Сопутствующие хронические заболевания женщин сравниваемых групп (абс— M±m %)

Группы заболеваний	Шифр МКБ-Х	Основная группа, n=64	Контрольная группа, n=75	P ₁₋₂
Дистрофия пече- ни (стеатогепатоз)	K72	10-15,6±4,6	0	_
Гипотензивный синдром у матери	026.5	5-7,8±3,4	4-5,3±2,6	0,56
Заболевания системы пищева- рения	K21, K29, R14, R12	7–10,9±3,9	8-10,7±3,6	0,97
Варикозная болезнь	183, 022.0	3 2-50,0±6,3	1-14,7±4,1	<0,0001
Заболевания нервной системы	G54, M50-M51,	15-23,4±5,3	12-16,0±4,3	0,28
Заболевания по- чек и мочевыно- сящей системы	N11, N20, N30,	3-4,7±2,7	4-5,3±2,6	0,87
Ожирение	E66	40-62,5±6,1	12-16,0±4,3	<0,0001
Гипотиреоз	E02	13-20,3±5,1	3-4,0±2,3	<0,0001
АИТ	E06.3	18-28,1±5,7	5-6,7±2,9	0,001
Гипертиреоз	E05.0	1-1,6±1,6	1-1,3±1,3	0,88
Миома матки	D25	32-50,0±6,3	4-5,3±2,6	<0,0001
Воспалительные заболевания шейки матки	N72	22-34,4±5,9	4-5,3±2,6	<0,0001
Тазовые перито- неальные спайки	N73.6	28-43,8±6,3	6-8,0±3,2	<0,0001
Эктропион	N86	8-12,5±4,2	4-5,3±2,6	0,15
Пролапс половых органов	N81.2	5-7,8±3,4	2-2,7±1,9	0,19

Примечание. P_{1-2} — показатель уровня значимости различий между группами

рова-Смирнова (уровень значимости данных критериев >0,05). Для нормально распределенных количественных признаков с равной дисперсией в обеих группах использовался двухвыборочный критерий Стьюдента, в остальных случаях применялся U-тест Манна-Уитни (p<0,05), а количественные данные описывались с использованием медианы (Ме), верхнего и нижнего квартилей (Q1-Q3).

Обследование пациенток при постановке на диспансерный учет свидетельствовало о том, что у части женщин в обеих группах имели место хронические заболевания, которые не являлись противопоказанием к вынашиванию беременности, однако могли оказать влияние на ее течение (табл. 1).

Исследования текущего состояния здоровья женщин при взятии на диспансерный учет по беременности указывали на то, что у пациенток основной группы статистически достоверно чаще диагностировались такие заболевания, как варикозная болезнь — $50,0\pm6,3\,\%$, ожирение — $62,5\pm6,1\,\%$, гипотиреоз — $20,3\pm5,1\,\%$ и АИТ — $28,1\pm5,7\,\%$. В контрольной группе женщин с указанными заболеваниями было $14,7\pm4,1$, $16,0\pm4,3$, $4,0\pm2,3$, (p<0,0001) и $6,7\pm2,9\,\%$ (p=0,001), соответственно. Что касается заболеваний органов репродуктивной системы, то в основной группе достоверно чаще определялись такие заболевания, как миома матки — $50,0\pm6,3\,\%$, $34,4\pm5,9\,\%$ и тазовые перитонеальные спайки $43,8\pm6,3\,\%$. В контрольной группе женщин с такой патологией было

 $5,3\pm2,6$, $5,3\pm2,6$ и $8,0\pm3,2$ %, соответственно p<0,0001. Также заслуживают внимание случаи диффузной дистрофии печени — стеатогепатоза, которые продиагностированы только в основной группе (15,6 $\pm4,6$ %).

Оценка течения первого триместра беременности отображены на рис. 1.

Анализ течения первого триместра гестации показал, что в основной группе пациенток статистически значимо чаще, чем в контрольной группе имела место угроза прерывания беременности — 67,2±5,9 против 10,7±3,6 % (p<0,0001). Формирование ретрохориальной гематомы регистрировалось у каждой пятой женщины основной группы — 20,3±5,1, против 4,0±2,3 % (p=0,004). Статистически достоверно чаще встречались такие гестационные осложнения, как кровотечения в ранние сроки беременности 21,9±5,2 и 4,0±2,3 %, соответственно (p=0,002). У 35,9±6,0 % беременных основной группы при первом обследовании диагностировалась железодефицитная анемия легкой степени, и у 4,7±2,7 % анемия средней степени тяжести. В контрольной группе женщин с анемией средней степени тяжести не было, в то время как анемия легкой степени регистрировалась только у $5,3\pm2,6$ % пациенток (p<0,0001).

Далее нами был проведен факторный анализ влияния сопутствующей патологии в основной группе на угрозу прерывания беременности (67,2%), как наи-

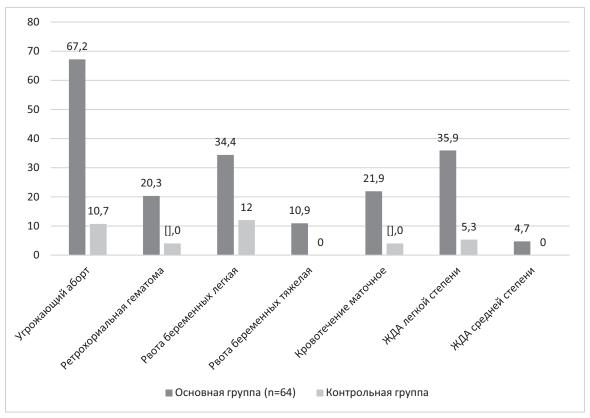


Рис. 1. Осложнения первого триместра беременности, %

более часто встречающееся осложнение гестационного процесса в первом триместре. Отметим, что в контрольной группе только у двух пациенток с угрозой прерывания беременности имелись установленные хронические заболевания такие, как ожирение І степени и хронический пиелонефрит. У остальных беременных контрольной группы хронических заболеваний диагностировано не было. Что касается основной группы, то хронические заболевания были выявлены у всех пациенток с угрозой прерывания беременности (табл. 2).

Также была установлена очень сильная связь между миомой матки и угрозой прерывания беременности (χ^2 =31.256, C^1 =0.810), и связь средней силы между угрозой прерывания беременности и стеатогепатозом (χ^2 =1,588, C^1 =0,220), заболеваниями почек и мочевыносящей системы (χ^2 =1,537, C^1 =0,217), тазовыми перитонеальными спайками (χ^2 =5,050, C^1 =0,382). Остальные сопутствующие патологии не были существенно связаны с угрозой прерывания беременности у женщин, имевших в анамнезе гиперплазию эндометрия.

Далее был проведен анализ клинического течения второго триместра гестации в сравниваемых группах (рис. 2).

Во втором триместре структура гестационных осложнений несколько поменялась. Отметим, что в контрольной группе, в целом, беременность протекала гладко и, за исключением эпизодических случаев протеинурии и анемии беременных легкой степени, нарушений гестационного процесса не выявлено. В то же время у половины пациенток основной группы (51,5±6,3 %) сохранялась анемия легкой степени, у 9,4±3,7 % — средней степени тяжести. Присоединились такие состояния, как гестационный сахарный диабет (ГСД) — у 9,4±3,7 % пациенток, инфекция мочевыводящих путей — у 12,5±4,1 % женщин, угроза прерывания беременности, несмотря на проводимые мероприятия по ее сохранению, оставалась у 10,9±3,9 % беременных.

Оценка фето-плацентарного комплекса проводилась с учетом показателей УЗИ-скриннинга и допплерометрии, которая дает возможность диагностировать нарушения кровотока и изменения состояния плода в динамике (табл. 3).

В процессе УЗ-исследования было установлено, что статистически значимых различий в большинстве показателей основной и контрольной группы нет. Однако, исследования средней мозговой артерии плода свидетельствовали о том, что в основной группе пульсационный индекс (ПИ) составлял 2,1±0,11, что статистически значимо ниже, чем в группе контроля — 2,6±0,15, (p=0,008). Кроме того, имелись статистически значимые различия СДО в левой маточной артерии — 2,2±0,12 и 2,6±0,08

Таблица 2. Определение связи между сопутствующей патологией и угрозой прерывания беременности в первом триместре в основной группе

Группы заболе- ваний	Основная группа с угрозой прерыва- ния, n=43	Основная группа без угрозы прерывания, n=21	χ2	С¹ (Пирсона) сила связи	P
Дистрофия печени (стеатоге- патоз)	5	5	1,588	0.220 средняя	0.208
Заболевания системы пищева- рения	4	3	0,360	0.106 слабая	0.549
Варикозная болезнь	23	9	0,638	0.140 слабая	0.425
Заболевания нервной системы	11	4	0,336	0.102 слабая	0.563
Заболевания почек и мочевы- носящей системы	3	0	1,537	0.217 средняя	0.216
Доброкачествен- ные заболевания МЖ	22	12	0,203	0.079 несуще- ственная	0.653
Ожирение	26	14	0,232	0.085 несуще- ственная	0.539
Гипотиреоз	10	3	0,701	0.147 слабая	0.403
ТИА	14	4	1,274	0.198 слабая	0.260
Гипертиреоз	1	0	0,496	0.124 слабая	0.482
Миома матки	11	21	31,256	0.810 очень сильная	<0,001
Воспалительные заболевания шейки матки	14	8	0,192	0.077 несуще- ственная	0.662
Тазовые перито- неальные спайки	23	5	5,050	0.382 средняя	0.025
Эктропион	4	4	1,225	0.194 слабая	0.269
Пролапс половых органов	4	1	0,404	0.112 слабая	0.526

Примечание. р — уровень значимости критерия $\chi 2$

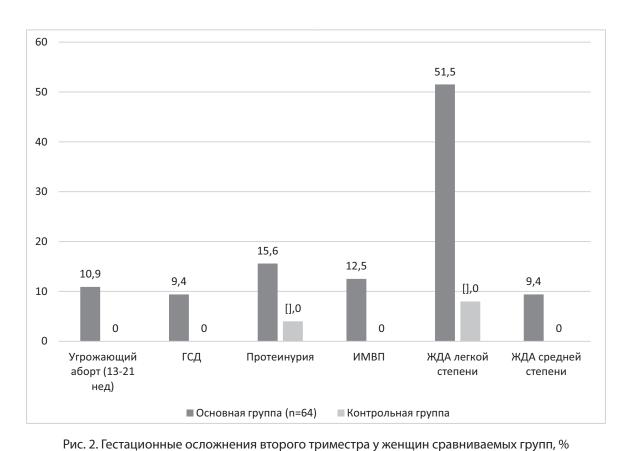


Таблица 3. Показатели допплерометрии во втором скриннинге (19-21 недели беременности) женщин сравниваемых групп (M±m)

Памалета	Основная группа, n=64			Контрольная группа, n=75			_
Показатель допплерометрии	СДО¹	ПИ²	ИР ³	СДО	ПИ	ИР	p ₁₋₂
Среднемозговая артерия плода (СМА)	5,19±0,08	2,1±0,11	0,86±0,12	5,1±0,12	2,6±0,15	0,81±0,12	$p_1 = 0.53$ $p_2 = 0.08$ $p_3 = 0.77$
Артерия пуповины 1 (АП 1)	3,81±0,21	1,29±0,19	0,65±0,14	3,92±0,12	1,32±0,12	0,71±0,07	p ₁ =0,65 p ₂ =0,89 p ₃ =0,70
Артерия пуповины 2 (АП 2)	3,83±0,11	1,34±0,09	0,70±0,11	3,89±0,12	1,31±0,12	0,79±0,09	$p_1 = 0.71$ $p_2 = 0.84$ $p_3 = 0.53$
Маточная артерия левая (МАЛ)	2,2±0,12	1,3±0,15	0,56±0,14	2,6±0,08	1,6±0,07	0,53±0,11	$p_1 = 0,006 p_2 = 0,07 p_3 = 0,87$
Маточная артерия правая (МАП)	2,4±0,14	1,4±0,11	0,57±0,12	2,7±0,09	1,6±0,08	0,51±0,08	$p_1 = 0.07 p_2 = 0.14 p_3 = 0.68$

Примечание. Р— показатель уровня значимости различий между группами

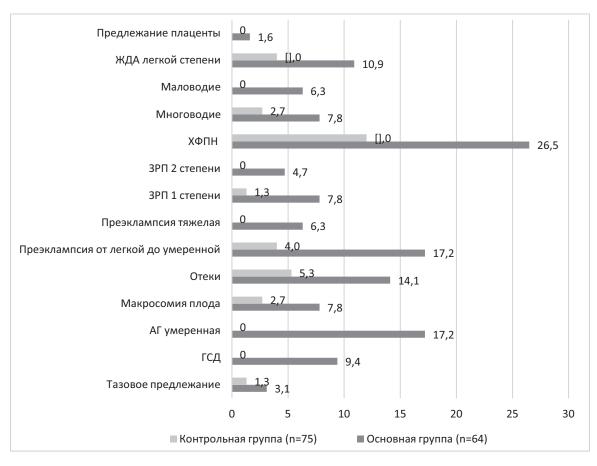


Рис. 3. Гестационные осложнения третьего триместра у женщин сравниваемых групп, %

(р=0,006). Отмечено, что в рассматриваемом сроке беременности изменения кривых скоростей кровотока могут свидетельствовать о начале патологических (гипоксических) процессах и, в совокупности с клиническим течением, служить основанием для назначения соответствующей терапии. В то же время, указанные показатели допплерометрии не выходили за пределы стандартных норм, соответствующих сроку беременности и имели статистически значимые различия только в выделенных группах пациенток.

Что касается третьего триместра беременности, то результаты его клинического течения показаны на рис. 3.

В третьем триместре (табл. 4) основной группы женщин в первую очередь на себя обращали внимание осложнения, связанные с нарушением функции фетоплацентарного комплекса: 3РП I и II степени — 7,8 \pm 3,4 и 4,7 \pm 2,7 %, У3-признаки внутриутробной гипоксии плода — 26,5 \pm 5,7 %; преэклампсия легкой и тяжелой степени (17,2 \pm 4,7 и 6,3 \pm 3,0 % соответственно). У 17,2 \pm 4,8 % пациенток регистрировалась артериальная гипертензия (АГ), индуцированная беременностью. При этом в контрольной группе выявлены такие осложнения, как макросомия плода — 2,7 \pm 1,9 %, преэклампсия легкой степени — 4,0 \pm 2,3 % (p=0,01). У 12,0 \pm 3,8 % пациенток ре-

гистрировались У3-признаки внутриутробной гипоксии плода (p=0,05), однако ЗРП I степени диагностировалась только у одной беременной (p=0,07).

Рассматривая результаты фетометрии в 32 недели гестации отмечено, что в основной группе имелись статистически значимые различия по таким показателям, как окружность живота: $265,2\pm1,4$ мм в основной группе и $290,1\pm1,6$ мм — в контрольной (p<0,0001), ДБК пр. — $59,2\pm0,5$ и $61,9\pm0,5$ мм (p=0,0002), ДБК л. — $60,1\pm0,4$ и $62,3\pm0,5$ мм (p=0,0007), соответственно; ДПК пр. — $50,5\pm0,3$ и $52,9\pm0,2$ мм (p<0,0001), ДПК л. — $50,6\pm0,4$ и $52,7\pm0,4$ мм (p=0,0002), соответственно. Имелись различия в соответствии гестационного срока показателям фетометрии. В основной группе этот показатель составил $31,3\pm0,3$ недель, в группе контроля статистически значимо больше — $32,2\pm0,1$ (p=0,005).

Оценка влияния осложнений гестации на внутриутробное состояние плодов проводилась с учетом допплерометрии (табл. 5).

Анализ показателей допплерометрии плодов в третьем триместре полностью укладывался в клиническую картину сформировавшихся к этому периоду гестации осложнений. В основной группе статистически досто-

Таблица 4. Показатели третьего УЗИ-скрининга плодов (32–34 недели беременности) в сравниваемых группах

			•
Показатели фетометрии	Основная группа, n=64	Контрольная группа, n=75	p ₁₋₂
Бипариетальный размер головы (БПР), мм	77,1±0,3	78,1±0,4	0,04
Окружность головы (ОР), мм	286,9±1,2	288,2±1,3	0,46
Окружность живота (ОЖ), мм	265,2±1,4	290,1±1,6	<0,0001
Длина бедренной кости правой (ДБК пр.), мм	59,2±0,5	61,9±0,5	0,0002
Длина бедренной кости левой (ДБК л.), мм	60,1±0,4	62,3±0,5	0,0007
Длина плечевой кости правой (ДПК пр.), мм	50,5±0,3	52,9±0,2	<0,0001
Длина плечевой кости левой (ДПК л.), мм	50,6±0,4	52,7±0,4	0,0002
Размер мозжечка, мм	37,7±0,2	38,1±0,3	0,27
Предполагаемая масса плода, гр	1650,2±139,1	2110,4±141,3	0,02
Соответствие размера плода сроку беременности, нед.	31,3±0,3	32,2±0,1	0,005

Примечание. P_{1-2} — показатель уровня значимости различий между группами

верно выше были показатели маточных артерий — ПИ МАЛ 0,81 \pm 0,07 против 0,56 \pm 0,04 контрольной группы (p=0,002), ИР МАЛ 0,58 \pm 0,03 и 0,47 \pm 0,02 (p=0,002), соответственно. В правой маточной артерии имелись те же тенденции: ПИ МАП в основной группе 0,79 \pm 0,04 против ПИ МАП в контрольной группе — 0,44 \pm 0,04 (p=0,004). Кроме того, отмечены статистически значимые различия в показателях среднемозговой артерии плода — СДО в основной группе — 4,53 \pm 0,18, в контрольной группе — 5,18 \pm 0,16 (p=0,007).

Кроме описанных результатов допплерометрии, было проведено измерение толщины плаценты, описаны ее УЗ-критерии (табл. 6).

Полученные результаты говорят о том, что в 19-22 недели гестации толщина плаценты у пациенток основной группы была статистически меньше, чем в контрольной группе: $21,9\pm1,3$ и $26,6\pm1,7$ мм (p=0,03). При этом отмечено, что указанные размеры плаценты не выходили за нормальные показатели указанного срока беременности. Далее, к третьему скриннингу (32-34 недели) статистически значимых различий не было, хотя у большинства пациенток основной группы плаценты были тоньше, чем в контроле: $27,4\pm1,8$ и $32,7\pm2,1$ мм (p=0,06), соответственно.

Что касается расположения плаценты, то у половины пациенток основной группы плацента располагалась по боковым стенкам матки, у 20,3±5,1 % — в дне матки, у 15,6±4,6 % — по задней стенке матки. В группе контро-

Таблица 5. Показатели допплерометрии (32-34 недели беременности) женщин сравниваемых групп (М±m)

Померона в	Основная группа (n=64)			Контрольная группа, n=75			_
Показатель допплерометрии	СД0¹	ПИ²	NP³	СДО	ПИ	ИР, см/с	p ₁₋₂
Среднемозговая артерия плода (СМА)	4,53±0,18	2,1±0,27	0,81±0,07	5,18±0,16	2,2±0,30.273	0,78±0,03	$p_1 = 0.007$ $p_2 = 0.80$ $p_3 = 0.91$
Артерия пуповины 1 (АП 1)	2,41±0,07	0,85±0,17	0,63±0,14	2,72±0,08	0,71±0,23	0,56±0,15	$p_1 = 0.004$ $p_2 = 0.62$ $p_3 = 0.73$
Артерия пуповины 2 (АП 2)	2,34±0,12	0,86±0,15	0,62±0,13	2,51±0,01	0,76±0,21	0,57±0,18	$p_1 = 0.16$ $p_2 = 0.69$ $p_3 = 0.82$
Маточная артерия левая (МАЛ)	1,85±0,08	0,81±0,07	0,58±0,03	1,63±0,04	0,56±0,04	0,47±0,02	$p_1 = 0.02$ $p_2 = 0.002$ $p_3 = 0.002$
Маточная артерия правая (МАП)	1,82±0,02	0,79±0,04	0,56±0,01	1,59±0,09	0,59±0,02	0,44±0,04	$p_1 = 0.01$ $p_2 < 0.0001$ $p_3 = 0.004$

Примечание. Р — показатель уровня значимости различий между группами

Таблица 6. Показатели УЗИ плаценты (19–22 и 32–34 недели беременности) в сравниваемых группах

Показатели УЗ-исследования	Основная группа, n=64	Контрольная группа, n=75	p ₁₋₂
	19—22 недели		
Толщина плаценты, мм	21,9±1,3	26,6±1,7	0,03
Расположение по передней стенке	9-14,1±4,3	16-21,3±4,8	0,26
Расположение по задней стенке	10-15,6±4,6	6-8,0±3,2	0,17
Расположение в дне матки	13-20,3±5,1	38-50,7±5,8	<0,0001
Расположение по боковой стенке матки	32-50,0±6,3	15-20,0±4,6	<0,0001
Наличие включений (каль- цинаты)	6-9,4±3,7	3-4,0±2,3	0,22
Плацентарные гематомы	5-7,8±3,4	0	_
Низкое расположение (предлежание) плаценты	1–1,6±1,6	0	_
	32—34 недели		
Толщина плаценты, мм	27,4±1,8	32,7±2,1	0,06
Наличие включений (каль- цинаты)	14-21,9±3,5	2-2,7±1,9	<0,0001
«Инфаркты» плаценты (утолщение базальной пластинки, неоднородность плаценты)	5-7,8±3,4	0	_
Низкое расположение (предлежание) плаценты	1-1,6±1,6	0	_

Примечание. Р — показатель уровня значимости различий между группами

ля у половины женщин группы расположение плаценты было в дне матки, у 21,3±4,8 % — по передней стенке и у 20,0±4,6 % — по боковым стенкам матки. Отметим, что боковое расположение плаценты при изменениях кровоснабжения в маточных артериях может служить одним из факторов формирования нарушений маточноплацентарного кровотока.

Далее, рассматривая структуру плаценты, зафиксировано, что в основной группе в сроке 19-22 недели у $9,4\pm3,7$ % пациенток обнаруживались признаки присутствия кальцинатов, у $7,8\pm3,4$ % женщин — наличие организованных гематом. В контрольной группе кальцинаты обнаруживались только у двух пациенток $(2,7\pm1,9$ %),

других структурных изменений плаценты не выявлено. В 32–34 недели женщин с нарушением строения плаценты стало больше — кальцинаты выявлены в 21,9±3,5 % случаев, у 7,8±3,4 % женщин имелось утолщение базальной пластины и структурная неоднородность плаценты.

Отметим, что на основании комплексного обследования с учетом УЗ-картины и допплерометрического исследования к 32 неделям беременности в основной группе хроническую внутриутробную гипоксию плода диагностировали у 22 (34,4 \pm 5,9%) и у 6 (8,0 \pm 3,2%) пациенток контрольной группы (p=0,0001).

Подводя итог анализа течения беременности у женщин с гиперплазией эндометрия в анамнезе, отметим, что в первом триместре гестации основными осложнениями являлись угроза прерывания беременности (67,2±5,9 %) и формирование ретрохориальной гематомы, которая регистрировалось у каждой пятой женщины, что сопровождалось кровотечениями различной интенсивности.

Факторный анализ позволил выявить наиболее значимые сопутствующие заболевания, влияющие на течение первого триместра гестации: миому матки, стеатогепатоз, заболевания мочевыносящей системы и тазовые перитонеальные спайки.

Второй триместр беременности характеризовался наличием железодефицитной анемии у половины женщин и присоединением таких состояний, как гестационный сахарный диабет, инфекция мочевыводящих путей. Угроза прерывания беременности, несмотря на проводимые мероприятия по ее сохранению, присутствовала у 10,9±3,9 % женщин. На фоне указанной патологии развивалась дисфункция фето-плацентарного комплекса, которая проявлялась нарушением кровотока (по данным допплерометрии), формированием к 32 неделям беременности хронической внутриутробной гипоксии плода, крайней степенью проявления которой являлась задержка роста плода (ЗРП) и структурные изменения плаценты. У 22 % женщин с гиперпластическими процессами в анамнезе развивалась преэклампсия различной степени тяжести.

На основании проведенного исследования можно говорить о том, что всех пациенток с любой формой гиперплазии эндометрия в анамнезе можно отнести к группе повышенного риска по развитию нарушений формирования фето-плацентарного комплекса, что указывает на необходимость дальнейшей разработки мер по профилактике указанных нарушений, включающих гормональную поддержку данных пациенток с самого начала гестации.

ЛИТЕРАТУРА

- 1. Габидуллина Р.И., Смирнова Г.А., Нухбала В.А. и др. Гиперпластические процессы эндометрия: современная тактика ведения пациенток // Гинекология. 2019. Т. 21. № 6. С. 53—58. https://doi.org/10.26442/20795696.2019.6.190472
- 2. Думановская М.Р., Чернуха Г.Е., Табеева Г.И., Асатурова А.В. Гиперплазия эндометрия: поиск оптимальных решений и стратегий // Акушерство и гинекология. 2021. № 4. С. 23—31. URL: https://doi.org/10.18565/aig.2021.4.23-31
- 3. Ерофеева Л.Г., Сидоркина А.Г., Новопашина Г.Н., Ерофеев Б.Б. Современное представление о проблеме гиперплазии эндометрия // Научное обозрение. Медицинские науки. 2022. № 6. C. 82–88. URL: URL: https://science-medicine.ru/ru/article/view?id=1308
- 4. Чернуха Г.Е., Асатурова А.В., Иванов И.А., Думановская М.Р. Структура патологии эндометрия в различные возрастные периоды // Акушерство и гинекология. 2018. № 8. С. 129—134. URL: https://doi.org/10.18565/aig.2018.8.129—134
- 5. Хачатрян Л.Г., Хачатрян Н.А., Назаренко Т.А., Бирюкова А.М., Дмитриева И.Е. Репродуктивная функция больных с атипической гиперплазией и раком эндометрия IA-стадии в анамнезе: когортное исследование // Гинекология. 2022. Т. 24. № 4. С. 277—282. URL: https://doi.org/10.26442/20795696.2022.4.201670
- 6. Куценко И.И., Хорольская Е.А., Сафронова Ю.С. Оптимизация подготовки к беременности пациенток с гиперпластическими процессами эндометрия // Вестник РУДН, сер. Медицина. Акушерство и гинекология. 2011. № 1. С. 254—260. URL: https://cyberleninka.ru/article/n/optimizatsiya-podgotovki-k-beremennosti-patsientok-s-qiperplasticheskimi-protsessami-endometriya/viewer
- 7. Novikova O.V., Nosov V.B., Panov V.A. et al. Live births and maintenance with levonorgestrel IUD improve disease-free survival after fertility-sparing treatment of atypical hyperplasia and early endometrial cancer // GynecolOncol. 2021. T. 161(1). P. 152—159. URL: https://doi.org/10.1016/j.ygyno.2021.01.001
- 8. Новикова О.В., Авасова Ч.А., Новикова Е.Г. Новый вариант гормонального лечения атипической гиперплазии и начального рака эндометрия с сохранением фертильности // Онкогинекология. 2019. № 1. С. 36—45. URL: https://doi.org/10.52313/22278710_2019_1_36
- 9. Пашов А.И., Цхай В.Б., Сивова Е.Н. Первый опыт органосохраняющего лечения женщин репродуктивного возраста с начальными формами рака эндометрия // Мать и Дитя в Кузбассе. 2010. № 1. С. 132—134. URL: https://cyberleninka.ru/article/n/poisk-vozmozhnostey-provedeniya-organosohranyayuschihmeropriyatiy-v-lechenii-nachalnoqo-raka-endometriya/viewer
- 10. Пронин С.М., Мацнева И.А., Новикова Е.Г. Возможности репродукции после лечения начального рака эндометрия // Акушерство и гинекология. 2018. № 10. С. 100—104. URL: https://dx.doi.org/10.18565/aig.2018.10.100–104
- 11. Серова О.Ф., Доброхотова Ю.Э., Боровкова Е.И., Чархифалакян А.В. Возможности сохранения репродуктивной функции у пациенток с атипической гиперплазией и начальным раком эндометрия // РМЖ. Мать и дитя. 2023. № 6(4). С. 352—361. URL: https://doi.org/10.32364/2618-8430-2023-6-4-5
- 12. Черняков А.А., Чернышова А.Л., Коломиец Л.А., Трущук Ю.М. и др. Рак эндометрия и беременность // Акушерство и гинекология. 2023. № 12. С. 404—406. URL: https://dx.doi.org/10.18565/aig.2023.178
- 13. Коган Е.А., Станоевич И.В., Кудрина Е.А., Ищенко А.И. Морфологические и иммуногистохимические параллели при гиперплазиях эндометрия // Архив патологии. 2007. № 6. С. 21—24. URL: http://elib.fesmu.ru/Article.aspx?id=175426
- 14. Giannella L., Carpini G.D., Sopracordevole F. Atypical endometrial hyperplasia and unexpected cancers at final histology: a study on endometrial sampling methods and risk factors // Diagnostics (Basel). 2020. T. 10(7). P. 474. URL: https://doi.org/10.3390/diagnostics10070474
- 15. Chao A.S., Chao A., Wang C.J. Obstetric outcomes of pregnancy after conservative treatment of endometrial cancer: case series and literature review // Taiwan J Obstet Gynecol. 2011. T. 50(1). P. 62–66. URL: https://doi.org/10.1016/j.tjoq.2009.10.006
- 16. Li M., Song J., Zhao Y., Wu S., H. Liu, Tang R. Fertility rates in infertile women with complex hyperplasia or complex atypical hyperplasia who received progestin the rapy and in vitro fertilization // J. Zhejiang Univ Sci B. 2017. T. 18(11). P.1022—1025. URL: https://doi.org/10.1631/jzus.B1600523
- 17. Park J.-K, Yoo E.— J., Lee N., Eun P.-J., Song S.— J., Lee W.— S., Lee. H.— J. Analysis of in vitro fertilization results after fertility-supporting therapy for endometrial hyperplasia or carcinoma // Gynecological and obstetric examination. 2024. T. 89(6). P. 461–468. URL: https://doi.org/10.1159/000539315
- 18. De Rocco S., Buka D., Oronzi L., Petrillo M., Fanfani F., Nappi L. Reproductive functions and pregnancy after treat men to fearly-stage end ometrial can ceroratypical hyperplasia with preserved fertility: a systematic reviewandmeta-analysis // Eur J Obstet Gynecol Reprod Biol. 2022. T. 273. P. 90—97. URL: https://doi.org/10.1016/j. ejogrb.2022.04.019
- 19. Петров И.А., Чуркин Е.О., АрхиповаЯ.И., Чернышова А.Л., ЧерняковА.А., Севостьянова Н.В. Современные вопросы онкофертильности и онкорепродукции // Опухоли женской репродуктивной системы. 2024. Т. 20. № 1. С. 131—138. URL: https://doi.org/10.17650/1994-4098-2024-20-1-131-138
- 20. Котельникова Н.А., Балтер Р.Б., Целкович Л.С., Иванова Т.В., Ильченко О.А., Подгорняя М.С., Руденко Ю.А. Факторы риска развития гиперпластических процессов в репродуктивном возрасте. Особенности клинической картины заболевания // Современная наука: актуальные проблемы теории и практики. 2025. № 1. С. 207—214. URL: https://doi.org/10.37882/2223-2966.2025.01.22

© Подгорняя Милла Сергеевна (samaraobsgyn2@yandex.ru); Балтер Регина Борисовна (regina.balter@yandex.ru); Иванова Татьяна Владимировна (t.v.ivanova@samsmu.ru); Целкович Людмила Савельевна (samaraobsgyn2@yandex.ru); Ильченко Олеся Андреевна (olesay.ilchenko@gmail.com); Богдасаров Азат Юрьевич (azat-01@mail.ru) Журнал «Современная наука: актуальные проблемы теории и практики»

СОВРЕМЕННАЯ МЕТОДИКА МАССАЖА В ВОССТАНОВИТЕЛЬНОМ ЛЕЧЕНИИ ПОСТИНСУЛЬТНЫХ НАРУШЕНИЙ

MODERN MASSAGE TECHNIQUE IN REHABILITATION TREATMENT OF POST-STROKE DISORDERS

V. Sakhno

Summary. The subject of the study is differentiated massage as a component of rehabilitation treatment of patients with post-stroke movement disorders. The aim of the work was to evaluate the effectiveness of specialized massage therapy in complex rehabilitation and to determine optimal methods depending on the severity of neurological deficit. The methodology of the study included a randomized controlled trial involving 156 patients with ischemic stroke, divided into three groups. The main group received differentiated massage according to the author's method with a step-by-step transition from light techniques to segmental-reflex action, the comparison group — classical massage, the control group — standard drug therapy. The assessment was carried out using validated scales and electroneuromyography. The results of the study showed statistically significant superiority of differentiated massage with an increase in the Barthel index by 28.6 % in the main group versus 18.2 % in the comparison group and 9.4% in the control group. An improvement in muscle strength by 1.8±0.4 points, a decrease in spasticity by 1.4±0.3 points and an increase in the quality of life by 42.3 % were established. The novelty of the work lies in the development of a differentiated approach to massage effects and the establishment of a direct correlation between the intensity of the effect and the degree of restoration of motor functions. The study demonstrates the high clinical effectiveness of differentiated massage as a pathogenetically substantiated component of neurorehabilitation with the effect preserved after 6 months of observation.

Keywords: differentiated massage, post-stroke disorders, rehabilitation treatment, neurorehabilitation, motor functions, spasticity.

Сахно Виктор Александрович

Ведущий специалист по массажу реабилитационного центра г. Алматы; Высший Медико-Стоматологический колледж профессора Рузуддинова sakhno.viktor@bk.ru

Аннотация. Предметом исследования является дифференцированный массаж как компонент восстановительного лечения пациентов с постинсультными двигательными нарушениями. Целью работы стала оценка эффективности специализированного массажного воздействия в комплексной реабилитации и определение оптимальных методик в зависимости от тяжести неврологического дефицита. Методология исследования включала рандомизированное контролируемое исследование с участием 156 пациентов с ишемическим инсультом, разделенных на три группы. Основная группа получала дифференцированный массаж по авторской методике с поэтапным переходом от легких приемов к сегментарно-рефлекторному воздействию, группа сравнения — классический массаж, контрольная группа — стандартную медикаментозную терапию. Оценка проводилась с использованием валидированных шкал и электронейромиографии. Результаты исследования показали статистически значимое превосходство дифференцированного массажа с увеличением индекса Бартел на 28,6 % в основной группе против 18,2 % в группе сравнения и 9,4% в контрольной группе. Установлено улучшение мышечной силы на 1,8±0,4 балла, снижение спастичности на $1,4\pm0,3$ балла и повышение качества жизни на 42,3 %. Новизна работы заключается в разработке дифференцированного подхода к массажному воздействию и установлении прямой корреляции между интенсивностью воздействия и степенью восстановления двигательных функций. Исследование демонстрирует высокую клиническую эффективность дифференцированного массажа как патогенетически обоснованного компонента нейрореабилитации с сохранением эффекта через 6 месяцев наблюдения.

Ключевые слова: дифференцированный массаж, постинсультные нарушения, восстановительное лечение, нейрореабилитация, двигательные функции, спастичность.

Введение

роблема восстановительного лечения пациентов с постинсультными нарушениями остается одной из наиболее актуальных в современной клинической медицине. Согласно исследованиям А.Е. Хрулева с соавторами, инсульт является третьей по значимости причиной инвалидности взрослого населения во всем мире, при этом количество ежегодно регистрируемых случаев увеличилось на 70 %, составляя 12,2 млн па-

циентов в год. Особую клиническую значимость представляет тот факт, что у 50 % пациентов после инсульта инвалидность обусловлена двигательным дефицитом верхних и нижних конечностей, причем постинсультные двигательные нарушения верхних конечностей считаются более клинически значимыми и труднее поддающимися восстановлению [7]. Данные А.В. Чугунова с соавторами, свидетельствуют о том, что ишемический инсульт является одной из основных причин инвалидности в развитых странах, а постинсультная депрессия разви-

вается у 33 % пациентов, особенно часто у женщин, что значительно затрудняет процесс реабилитации [4].

В системе восстановительного лечения особое место занимает массаж как незаменимая часть восстановительного процесса. Е.Г. Кириллова и И.М.О. Джолиев определяют массаж как комплекс мануальных техник, включающих поглаживание, растирание и давление, оказывающих лечебное воздействие на поврежденные волокна и мускулатуру. Установленные эффекты массажа включают уменьшение болевых ощущений, улучшение местного кровотока, устранение стресса и эмоционального напряжения, профилактику пролежней и нормализацию лимфотока. Авторы подчеркивают, что сочетание мануальной терапии с другими методами реабилитации значительно улучшает состояние больного и способствует возможному возвращению к полному самообслуживанию [1].

А.Е. Хрулев и соавторы отмечают, что стандартные методы моторной реабилитации имеют ограниченный эффект на восстановление двигательной дисфункции конечностей, что обусловливает необходимость поиска более эффективных подходов к восстановительному лечению. В этом контексте разработка и внедрение дифференцированных методик массажа, учитывающих индивидуальные особенности пациента и стадию восстановительного процесса, представляется перспективным направлением повышения эффективности реабилитационных мероприятий [7].

Целью настоящего исследования явилась оценка эффективности дифференцированного массажа в комплексной реабилитации пациентов с постинсультными двигательными нарушениями и определение оптимальных методик воздействия в зависимости от тяжести неврологического дефицита.

Материалы и методы исследования

Исследование проводилось на базе неврологического отделения городской клинической больницы в период с января 2022 по декабрь 2023 года. В исследование были включены 156 пациентов с диагнозом острого нарушения мозгового кровообращения по ишемическому типу, находившихся на стационарном лечении и последующей реабилитации. Средний возраст участников составил 67,3±8,2 года, из них 89 мужчин (57,1 %) и 67 женщин (42,9 %).

Целью исследования явилась оценка эффективности дифференцированного массажа в комплексной реабилитации пациентов с постинсультными двигательными нарушениями и определение оптимальных методик воздействия в зависимости от тяжести неврологического дефицита.

Критериями включения служили верифицированный диагноз ишемического инсульта давностью от 14 до 90 дней, наличие гемипареза различной степени выраженности, стабильное соматическое состояние, возраст от 45 до 80 лет. Исключались пациенты с повторными нарушениями мозгового кровообращения, тяжелой сопутствующей патологией сердечно-сосудистой системы, онкологическими заболеваниями в анамнезе.

Восстановительный массаж в основной группе выполнялся по авторской методике, предусматривающей дифференцированный подход в зависимости от стадии восстановительного периода и выраженности спастичности. На раннем этапе применялись легкие поглаживающие и растирающие приемы продолжительностью 20–25 минут с акцентом на паретичные конечности. При снижении мышечного тонуса добавлялись элементы сегментарно-рефлекторного воздействия и точечный массаж биологически активных зон. Курс составлял 20 процедур через день.

Оценка эффективности лечения проводилась с использованием валидированных шкал. Тяжесть инсульта определялась по шкале NIHSS, функциональное состояние оценивалось индексом Бартел, степень спастичности — модифицированной шкалой Ашворта. Мышечная сила тестировалась по 6-балльной системе Medical Research Council. Дополнительно применялась электронейромиография для объективной оценки функционального состояния нервно-мышечного аппарата.

Результаты

Исходные характеристики групп были сопоставимы по основным параметрам. Средний балл по шкале NIHSS составлял $12,4\pm3,1$ в основной группе, $11,8\pm2,9$ в группе сравнения и $12,1\pm3,4$ в контрольной группе. Индекс Бартел на момент начала исследования равнялся соответственно $45,2\pm8,7,43,8\pm9,2$ и $44,5\pm8,1$ балла.

После завершения курса лечения в основной группе отмечалось статистически значимое улучшение функционального состояния. Индекс Бартел увеличился на 28,6 % и составил $68,4\pm12,3$ балла против исходного уровня (p<0,001). В группе сравнения прирост показателя был менее выраженным — 18,2 % ($54,7\pm10,8$ балла, p<0,05), а в контрольной группе составил лишь 9,4 % ($48,7\pm9,6$ балла, p>0,05).

Анализ мышечной силы показал преимущества специализированного массажа. В основной группе средний прирост силы в паретичных конечностях составил $1,8\pm0,4$ балла по сравнению с $1,1\pm0,3$ балла в группе классического массажа и $0,6\pm0,2$ балла в контрольной группе. Наиболее выраженные изменения наблюдались в дистальных отделах верхней конечности, где улучшение достигало $2,2\pm0,5$ балла у пациентов основной группы.

Объективизация результатов электронейромиографией выявила восстановление проводимости по двигательным волокнам периферических нервов. Амплитуда М-ответа срединного нерва на паретичной стороне увеличилась в среднем на 34,7 % в основной группе, на 21,3 % в группе сравнения и на 12,1 % в контрольной группе. Скорость проведения возбуждения возросла соответственно на 18,4 %, 11,7 % и 5,8 %.

Регресс спастичности оценивался по динамике показателей модифицированной шкалы Ашворта. Снижение патологического мышечного тонуса на $1,4\pm0,3$ балла в основной группе значительно превышало аналогичный показатель группы сравнения ($0,8\pm0,2$ балла) и контрольной группы ($0,3\pm0,1$ балла). Наибольший эффект отмечался в мышцах-сгибателях предплечья и голени.

Субъективная оценка пациентами качества жизни по визуально-аналоговой шкале показала улучшение на 42,3 % в основной группе, на 26,1 % в группе сравнения и на 15,7 % в контрольной группе. Время выполнения функциональных тестов сократилось в среднем на 38,9 % у пациентов, получавших специализированный массаж.

Анализ отдаленных результатов через 6 месяцев после завершения курса лечения продемонстрировал сохранение достигнутого эффекта. Индекс Бартел в основной группе составлял 74,8±14,2 балла, что на 11,5 % выше показателей группы сравнения. Частота повторных госпитализаций была достоверно ниже среди пациентов основной группы — 12,8 % против 23,8 % в группе сравнения и 31,4 % в контрольной группе.

Корреляционный анализ выявил прямую зависимость между интенсивностью массажного воздействия и степенью восстановления двигательных функций (r=0,67, p<0,01). Наиболее выраженная положительная динамика наблюдалась у пациентов с умеренным неврологическим дефицитом (8–15 баллов по NIHSS), где эффективность специализированного массажа превышала традиционные методы на 45,3 %.

Обсуждение

Полученные в ходе настоящего исследования результаты демонстрируют существенные преимущества дифференцированного массажа в восстановительном лечении пациентов с постинсультными двигательными нарушениями. Увеличение индекса Бартел на 28,6 % в основной группе согласуется с данными В.А. Негребецкого, который выявил восстановление функций в достаточной степени у 75 % пациентов, получавших массаж, против 21 % в контрольной группе [2]. Схожие результаты подтверждают значимость массажного воздействия как эффективного компонента комплексной реабилитации.

Мета-анализ Xie YH и соавторов, включивший 1664 пациента, показал превосходство меридиального массажа над конвенциональной реабилитацией в улучшении двигательной функции и уменьшении спастичности конечностей [9]. Наши результаты по снижению патологического мышечного тонуса на 1,4±0,3 балла согласуются с этими данными и подтверждают эффективность специализированных техник массажа.

Объективизация результатов посредством электронейромиографии выявила восстановление проводимости по двигательным волокнам периферических нервов, что подтверждает механизмы, описанные С.А. Осколой. Автор отмечал улучшение лимфо- и кровообращения, увеличение силы паретических конечностей и восстановление мелкой моторики рук как основные эффекты массажного воздействия [3]. Наш подход с дифференцированным применением техник в зависимости от стадии восстановления и выраженности спастичности развивает принципы, изложенные С.А. Осколой, который рекомендовал начинать с верхних частей конечностей с постепенным вовлечением нижележащих отделов.

Систематический обзор García-Rudolph и соавторов, анализировавший эффективность различных видов массажа при постинсультных нарушениях, подтверждает целесообразность структурированного подхода к массажному воздействию [5]. Наша авторская методика, предусматривающая переход от легких поглаживающих приемов к сегментарно-рефлекторному воздействию, соответствует принципам терапевтического массажа как «структурированной и целенаправленной манипуляции мягких тканей», определенным данными авторами.

Результаты по улучшению качества жизни на 42,3 % в основной группе коррелируют с данными исследования Е. Kostenko и соавторов, показавшими повышение качества жизни с 46,3±2,3 до 61,2±3,0 баллов при использовании комплексных реабилитационных методов. Хотя в исследовании Е. Kostenko применялись функциональная электростимуляция и БОС-стабилометрическая тренировка, общность результатов указывает на важность индивидуализированного подхода в реабилитации постинсультных пациентов [8].

Анализ отдаленных результатов через 6 месяцев продемонстрировал сохранение достигнутого эффекта, что соответствует данным Xueting Jing и Shiying Tang о стойкости эффектов массажных вмешательств [6]. Снижение частоты повторных госпитализаций в основной группе до 12,8 % против 31,4 % в контрольной группе подтверждает клиническую значимость полученных результатов.

Корреляционная зависимость между интенсивностью массажного воздействия и степенью восстановления двигательных функций согласуется с принципами дозозависимого эффекта физиотерапевтических воздействий, отмеченными в работах García-Rudolph и соавторов [5]. Наибольшая эффективность у пациентов с умеренным неврологическим дефицитом соответствует наблюдениям Xie YH и соавторов о различной восприимчивости пациентов к массажному воздействию в зависимости от тяжести состояния [9].

Ограничениями настоящего исследования являются относительно небольшой размер выборки и одноцентровый дизайн, что может ограничивать генерализуемость результатов. Отсутствие ослепления исследователей и пациентов при проведении массажных процедур представляет методологическое ограничение, характерное для большинства исследований физиотерапевтических вмешательств. Неоднородность популяции по локализации инсульта и сопутствующей патологии могла влиять на результаты, однако рандомизация групп минимизировала данные различия.

Практические рекомендации по применению дифференцированного массажа включают необходимость оценки функционального состояния пациента перед началом курса и корректировки интенсивности воздействия в зависимости от динамики восстановления. Оптимальный курс 20 процедур через день обеспечивает достижение клинически значимых результатов при минимизации нагрузки на пациента.

Перспективы дальнейших исследований включают изучение эффективности комбинации дифференцированного массажа с современными технологиями реабилитации, такими как роботизированные системы и методы биологической обратной связи. Многоцентровые исследования с увеличенной выборкой позволят уточнить оптимальные протоколы применения массажных техник для различных категорий постинсультных пациентов.

Выводы

Проведенное исследование убедительно демонстрирует высокую клиническую эффективность дифференцированного массажа в системе восстановительного лечения пациентов с постинсультными двигательными нарушениями. Применение авторской методики, учитывающей стадию восстановительного периода и степень

выраженности неврологического дефицита, обеспечило статистически значимое улучшение функционального состояния пациентов основной группы с увеличением индекса Бартел на 28,6 % против 18,2 % в группе классического массажа и 9,4 % в контрольной группе.

Научная новизна исследования заключается в разработке и клинической апробации дифференцированного подхода к массажному воздействию, предусматривающего поэтапный переход от легких поглаживающих приемов к сегментарно-рефлекторному воздействию с включением точечного массажа биологически активных зон в зависимости от динамики восстановления. Впервые установлена прямая корреляционная зависимость между интенсивностью специализированного массажного воздействия и степенью восстановления двигательных функций, а также определены оптимальные параметры курсового лечения для различных категорий пациентов в зависимости от тяжести неврологического дефицита.

Практическая значимость полученных результатов определяется возможностью внедрения разработанной методики в клиническую практику неврологических и реабилитационных отделений с целью повышения эффективности восстановительного лечения постинсультных пациентов. Доказанная стойкость достигнутого эффекта через 6 месяцев наблюдения и снижение частоты повторных госпитализаций до 12,8 % против 31,4 % в контрольной группе обосновывают экономическую целесообразность включения дифференцированного массажа в стандарты оказания медицинской помощи. Установленная наибольшая эффективность у пациентов с умеренным неврологическим дефицитом позволяет осуществлять персонализированный подход к планированию реабилитационных мероприятий с оптимизацией ресурсных затрат.

Результаты исследования расширяют представления о механизмах восстановления нарушенных двигательных функций при цереброваскулярных заболеваниях и обосновывают необходимость дифференцированного применения массажных техник как патогенетически обоснованного компонента комплексной нейрореабилитации, что открывает перспективы для дальнейших исследований в области совершенствования методов физической реабилитации неврологических больных.

ЛИТЕРАТУРА

- 1. Кириллова, Е.Г. Физическая реабилитация постинсультных больных / Е.Г. Кириллова, И.М.О. Джолиев // Молодежь и наука. 2024. № 4. URL: https://elibrary.ru/item.asp?id=HIAGCD
- 2. Негребецкий, В.А. Актуальность лечебного массажа в реабилитации постинсультных больных / В.А. Негребецкий // Интегративные тенденции в медицине и образовании. 2021. Т. 1. С. 66–69. URL: https://elibrary.ru/item.asp?id=HXCPCD
- 3. Оскола, C.A. Реабилитация массажем после перенесенного инсульта / C.A. Оскола // Трибуна ученого. 2023. Вып. 2. C. 1—3. URL: https://tribune-scientists.ru

- 4. Чугунов, А.В. Коррекция постинсультных когнитивных и двигательных нарушений / А.В. Чугунов, Л.И. Пышкина, З.Х. Осмаева // РМЖ. Медицинское обозрение. 2020. Т. 4, № 9. С. 584—589. DOI: 10.32364/2587-6821-2020-4-9-584-589.
- 5. Cabanas-Valdés, R. The Effectiveness of Massage Therapy for Improving Sequelae in Post-Stroke Survivors. A Systematic Review and Meta-Analysis / R. Cabanas-Valdés, J. Calvo-Sanz, P. Serra-Llobet, J. Alcoba-Kait, V. González-Rueda, P.R. Rodríguez-Rubio // International Journal of Environmental Research and Public Health. 2021. Vol. 18, No. 9. P. 4424. DOI: 10.3390/ijerph18094424.
- 6. Jing, X. Meta-Analysis of Acupoint Massage in the Treatment of Dysphagia After Stroke / X. Jing, S. Tang // Rehabilitation Science. 2022. Vol. 7, No. 2. P. 29–36. DOI: 10.11648/j.rs.20220702.13.
- 7. Khrulev, A.E. Modern rehabilitation technologies of patients with motor disorders at an early rehabilitation of stroke (review) / A.E. Khrulev, K.M. Kuryatnikova, A.N. Belova, P.S. Popova, S.E. Khrulev // Современные технологии в медицине. 2022. Т. 14, № 6. С. 64. DOI: 10.17691/stm2022.14.6.07. URL: https://www.stm-journal.ru
- 8. Kostenko, E. Modern Rehabilitation Strategies of Post-Stroke Motor Disfunctions: Functional Electrical Stimulation and Biofeedback-Stabilometric Postural Training / E. Kostenko, L. Petrova, A. Rylsky, M. Eneeva, A. Ivanov // Journal of Physical Medicine and Rehabilitation. 2020. Vol. 2, No. 1. P. 7–10.
- 9. Yunhui, X. Efficacy of meridian massage for motor function after a stroke: a systematic review and Meta-analysis / X. Yunhui, G. Hao, Z. Qing, L. Dejie, G. Ying, X. Junxing, S. Guofeng // Journal of Traditional Chinese Medicine. 2022. Vol. 42, No. 3. P. 321—331. DOI: 10.19852/j.cnki.jtcm.2022.03.001.

© Сахно Виктор Александрович (sakhno.viktor@bk.ru)

Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.28

ПЕРВЫЙ КЛИНИЧЕСКИЙ СЛУЧАЙ ТРАНСПЛАНТАЦИИ СЕРДЦА У РЕЦИПИЕНТА С ИСХОДНОЙ ЛЕГОЧНОЙ ГИПЕРТЕНЗИЕЙ В ОКРУЖНОЙ КЛИНИЧЕСКОЙ БОЛЬНИЦЕ Г. ХАНТЫ-МАНСИЙСКА

THE FIRST CLINICAL CASE OF HEART
TRANSPLANTATION IN A RECIPIENT
WITH AN INITIAL PULMONARY
HYPERTENSION IN THE OKRUG CLINICAL
HOSPITAL OF KHANTY-MANSIYSK

M. Stepanova M. Klimova S. Stefanov D. Urusov

Summary. The article presents a clinical case of heart transplantation in a recipient with initial pulmonary hypertension. The use of a comprehensive approach in the treatment of biventricular dysfunction of the heart transplant in the early postoperative period allowed for the short-term relief of heart failure, rapid and complete regression of pulmonary hypertension. During the year following the heart transplantation, the patient was observed to have echocardiographic signs of right ventricular systolic dysfunction. The most likely causes of these changes in this clinical case are the recipient's initial pulmonary hypertension and the «donor» factors, such as brain death and prolonged graft ischemia.

Keywords: heart transplantation, pulmonary hypertension, heart failure, right ventricular systolic dysfunction, nitric oxide, extracorporeal membrane oxygenation.

Степанова Маргарита Владимировна

Врач-кардиолог, Бюджетное учреждение Ханты-Мансийского автономного округа-Югры «Окружная клиническая больница г. Ханты-Мансийск» ritaskidanova@yandex.ru

Климова Маргарита Олеговна

Врач-кардиолог, Бюджетное учреждение Ханты-Мансийского автономного округа-Югры «Окружная клиническая больница г. Ханты-Мансийск» gemchujina1@yandex.ru

Стефанов Сергей Андреевич

к.м.н., врач-сердечно-сосудистый хирург, заведующий кардиохирургическим отделением Бюджетное учреждение Ханты-Мансийского автономного округа-Югры «Окружная клиническая больница г. Ханты-Мансийск» Stefanov-s@inbox.ru

Урусов Дмитрий Анатольевич

Врач анестезиолог-реаниматолог, заведующий отделением анестезиологии и реанимации для кардиологических больных Бюджетное учреждение Ханты-Мансийского автономного округа-Югры «Окружная клиническая больница г. Ханты-Мансийск» urusov_d@mail.ru

Аннотация. В статье представлен клинический случай трансплантации сердца у реципиента с исходной легочной гипертензией. Применение комплексного подхода в лечении бивентрикулярной дисфункции сердечного трансплантата в раннем послеоперационном периоде позволило в короткие сроки купировать явления сердечной недостаточности, что привело к быстрому полному регрессу легочной гипертензии. В течение года после трансплантации сердца было отмечено, что у пациента сохраняются эхокардиографические признаки систолической дисфункции правого желудочка. Наиболее вероятными причинами этих изменений в данном клиническом случае являются исходная легочная гипертензия реципиента и «донорские» факторы — смерть мозга и длительное время ишемии трансплантата.

Ключевые слова: трансплантация сердца, легочная гипертензия, сердечная недостаточность, систолическая дисфункция правого желудочка, оксид азота, экстракорпоральная мембранная оксигенация.

Введение

роническая сердечная недостаточность (ХСН), безусловно, является наиболее прогностически неблагоприятным осложнением сердечно-сосудистых заболеваний. В настоящее время применение болезнь-модифицирующей квадротерапии сердечной недостаточности и электрофизиологических методов лечения позволяет улучшить качество жизни и прогноз пациентов с ХСН. Однако, часть пациентов является рефрактерными к данному лечению, у них сохраняются стойкие тяжелые симптомы сердечной недостаточности и регистрируются случаи повторных госпитализаций в связи с острой декомпенсацией ХСН. Эта стадия ХСН, согласно актуальным клиническим рекомендациям (РКО, одобрены МЗ РФ, 2024 г.) определяется как вторая — далеко зашедшая, терминальная.

Общепризнанным основным радикальным методом лечения терминальной сердечной недостаточности, является операция ортотопической трансплантации сердца [1].

Наличие исходной легочной гипертензии (ЛГ) повышает риск развития тяжелых осложнений после трансплантации сердца (ТС) в раннем послеоперационном периоде. В частности, регистрируется высокая частота случаев острой правожелудочковой сердечной недостаточности с необходимостью применения экстракорпоральной мембранной оксигенации (ЭКМО) и левосимендана [2, 3, 4].

В настоящее время нет однозначного мнения о пороговых значениях выраженности ЛГ для определения противопоказаний к ТС. По данным литературы, предельным значением легочного сосудистого сопротивления (ЛСС) для включения в лист ожидания ТС может считаться 2,5-4 единиц Вуда [5, 6, 7].

Согласно российским клиническим рекомендациям по трансплантации сердца (2023 г.) — легочная гипертензия, характеризующаяся значениями показателей систолического давления в легочной артерии (СДЛА)>50 мм.рт.ст., транспульмонального градиента (ТПГ)>15 мм.рт.ст. и легочного сосудистого сопротивления (ЛСС)>5 единиц Вуда, рефрактерная к назначению средств, обладающих вазодилятирующим действием на легочные артерии, является абсолютным противопоказанием к ТС.

По данным S. Klotz et al., наличие обратимой ЛГ у реципиентов, в сравнении с пациентами без ЛГ, не имеет существенного влияния на выживаемость в отдаленном периоде, несмотря на высокий риск осложнений [8].

Ниже представлен клинический случай трансплантации сердца пациенту с исходной легочной гипертен-

зией, описаны особенности ведения пациента в раннем послеоперационном периоде, применение мультидисциплинарного подхода в лечении бивентрикулярной дисфункции сердечного трансплантата, а также динамика восстановления систолической функции правого желудочка в течение первого года наблюдения после ТС.

Описание клинического случая

Пациент К., 63 лет. В анамнезе: гипертоническая болезнь III стадии, целевой уровень артериального давления (АД) достигнут, риск сердечно-сосудистых осложнений (ССО) 4; постоянная форма фибрилляции предсердий (ФП) с формированием вторичной дилатации камер сердца; сахарный диабет (СД) 2 тип, целевой уровень гликированного гемоглобина менее 7,5 %; ожирение 1 степени, алиментарно-конституционального генеза (индекс массы тела 33 кг/м²). В 2018 г. по эхокардиографии (ЭхоКГ) впервые описано снижение фракции выброса левого желудочка (ФВ ЛЖ) до 37 % (метод Simpson), дилатация камер сердца. По данным коронароангиографии (КАГ) — коронарное русло интактно, ишемический генез кардиомиопатии исключен. Принимал квадротерапию согласно стандарту лечения ХСН: валсартан/сакубитрил 200 мг в сутки (максимально переносимая по гемодинамике дозировка), эплеренон 50 мг утром, карведилол 25 мг в сутки, эмпаглифлозин 10 мг утром, а также антикоагулянтную терапию с учетом высокого риска тромбоэмболических осложнений — апиксабан 10 мг в сутки, пероральную сахароснижающую терапию — алоглиптин 25 мг утром, аторвастатин 40 мг на ночь.

Несмотря на регулярный прием оптимальной медикаментозной терапии (ОМТ) ХСН, с осени 2021 года пациент стал отмечать снижение толерантности к физическим нагрузкам (ТФН), симптомы ХСН на уровне 3 функционального класса (ФК). При обследовании от декабря 2021 года — по данным ЭхоКГ зарегистрировано снижение ФВ ЛЖ до 27 % (метод Simpson), систолическое давление в легочной артерии (СДЛА) составляло 43 мм.рт.ст. По данным холтеровского мониторирования ЭКГ (ХМЭКГ) — на фоне ритма ФП (нормосистолический вариант) зафиксированы пароксизмы неустойчивой желудочковой тахикардии (ЖТ). Консультирован аритмологом, с антиаритмической целью назначен амиодарон в дозировке 200 мг утром, пациент включен в лист ожидания кардиовертера-дефибриллятора (КВД). В августе 2022 года выполнен контроль ХМЭКГ, на котором, несмотря на проводимую антиаримическую терапию, вновь были зарегистрированы пароксизмы неустойчивой ЖТ. В ноябре 2022 года в плановом порядке пациенту был имплантирован КВД BiotronikVR.

С июня 2023 года — снижение ТФН, усугубление одышки клинически до 3–4 ФК, эпизоды сердечной

астмы. При контроле ЭхоКГ от июля 2023 года — отрицательная динамика в виде снижения ФВ ЛЖ до 20 % (метод Simpson), увеличение выраженности дилатации камер сердца, нарастание ЛГ— СДЛА 55 мм.рт.ст. В течение последующих 3 месяцев — дважды срабатывания КВД, после каждого аритмологом выполнялось программирование устройства.

Учитывая неэффективность ОМТ ХСН, тяжелые симптомы ХСН в рамках 3–4 ФК, дисфункцию миокарда в виде стойкого выраженного снижения систолической функции ЛЖ до 20 %, повторные эпизоды срабатываний КВД, принято решение об обследовании пациента по протоколу кандидата в лист ожидания трансплантации сердца. Выполнено зондирование сердца и тест на обратимость легочной гипертензии с использованием ингаляции оксида азота (NO) 40 ppm (табл. 1). По результатам теста легочная гипертензия определена, как обратимая.

Таблица 1. Гемодинамические параметры, полученные во время проведения зондирования сердца

Параметры	До ингаляции NO	После ингаляции NO
Давление в ПП, мм.рт.ст.	12/9(11)	7/2(5)
Давление в ПЖ, мм.рт.ст.	70/2(35)	60/3(26)
Давление в ЛА, мм.рт.ст.	75/35(50)	59/24(40)
ДЗЛА, мм.рт.ст.	36	28
СВ, л/мин	4,1	5,17
ТПГ, мм.рт.ст.	13	12
ЛСС, единицы Вуда	3,17	2,3

Примечание: ПП — правое предсердие, ПЖ — правый желудочек, ДЗЛА — давление заклинивания в легочной артерии, СВ — сердечный выброс, ТПГ — транспульмональный градиент, ЛСС — легочное сосудистое сопротивление, NO— оксид азота.

По результатам обследования проведена телемедицинская консультация с НМИЦ ТИО им. акад. В.И. Шумакова: пациенту показана трансплантация сердца с высоким риском, учитывая наличие легочной гипертензии, сахарного диабета. Проведен консилиум, пациент включен в лист ожидания трансплантации сердца.

20.10.2023 года в Бюджетном учреждении ХМАО-Югры «Окружная клиническая больница г. Ханты-Мансийск» пациенту выполнена ортотопическая трансплантация сердца по бикавальной методике в условиях искусственного кровообращения (ИК). Донор — мужчина 45 лет, причина смерти головного мозга — тяжелая черепно-мозговая травма. Время ишемии трансплантата — 283 мин., время операции — 330 мин., время ИК —

169 мин., окклюзия аорты — 76 мин. В качестве индукции иммуносупрессии выполнено введение базиликсимаба и метилпреднизолона. В дальнейшем, в качестве базисной иммуносупрессивной терапии (ИСТ) подключены ингибиторы кальциневрина (такролимус) и антиметаболиты (микофеноловая кислота), продолжена терапия глюкокортикоидами (метилпреднизолон) по схеме в соответствии с актуальными клиническими рекомендациями по ведению пациентов после ТС.

В связи с развитием посткардиотомной СН, бивентрикулярной дисфункции сердечного трансплантата (по данным ЭхоКГ— ФВЛЖ 20 % (метод Simpson), ударный объем (УО) 16 мл, сердечный индекс (СИ) 0,9 л/мин/м², фракция изменения площади правого желудочка (ФИП) 27 %, ФВ ПЖ 25 %, систолическая экскурсия плоскости трикуспидального кольца (TAPSE) 5 мм, были определены показания для механической поддержки кровообращения в виде вено-артериальной ЭКМО. Производительность ЭКМО — 70 % ОСП (объемная скорость перфузии). В раннем послеоперационном периоде сохранялась бивентрикулярная сердечная недостаточность, вследствие чего требовалось применение вазопрессорной, инотропной и механической поддержки кровообращения. Экстубирован через 27 часов по показаниям. Вариабельность вазоактивно-инотропного индекса 3-70. Продолжительность поддержки: норэпинефрин 0,5-0,05 мкг/кг/мин в течение 50 часов, эпинефрин 0,11–0,05 мкг/кг/мин в течение 30 часов, добутамин 8-3 мкг/кг/мин в течение 134 часов, вено-артериальная ЭКМО-77 часов. Кроме того, проведена инфузия левосимендана 0,1 мкг/кг/мин в течение 24 часов, ингаляции оксида азота 40-45 ppm. в течение 72 часов.

На фоне лечения отмечалась положительная динамика в виде уменьшения проявлений СН, стабилизации гемодинамических и лабораторных показателей. По данным ЭхоКГ на 3-и сутки после операции: ФВ ЛЖ 46 % (метод Simpson), УО 36 мл, СИ 1,94 л/мин/м², однако, сохранялись признаки систолической дисфункции ПЖ: ФИП 31 %, ФВ ПЖ 29 %, TAPSE 5 мм, СДЛА 31 мм.рт.ст.

На 4-е сутки после операции — развитие почечной дисфункции, которая потребовала проведения заместительной почечной терапии с ультрафильтрацией 100 мл/ч в течение 60 часов. На 8-е сутки пациент переведен в профильное отделение.

За время стационарного лечения дважды выполнена биопсия миокарда — без признаков клеточного и гуморального отторжения. КАГ — данных за поражение коронарных артерий трансплантированного сердца нет.

Выписан на 21-е сутки после операции. При выписке: $9xoK\Gamma$ — ΦB ЛЖ 65 % (метод Simpson), УО 53 мл, СИ 2,3 л/мин/м², ΦB ПЖ 32 %, TAPSE

11 мм, пик S 0,08 м/с, СДЛА 33 мм.рт.ст. Концентрация такролимуса-11 нг/мл на фоне приема дозировки 8 мг/сутки.

После выписки пациент продолжил наблюдаться амбулаторно у кардиолога поликлиники. В течение первого месяца отмечались колебания концентрации такролимуса до 23 нг/мл максимально, полиурия до 4 л максимально — в рамках острого почечного повреждения (ОПП) вследствие острой токсичности ингибиторов кальциневрина. Курировался совместно с нефрологом. В динамике через 3 месяца — исход ОПП в хроническую болезнь почек (ХБП) СЗА А1 (СКФ 50 мл/мин/1,73м²). Такролимус в целевом диапазоне концентрации 10–12 нг/мл.

Плановая госпитализация в кардиохирургическое отделение в феврале 2024 (4 месяца после ТС). По данным ЭхоКГ: ФВ ЛЖ 51 % (метод Simpson), ФИП ПЖ— 26,5%, ФВ ПЖ 27 %, TAPSE 18 мм, пик S 0,1 м/с, СДЛА 24 мм.рт.ст. Диагностировано легкое клеточное отторжение R1G(1A), слабовыраженное антителоопосредованное отторжение рАМR1(I+). ПЦР миокарда на кардиотропные вирусы — отрицательные. Проведена пульс-терапия метилпреднизолоном 1000 мг в/в капельно в течение 3 дней, выполнено усиление базисной ИСТ: увеличена доза микофеноловой кислоты до 1440 мг/сут, метилпреднизолона до 10 мг/сут на 6 месяцев. Также в данную госпитализацию выполнена эксплантация КВД, без осложнений.

Плановая госпитализация в кардиохирургическое отделение в июне 2024 года (8 месяцев после ТС). По данным эндомиокардиальной биопсии (ЭМБ) — клеточного, гуморального отторжения нет. ЭхоКГ: ФВ ЛЖ 60 % (метод Simpson), ФИП ПЖ 31 %, ФВ ПЖ 33%, TAPSE 18 мм, пик S 0,09 м/с, СДЛА 32 мм.рт.ст.

Плановая госпитализация в кардиохирургическое отделение в декабре 2024 года (1 год 2 месяца после ТС). КАГ — коронарное русло интактно, по результатам ЭМБ — данных за клеточное и гуморальное отторжение нет, ПЦР миокарда на кардиотропные вирусы — отрицательные. ЭхоКГ: ФВ ЛЖ 54 % (метод Simpson), ФИП ПЖ — 33,5 %, ФВ ПЖ 36,5 %, ТАРЅЕ 14 мм, пик \$ 0,09 м/с, СДЛА 29 мм.рт.ст. Таким образом, легочная гипертензия не регистрируется, но сохраняются эхокардиографические признаки систолической дисфункции ПЖ.

В настоящее время состояние пациента удовлетворительное, показатели артериального давления в пределах 120–130/70–80 мм.рт.ст., пульс 90–110 в мин., гликемия натощак 5–6 ммоль/л, постпрандиальная 7–8 ммоль/л. По дыхательной, пищеварительной, мочевыделительной системам — без особенностей. Симптомов и признаков сердечной недостаточности нет. Пациент имеет высокую толерантность к физическим нагрузкам, получает базисную иммуносупрессивную терапию (такроли-

мус 6 мг в сутки, микофеноловая кислота 720 мг в сутки с хорошей переносимостью, концентрация такролимуса в целевом диапазоне, функция сердечного трансплантата удовлетворительная.

Обсуждение

Дисфункция сердечного трансплантата является основным фактором риска летального исхода в первые 30 дней после трансплантации сердца и требует применения различных методов вспомогательного кровообращения. Вено-артериальная ЭКМО является эффективным методом восстановления функции сердечного трансплантата, позволяет поддержать адекватную системную гемодинамику и предупредить развитие необратимых органных изменений [9].

Легочная гипертензия является наиболее частой причиной развития такого грозного осложнения послеоперационного периода, как острая правожелудочковая CH [10].

Одной из ключевых целей лечения острой правожелудочковой СН является снижение постнагрузки ПЖ за счет уменьшения легочного сосудистого сопротивления (ЛСС). Применение ингаляционных вазодилататоров, в частности, оксида азота (NO) в послеоперационном периоде приводит к избирательному снижению ЛСС и улучшению гемодинамики ПЖ, уменьшению выраженности дисфункции ПЖ [11, 12].

Сенситайзер кальциевых каналов левосимендан является эффективным препаратом для лечения послеоперационной сердечной недостаточности. Сочетание инотропного и вазодилатирующего свойств в отсутствие изменения концентрации внутриклеточного кальция делает обоснованным его применение при сочетании низкого СВ и высокого ЛСС. Результаты клинических исследований применения левосимендана после кардиохирургических вмешательств демонстрируют, что данный препарат улучшает сократительную способность миокарда, позволяет стабилизировать гемодинамику, уменьшить потребность в инотропной поддержке и вспомогательном кровообращении (в том числе, в случаях рефрактерности к стандартной кардиотонической терапии), а также — снизить периоперационную летальность [13].

Трансплантация сердца в представленном клиническом случае изначально представляла собой операцию высокого риска ввиду наличия в первую очередь исходной легочной гипертензии у реципиента. Применение в раннем послеоперационном периоде ЭКМО, левосимендана, оксида азота, оказалось эффективным в отношении купирования дисфункции сердечного трансплантата.

В таблице 2 представлены данные ЭхоКГ, которые были выполнены при выписке из стационара и в течение года после ТС. Обращает на себя внимание быстрая положительная динамика по уменьшению систолического давления в легочной артерии до референсных значений на фоне проводимого лечения. Это соответствует данным литературы, согласно которым, у большинства пациентов после трансплантации сердца отмечается обратимость легочной гипертензии [14, 15].

Таблица 2. Динамика систолического давления в легочной артерии и некоторых эхокардиографических показателей, отражающих систолическую функцию правого желудочка

Пара- метры	20-е сутки после ТС	4 месяца после ТС	8 месяцев после ТС	1 год 2 меся- ца после ТС	Дина- мика, %
ФВ ПЖ, %	32	27	33	36,5	+14
ФИП, %	41	26,5	31	33,5	-18,3
Пик S, м/с	0,08	0,1	0,09	0,09	+12,5
TAPSE, MM	11	18	18	14	+27,3
СДЛА, мм.рт.ст.	33	24	32	29	-12,1

Примечание: ФВ ПЖ — фракция выброса правого желудочка, ФИП — фракция изменения площади правого желудочка, пик S — систолическая скорость сокращения миокарда в области фиброзного кольца трикуспидального клапана, TAPSE — систолическая экскурсия плоскости трикуспидального кольца, СДЛА — систолическое давление в легочной артерии.

Кроме того, имеется тенденция к улучшению некоторых эхокардиографических показателей систолической функции правого желудочка (ФВ ПЖ, пик S, TAPSE) несмотря на то, что их значения не достигают нижней границы референсного диапазона.

На сегодняшний день в литературе представлено ограниченное количество данных о возможных причинах сохранения систолической дисфункции ПЖ в отдаленном периоде трансплантации сердца. В ряде исследований показано, что не только неспособность донорского правого желудочка адаптироваться к внезапному увеличению постнагрузки вследствие повышенного ЛСС реципиента, но и события, происходящие в донорском сердце — смерть мозга [16, 17, 18] и время ишемии трансплантата [19, 20, 21], напрямую связаны с посттрансплантационной дисфункцией правого желудочка, которая может сохраняться в течение длительного времени после трансплантации сердца.

Выводы

Исходя из вышеизложенного, представленный клинический случай имеет следующие особенности:

- 1. Несмотря на наличие у пациента с терминальной сердечной недостаточностью легочной гипертензии, сахарного диабета 2 типа, ожирения 1 степени, в отсутствии абсолютных противопоказаний, ему была успешно выполнена трансплантация сердца.
- 2. В результате применения комплексного подхода в лечении послеоперационной дисфункции сердечного трансплантата с применением, наряду со стандартными схемами вазопрессорной и инотропной поддержки, системы ЭКМО, инфузии левосимендана и ингаляционной терапии NO, явления сердечной недостаточности были купированы в короткие сроки, и пациент уже спустя 7 суток был переведен в профильное отделение.
- 3. На фоне проводимого лечения у пациента уже к 3-им суткам после трансплантации сердца достигнут регресс легочной гипертензии, но сохранялись эхокардиографические признаки систолической дисфункции правого желудочка в отсутствии клиники правожелудочковой сердечной недостаточности. В отдаленном периоде наблюдения после трансплантации сердца отмечена тенденция к улучшению некоторых показателей ЭхоКГ, отражающих систолическую функцию правого желудочка.

В представленном клиническом случае возможными причинами сохраняющейся по данным ЭхоКГ систолической дисфункции правого желудочка наиболее вероятно являются исходная легочная гипертензия реципиента и «донорские» факторы — смерть мозга и длительное время ишемии трансплантата.

Ввиду ограниченного количества научных данных о предикторах сохранения систолической дисфункции правого желудочка в отдаленном периоде после трансплантации сердца, изучение данной темы представляет научный интерес.

Трансплантация сердца является наиболее перспективным способом лечения пациентов с терминальной сердечной недостаточностью, который открывает возможности продления жизни этой категории больных, вносит вклад в снижение смертности от сердечно-сосудистых заболеваний. Мультидисциплинарный подход в лечении пациентов после трансплантации сердца способствует скорому возвращению их к полноценной жизни.

ЛИТЕРАТУРА

- 1. Чичерина Е.Н., Барбакова Л.М. Трансплантация сердца в лечении хронической сердечной недостаточности. Современный взгляд на вопрос (обзор литературы) // Вятский медицинский вестник. 2020; 3(67): 103—107.
- 2. Симоненко М.А., Николаев Г.В., Маликов К.Н., Федотов П.А., Сазонова Ю.В., Борцова М.А., Рубинчик В.Е., Маричев А.О., Баутин А.Е., Ситникова М.Ю., Гордеев М.Л., Карпенко М.А. Трансплантация сердца у реципиентов с исходной легочной гипертензией: 9-летний опыт НМИЦ имени В.А. Алмазова // Вестник трансплантологии и искусственных органов. 2019; 21(4): 7–13.
- 3. Follath F., Cleland J.G., Just H., Papp J.G., Scholz H., Peuhkurinen K. et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe lowoutput heart failure (the LIDO study): a randomized double-blind trial // Lancet. 2002; 360 (9328): 196–202.
- 4. Hill N.S., Roberts K.R., Preston I.R. Postoperative Pulmonary Hypertension: Etiology and Treatment of a Dangerous Complication // Respiratory Care. 2009; 54 (7): 958–968.
- 5. Delgado J.F., Gomez-Sanchez M.A., Saenz de la Calzada C., Sanchez V., Escribano S.V., Hernandez-Afonso et al. Impact of mild pulmonary hypertension on mortality and pulmonary artery pressure profile after heart transplantation // Journal of Heart Lung Transplantation. 2001; 20: 942–948.
- 6. Deng M.C., Gradaus R., Hammel D., Weyand M., Gunther F., Kerber S. et al. Heart Transplant candidates at high risk can be identified at the time of initial evaluation // Transplantat International. 1996; 9 (1): 38–45.
- 7. Ross H., Hendry P., Dipchand A., Giannetti N., Hirsch G., Isaac D. et al. Canadian Cardiovascular Society Consensus Conference on cardiac transplantation // Canadian Journal of Cardiology. 2003; 19: 620–654.
- 8. Klotz S., Wenzelburger F., Stypmann J., Welp H., Drees G., Schmid C. et al. Reversible pulmonary hypertension in heart transplant candidates: to transplant or not to transplant // The annals of thoracic surgery. 2006; 82 (5):1770–1773.
- 9. Петрович Н.С., Шестакова Л.Г., Ярош Р.Г., Островский Ю.П. Применение экстракорпоральной мембранной оксигенации при дисфункции сердечного трансплантата //Евразийский кардиологический журнал. 2017; 3: 24.
- 10. Stobierska-Dzierzek B., Awad H., Michler R.E. The evolving management of acute right-sided heart failure in cardiac transplant recipients // J. Am. Coll Cardiol. 2001; 38: 923–931.
- 11. Ardehali A., Hughes K., Sadeghi A., Esmailian F., Marelli D., Moriguchi J., Hamilton M.A., Kobashigawa J., Laks H.Ardehali A., et al. Inhaled nitric oxide for pulmonary hypertension after heart transplantation // Transplantation. 2001; 72 (4): 638–41.
- 12. Sabato L.A., Salerno D.M., Moretz J.D., Jennings D.L.Sabato L.A., et al. Inhaled Pulmonary Vasodilator Therapy for Management of Right Ventricular Dysfunction after Left Ventricular Assist Device Placement and Cardiac Transplantation // Pharmacotherapy. 2017; 37(8): 944–955.
- 13. Лобачева Г.В., Алымбек К.З. Сенситизаторы кальция в лечении послеоперационного синдрома низкого сердечного выброса в кардиохирургии // Клиническая физиология кровообращения. 2012; 3: 5—9.
- 14. Klotz S., Deng M.C., Hanafy D., Schmid C., Stypmann J., Schmidt C. et al. Reversible pulmonary hypertension in heart transplant candidates pretransplant evalution and outcome after orthotopic heart transplantation // The European Journal of Heart Failure. 2003; 5: 645–653.
- 15. Lindelow B., Andersson B., Waagstein F., Bergh C.H. High and low pulmonary vascular resistance in heart transplantcandidates. A 5-year follow-up after heart transplantation shows continuous reduction in resistance and no difference in complication rate // European Heart Journal. 1999; 20: 148–156.
- 16. Bittner H.B., Chen E.P, Biswas S.S., Van Trigt P. Davis R.D. Right ventricular dysfunction after cardiac transplantation: primarily related to status of donor heart // Ann. Thorac. Surg. 1999; 68(5): 1605-11
- 17. Stoica S.C., Satchithananda D.K., White P.A., Sharples L., Parameshwar J., Redington A.N., Large S.R. Brain death leads to abnormal contractile properties of the human donor right ventricle // Thorac Cardiovasc Surg. 2006; 132 (1): 116–23.
- 18. Van Trigt P., Bittner H. B., Kendall S. W., Milano K.A. Mechanisms of transplant right ventricular dysfunction // Ann Surg. 1995; 221(6): 666–75.
- 19. Ahlgren B, Puskas F, Seres T. Total ischemia time alters the longitudinal and circumferential shortening of the right ventricle in transplanted hearts // Semin Cardiothorac Vasc Anesth. 2011; 15(4):163—8.
- 20. Mankad P.S., Yacoub M.H. Systolic and diastolic function of both ventricles after prolonged cardioplegic arrest // Ann. Thorac Surg. 1993; 55(4):933–9.
- 21. Rustad L.A., Nytroen K., Andreassen A., Geiran O., Endresen K., Gullestad L., Aakhus S., Amundsen B.H. Heart transplant systolic and diastolic function is impaired by prolonged pretransplant graft ischaemic time and high donor age: an echocardiographic study // Eur J Cardiothorac Surg. 2013; 44(2): 97–104.

© Степанова Маргарита Владимировна (ritaskidanova@yandex.ru); Климова Маргарита Олеговна (gemchujina1@yandex.ru); Стефанов Сергей Андреевич (Stefanov-s@inbox.ru); Урусов Дмитрий Анатольевич (urusov_d@mail.ru)

Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.29

ЭРИТЕМАТОЗНАЯ ИНФЕКЦИЯ КОЖИ У ПАЦИЕНТОК С ОНКОЛОГИЧЕСКИМИ ЗАБОЛЕВАНИЯМИ МОЛОЧНОЙ ЖЕЛЕЗЫ: ЭПИДЕМИОЛОГИЯ, КЛИНИКА, ДИАГНОСТИКА И ЛЕЧЕНИЕ РОЖИСТОГО ВОСПАЛЕНИЯ

ERYTHEMATOUS SKIN INFECTION IN PATIENTS WITH BREAST CANCER: EPIDEMIOLOGY, CLINICAL FEATURES, DIAGNOSIS, AND TREATMENT OF ERYSIPELAS

S. Terentyeva

Summary. The article covers the issues of epidemiology, pathogenesis, diagnosis, and treatment of erythematous skin infection in patients with breast cancer. A summary of clinical research data has shown that in patients with breast cancer, erysipelas foci are predominantly localized in the upper limb on the side of the tumor lesion, erythematous and erythematous-hemorrhagic forms and a recurrent course of the disease predominate. The need for the introduction of modern therapeutic and diagnostic measures to prevent infectious complications, immunotherapy, and monitoring its effectiveness when treating patients with this nosology is substantiated.

Keywords: erythematous skin infection, erysipelas, breast cancer, immunotherapy, laser therapy.

Терентьева Софья Алексеевна

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов имени Патриса Лумумбы» (РУДН) sopfia20023009@gmail.com

Аннотация. В статье освещаются вопросы эпидемиологии, патогенеза, диагностики и лечения эритематозной инфекции кожи у пациенток с онкологическими заболеваниями молочной железы. Обобщение данных клинических исследований показало, что у пациенток с раком молочной железы очаги рожистого воспаления преимущественно локализуется в области верхней конечности на стороне опухолевого поражения, преобладают эритематозная и эритематозно-геморрагические формы и рецидивирующий характер течения заболевания. Обоснована необходимость внедрения современных лечебно-диагностических мероприятий, обеспечивающих профилактику инфекционных осложнений, проведение иммунотерапии и мониторинга ее эффективности при сопровождении пациентов данной нозологии.

Ключевые слова: эритематозная инфекция кожи, рожистое воспаление, рак молочной железы, иммунотерапия, лазеротерапия.

Введение

настоящее время рак молочной железы (РМЖ), согласно результатам международного агентства по исследованию рака (МАИР), представляет собой наиболее распространенную онкологическую болезнь среди женщин в странах с развитыми экономиками [2]. Заболеваемость РМЖ в России имеет средний уровень по сравнению с общемировой тенденцией, на долю РМЖ приходится 18,5 % всех онкологических заболеваний, отмечается неуклонный рост показателей заболеваемости [2]. Каждый год в России регистрируется свыше 70 тысяч новых случаев РМЖ [6]. По распространенности в структуре злокачественных опухолей РМЖ занимает второе место, признан наиболее часто встречающимся онкологическим заболеванием среди женщин старше 35 лет, что является значимой медико-социальной проблемой. Несмотря на проведение скрининга с использованием различных методов визуализации, совершенствование рентгенологических, ультразвуковых и магнитно-резонансных технологий для раннего выявления данного заболевания, удельный вес пациентов с запущенными

стадиями РМЖ остается на достаточно высоком уровне, составляя 27.7 % [2; 5].

Развитие злокачественного роста сопровождается изменениями в иммунной системе, способствует развитию инфекционных, аллергических и аутоиммунных осложнений среди пациенток с онкологическими заболеваниями молочной железы, в частности возникновению эритематозной инфекции кожи [7]. Эритематозная инфекция кожи (рожистое воспаление) является широко распространенным антропонозным инфекционным заболеванием. Распространенность заболевания в разных регионах России составляет от 7 до 15 случаев и выше на 10 тыс. населения [8]. Однако данные о эпидемиологии, клинической картине и лечении рожистого воспаления у пациентов с онкологическими заболеваниями, в частности у пациенток с РМЖ, представлены лишь в отдельных научных исследованиях [4; 8]. Таким образом, в настоящее время в комплексе паллиативного лечения актуальным является решение проблемы профилактики и лечения эритематозной инфекции кожи у пациенток с онкологическими заболеваниями молочной железы.

Возникает необходимость обобщения данных о распространенности, диагностике, лечении и профилактики рожистого воспаления у пациенток с онкологическими заболеваниями молочной железы.

Результаты и обсуждение

Развитие рожистого воспаления у пациенток с РМЖ обусловлено, в первую очередь, состоянием иммунодефицита, включающего снижение клеточного, гуморального иммунитета и факторов естественной антиинфекционной резистентности [7]. Рожистое воспаление является острым инфекционным заболеванием, протекающим с интоксикацией, специфическим серозным или серозногеморрагическим поражением кожи и подкожной клетчатки. В зависимости от характера местных проявлений различают эритематозную, эритематознобуллезную, эритематозногеморрагическую, буллезногеморрагическую и флегмонозные формы заболевания. По характеру течения заболевания выделяют первичную, повторную, которая возникает через 2 года с иной локализацией процесса, и рецидивирующую рожу [3]. Исследования среди 178 пациенток с распространенным раком молочной железы, проведенные П.Б. Зотовым, М.М. Наумовым, Л.Ф. Чернецовой, показали преобладание эритематозной формы рожистого воспаления, которая выявлена практически у каждой второй пациентки (48,9 %) [4]. Ведущим фактором возникновения рожистого воспаления является «высокая аллергизация организма к стрептококку и его токсинам, формирование гиперчувствительности замедленного типа с развитием серозного или серозно-геморрагического воспаления, снижение уровня факторов естественной резистентности, снижение местного иммунитета из-за фоновых заболеваний» [8, с. 3].

Факторами риска эритематозной инфекции кожи у пациенток с онкологическими заболеваниями молочной железы выступают:

- иммунодефицитное состояние: преимущественное подавление Т-клеточного (снижение абсолютного и относительного числа Т-хелперов) и фагоцитарного звеньев иммунной системы [4]; уменьшение иммунорегуляторного индекса [7];
- хронический лимфостаз в области руки и плечевого пояса на стороне поражения, возникающий в результате лечения и / или обусловленный местным прогрессированием опухоли;
- наличие очагов хронической инфекции, а в старшей возрастной группе тяжелых сопутствующих неинфекционных заболеваний (сердечно-сосудистой, пищеварительной и дыхательной систем) [4].

Этиология рожистого воспаления наиболее часто обусловлена β-гемолитическим стрептококком группы A (Streptococcus pyogenes), реже — стрептококками

групп В, С, G, иногда — стафилококками [1]. В исследовании С.А. Потекаевой показано, что «ведущее место среди культивируемых микроорганизмов занимают стафилококки (до 63 %), а стрептококки (S.pyogenes, S.pneumoniae и S.dysgalactiae подтип equisimilis) найдены в 9 % случаев» [8, с. 38]. Состав микробной флоры у больных рожистым воспалением в области местного воспалительного очага, как пишет С.А. Потекаева, «значительно влияет на тяжесть клинической картины рожи (выраженность интоксикации и воспаления), скорость репарации тканей очага и появление осложнений» [8, с. 5]. В возникновении рожистого воспаления, в формировании ее клинических форм, течения и исходах значимую роль играет «начальная фаза иммунного ответа, в которой особое значение придается взаимодействию Т-лимфоцитов и макрофагов» [1, с. 70]. Поэтому важную роль при проведении лечебно-диагностических мероприятий среди пациентов с РМЖ играет своевременная диагностика иммунных нарушений с использованием иммунологических тестов, которую необходимо включать в комплексное обследование больных на всех этапах диспансерного наблюдения [7].

Для пациенток с онкологическими заболеваниями молочной железы, осложненными рецидивирующей стрептококковой инфекцией, характерны иммунопатологические синдромы. Ведущее место в структуре иммунопатологических синдромов, по данным М.М. Наумова, занимает инфекционный синдром, который наблюдался у всех пациенток, аутоиммунный синдром характерен для 8,4 % случаев, аллергический синдром выявлен только в 5,6 % случаев [7]. Выраженные нарушения иммунного профиля пациенток с РМЖ обусловливают рецидивирующий характер течения рожистой инфекции, что подтверждается данными П.Б. Зотова, М.М. Наумова, Л.Ф. Чернецовой, согласно которым патогенез рожистого воспаления у пациенток с онкологическими заболеваниями молочной железы характеризуется рецидивирующим течением заболевания, выявленного в подавляющем количестве случаев болезни (81,5 %) [4]. Тяжесть заболевания определяется его формой. При эритематозных формах преобладают среднетяжелые рецидивы заболевания [6]. Рецидивирующее течение заболевания у пациенток с РМЖ, согласно исследованию М.М. Наумова, характеризуется умеренной воспалительной реакцией и признаками гипореактивности системного иммунитета [7].

Исследования, проведенные П.Б. Зотовым, М.М. Наумовым, Л.Ф. Чернецовой, показали клиническую картину рожистого воспаления у пациенток с РМЖ. Течение заболевания у пациенток с РМЖ характеризуется продолжительностью безрецидивного периода в 1,2 месяца. Основные дермальные изменения располагались на стороне опухолевого поражения с вовлечением кожи руки и / или верхнего плечевого пояса. Локализация

очагов воспаления только в области верхней конечности отмечалась у 37,6 % пациенток, с переходом на кожу шеи и грудной клетки в 35,4 % случаев, с поражением руки и других участков тела — только у 6,2 % пациенток, только в области грудной клетки (в области постоперационного рубца) — в 6,8 % случаев. Многоуровневая локализация очагов воспаления наблюдалась в 14,0 % случаев [4]. Рецидивирующий патогенез рожистого воспаления среди пациенток с РМЖ характеризуется умеренной воспалительной реакцией и признаками гипореактивности системного иммунитета, что проявляется в дальнейшем угнетении Т-лимфоцитов (СОЗ+, СО4+) и нейтрофильных фагоцитов [7].

Лечебно-диагностические мероприятия в отношении пациентов с эритематозной инфекцией кожи носят комплексный и дифференцированный характер с учетом особенностей очагов воспалений, тяжести течения заболевания, наличия осложнений [3]. Лечения пациентов с рожистым воспалением включает системную антибиотикотерапию в комплексе с локальным ультрафиолетовым облучением пораженного участка кожи, в комплексе с применением низкоэнергетического лазерного облучения [3]. С целью профилактики и лечения рецидивирующей стрептококковой инфекции у пациенток с РМЖ в качестве иммунотерапии рекомендовано применение отечественного иммуномодулятора ликопид и препарата неовир в составе комплексного паллиативного лечения, что вызывает повышение иммунологических показателей и снижает частоту рецидивов рожистого воспаления [7].

В настоящее время широкое распространение при лечении рожистого воспаления получила лазеротерапия, которая обладает «противовоспалительным эффектом, нормализует состояние свертывающей системы крови, восстанавливает микроциркуляцию, уменьшает отек и боль, усиливает процессы репаративной регенерации, повышает иммунологическую резистентность организма» [1, с. 70]. Г.В. Дмитриевым, Е.С. Катановым, Е.В. Маркизовой обоснована эффективность лечения эриматозной формы рожистого воспаления кожи, включающего воздействие лазерного излучения в импульсном инфракрасном диапазоне, в том числе на примере лечения пациентов с РМЖ. Как пишут авторы, такой способ лечения «обеспечивает ликвидацию инфильтрата, быстрое купирование синдрома воспалительной реакции в областиместного очага воспаления за счет использования параметров лазерного излучения, достаточных для терапевтического воздействия и обеспечивающих сохранность росткового слоя эпителия» [3, с. 6].

Заключение

Рожистое воспаление у пациенток с РМЖ преимущественно локализуется в области верхней конечности на стороне опухолевого поражения, преобладает эритематозная и эритематозно-геморрагическая формы заболевания, доминирует рецидивирующий характер заболевания. Обобщение данных по проблеме исследования показал необходимость внедрения современных лечебно-диагностических мероприятий, обеспечивающих профилактику инфекционных осложнений среди пациентов с РМЖ, что является важной задачей паллиативной помощи, направленной на повышение качества жизни онкологических больных. Необходимы комплексный анализ клинико-иммунологических показателей пациентов с злокачественными новообразованиями молочной железы, учет факторов риска развития конкретных инфекций, наряду с базисной симптоматической терапией, проведение иммунотерапии и мониторинга ее эффективности при сопровождении данной категории пациентов.

ЛИТЕРАТУРА

- 1. Белая О.Ф., Потекаева С.А., Волчкова Е.В., Паевская О.А., Зуевская С.Н., Анохина Г.И., Юдина Ю.В., Айвазян С.Р. Реактивность Т-клеток на антигены стрептококка при лазеротерапии больных рожей // Эпидемиология и инфекционные болезни. 2019. № 24(2). С. 69—76.
- 2. Голубева Т.С., Тодуа Н.Г., Белова Е.В. Эпидемиология и диагностика рака молочной железы на современном этапе (обзор литературы) // Universum: медицина и фармакология: электрон. научн. журн. 2025. 1 (118). URL: https://7universum.com/ru/med/archive/item/19071
- 3. Дмитриев Г.В., Катанов Е.С., Маркизова Е.В. Патент. Способ лечения эриматозной формы рожистого воспаления. 2016. С. 1—6. URL: https://yandex.ru/patents/doc/RU2649963C1_20180405?ysclid=mdxfaifl4b951079979
- 4. Зотов П.Б., Наумов М.М., Чернецова Л.Ф. Клинические особенности и факторы риска рожистой инфекции у больных раком молочной железы // Тюменский медицинский журнал. 2010. № 3—4. С. 89—90.
- 5. Каприн А.Д., Старинский В.В., Шахзадова А.О. Состояние онкологической помощи населению России в 2022 году. М.: МНИОИ им. П.А. Герцена филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 239 с.
- 6. Мерабишвили В.М., Семиглазов В.Ф., Комяхов А.В. и др. Состояние онкологической помощи в России: рак молочной железы. Эпидемиология и выживаемость больных. Влияние эпидемии бета-варианта коронавируса SARS-CoV-2 (клинико-популяционное исследование) // Опухоли женской репродуктивной системы 2023. 19(3). С. 16—24.
- 7. Наумов М.М. Оптимизация терапии рожистого воспаления у больных распространенным раком молочной железы: дис. ... кандидата медицинских наук: 14.00.14. Уфа, 2002. 127 с.
- 8. Потекаева С.А. Клиническая картина рожи, лечение и реабилитация больных в условиях стационара: автореферат дис. ... доктора медицинских наук: 3.1.22. Москва, 2022. 48 с.

DOI 10.37882/2223-2966.2025.09.32

ГЕМАТО- И НЕФРОТОКСИЧНОСТЬ ХИМИОЭМБОЛИЗАЦИИ МАТОЧНЫХ АРТЕРИЙ ПРИ МЕСТНОРАСПРОСТРАНЁННОМ РАКЕ ШЕЙКИ МАТКИ: ОЦЕНКА БЕЗОПАСНОСТИ И ПРОГНОСТИЧЕСКИЕ МАРКЕРЫ

HEMATO- AND NEPHROTOXICITY
OF UTERINE ARTERY
CHEMOEMBOLIZATION IN LOCALLY
ADVANCED CERVICAL CANCER: SAFETY
ASSESSMENT AND PROGNOSTIC
MARKERS

F. Trifonov S. Ivanov V. Kucherov A. Petrosyan D. Nadinsky I. Igolnikov A. Stekhova

Summary, Relevance, Locally advanced cervical cancer (LACC) complicated by bleeding is a serious clinical problem that limits the possibilities of standard therapy. In this regard, uterine artery chemoembolization (UAC) is considered a promising method of local action, providing hemostasis and delivery of a chemotherapy drug directly to the tumor tissue. However, data on its toxicity and prognostic markers of efficacy remain insufficient. Materials and methods. A retrospective analysis of 69 patients with stage IIA-IIIB LACC who received UAC using cisplatin and lipiodol was performed. Safety assessment included monitoring of hematological and biochemical parameters before and after the procedure. Efficacy was assessed by the degree of tumor regression according to transvaginal ultrasound after 10-14 days. Results. The method showed a satisfactory safety profile: no pronounced hematological and nephrotoxicity was noted. The average tumor regression was 57 %. Significant predictors of high efficiency of CEMA were: age over 43 years, left uterine artery diameter ≥2.71 mm, increased length of the afferent vessel, artery volume and cisplatin dose over 92 mg/m². Conclusion. CEMA demonstrated clinical efficacy and low toxicity, which allows us to consider it as a safe component of combined or palliative treatment for cervical cancer complicated by bleeding. The established prognostic markers can be used to personalize therapy.

Keywords: cervical cancer, chemoembolization, toxicity, tumor bleeding, tumor regression, prognostic markers.

Трифонов Федор Александрович

врач по рентгенэндоваскулярным диагностике и лечению, отделения рентгенохирургических методов диагностики и лечения МРНЦ им. А.Ф. Цыба филиал ФГБУ НМИЦ радиологии МЗ РФ dr.trifonov.mrrc@gmail.com

Иванов Сергей Анатольевич

доктор медицинских наук, профессор, член-корреспондент РАН, заслуженный врач РФ, директор МРНЦ им. А.Ф. Цыба — филиала ФГБУ «НМИЦ радиологии» Минздрава России, главный внештатный специалист-онколог ЦФО Минздрава России ivanov.obninsk@mail.ru

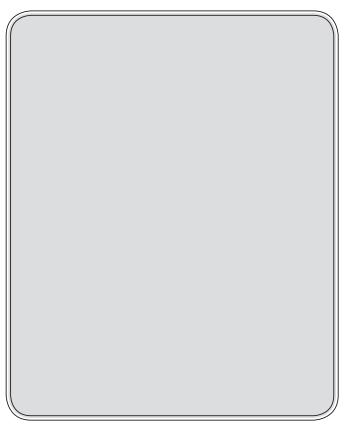
Кучеров Валерий Владимирович

к.м.н., заведующий отделением рентгенохирургических методов диагностики и лечения МРНЦ им. А.Ф. Цыба — филиал ФГБУ НМИЦ радиологии МЗ РФ v.v.kucherov@gmail.com

Петросян Артур Павлович

к.м.н., врач по рентгенэндоваскулярным диагностике и лечению, отделения рентгенохирургических методов диагностики и лечения МРНЦ им. А.Ф. Цыба — филиал ФГБУ НМИЦ радиологии МЗ РФ 79533162464@yandex.ru

Надинский Дмитрий Олегович


врач по рентгенэндоваскулярным диагностике и лечению, отделения рентгенохирургических методов диагностики и лечения МРНЦ им. А.Ф. Цыба — филиал ФГБУ НМИЦ радиологии МЗ РФ dr.nadinskiy@gmail.com

Игольников Илья Борисович

врач сердечно-сосудистый хирург, отделения рентгенохирургических методов диагностики и лечения МРНЦ им. А.Ф. Цыба — филиал ФГБУ НМИЦ радиологии МЗ РФ igolnikovib@gmail.com

Стехова Армина Тиграновна

врач по рентгенэндоваскулярным диагностике и лечению, отделения рентгенохирургических методов диагностики и лечения МРНЦ им. А.Ф. Цыба — филиал ФГБУ НМИЦ радиологии МЗ РФ armina.doc@mail.ru

Аннотация. Актуальность. Местнораспространённый рак шейки матки (МРШМ), осложнённый кровотечением, представляет собой серьёзную клиническую проблему, ограничивающую возможности стандартной терапии. В связи с этим химиоэмболизация маточных артерий (ХЭМА) рассматривается как перспективный метод локального воздействия, обеспечивающий гемостаз и доставку химиопрепарата непосредственно в опухолевую ткань. Однако данные о его токсичности и прогностических маркерах эффективности остаются недостаточными. Материалы и методы. Проведён ретроспективный анализ 69 пациенток с МРШМ стадий IIA—IIIB, получивших ХЭМА с применением цисплатина и липиодола. Оценка безопасности включала мониторинг гематологических и биохимических показателей до и после процедуры. Эффективность оценивалась по степени регрессии опухоли по данным трансвагинального УЗИ через 10—14 дней. Результаты. Метод показал удовлетворительный профиль безопасности: выраженная гематологическая и нефротоксичность не отмечена. Средняя регрессия опухоли составила 57 %. Значимыми предикторами высокой эффективности ХЭМА стали: возраст старше 43 лет, диаметр маточной артерии слева ≥2,71 мм, увеличенная длина афферентного сосуда, объём артерии и доза цисплатина свыше 92 мг/м². Заключение. ХЭМА продемонстрировала клиническую результативность и низкий уровень токсичности, что позволяет рассматривать её как безопасный компонент комбинированного или паллиативного лечения при МРШМ, осложнённом кровотечением. Установленные прогностические маркеры могут быть использованы для персонализации терапии.

Ключевые слова: рак шейки матки, химиоэмболизация, токсичность, опухолевое кровотечение, регрессия опухоли, прогностические маркеры.

Введение

Рак шейки матки (РШМ) остаётся одной из ведущих причин онкологической заболеваемости и смертности среди женщин во всём мире. По данным Всемирной организации здравоохранения, ежегодно регистрируется более 600 тысяч новых случаев РШМ [1], причём наибольшая заболеваемость наблюдается среди женщин репродуктивного и социально активного возраста [2]. В Российской Федерации РШМ занимает пятое место в структуре женской онкопатологии, причём до 30 % впервые выявленных случаев приходится на поздние стадии заболевания, что значительно ухудшает прогноз и ограничивает терапевтические возможности [2, 3].

Стандартными методами лечения РШМ являются хирургическое вмешательство, лучевая терапия (ЛТ), химиотерапия (ХТ) и их комбинации [4]. Однако при местнораспространённых формах радикальное хирургическое лечение невозможно, а ЛТ и ХТ сопровождаются выраженными побочными эффектами и нередко оказываются недостаточно эффективными [5]. Кроме того, у значительной части пациенток с МРШМ развивается кровотечение, обусловленное хрупкостью опухолевых сосудов, распространённость которого, по данным литературы, достигает 100 % [6, 7].

Кровотечения не только ухудшают качество жизни и увеличивают риск летального исхода, но и ограничивают проведение плановой лучевой терапии [8, 9]. В этой связи всё большее внимание уделяется альтернативным малоинвазивным методам, таким как химиоэмболизация маточных артерий (ХЭМА). ХЭМА позволяет одновременно достигать локальной доставки химиопрепарата и контролировать кровоснабжение опухоли за счёт эмболизации сосудов [7, 10, 11].

Особенно перспективным является применение липиодола в качестве эмболизирующего агента, обеспечивающего временную облитерацию сосудов без их полной обструкции [12]. Это позволяет создать гипоксические условия в опухоли и повысить локальную концентрацию химиопрепарата [13, 14].

Несмотря на очевидные преимущества, и распространяющиеся сведения о его использовании, метод ХЭМА остаётся малоизученным. Практически отсутствуют данные о его токсичности в отношении гемопоэза и почечной функции, что затрудняет объективную оценку его безопасности [15]. Также остаётся нерешённым вопрос о прогностических маркерах эффективности ХЭМА — анатомические характеристики сосудов, дозировка препаратов, возраст и другие клинические параметры могут играть роль в индивидуальном ответе на лечение [15, 16].

Таким образом, изучение гемато- и нефротоксичности ХЭМА, а также определение клинико-анатомических предикторов эффективности метода являются актуальными задачами, имеющими как научное, так и практическое значение. Представленная работа направлена на восполнение этих пробелов путём ретроспективного анализа клинических данных пациенток с МРШМ, осложнённым кровотечением, получивших лечение методом ХЭМА.

Материалы и методы

Настоящее исследование представляет собой ретроспективный однорукавный анализ, проведённый на базе отделения лучевых и комбинированных методов лечения гинекологических заболеваний МРНЦ им. А.Ф. Цыба в период с 2019 по 2022 гг. В исследование были включены 69 пациенток в возрасте от 24 до 74 лет (средний возраст — 47,7 \pm 1,4 года) с морфологически верифицированным диагнозом местнораспространённого рака шейки матки стадий IIA–IIIB (по классификации FIGO и TNM).

Критериями включения являлись — наличие кровотечения (в т.ч. профузного) на момент обращения; отсутствие признаков отдалённых метастазов; ECOG ≤2; информированное согласие на проведение процедуры химиоэмболизации.

Все пациентки получали химиоэмболизацию маточных артерий (ХЭМА) с применением цисплатина в дозе 50 мг/м² и липофильного эмболизирующего агента — липиодола. Процедура проводилась суперселективно, с катетеризацией правой и левой маточных артерий и контролем распределения липиодола с использованием плоскодетекторной КТ.

Методы оценки эффективности и безопасности лечения включали

- Ультразвуковое исследование органов малого таза (ТВ УЗИ) до и через 10–14 дней после процедуры с расчётом объема опухоли (по формуле $V = a \times b \times c \times \pi/6$).
- Общий анализ крови и биохимические показатели (мочевина, креатинин) до ХЭМА, через 3–5 дней после и при поступлении на последующий этап лечения.
- Гематологическая токсичность оценивалась по степени изменений уровня гемоглобина, лей-коцитов, нейтрофилов, тромбоцитов.
- Нефротоксичность определялась по уровню креатинина и мочевины в динамике.

Статистическая обработка данных проводилась с использованием Python 3.8 и пакетов statsmodels, scipy, а также SPSS v.23. Проверка нормальности распределе-

ния осуществлялась с помощью критерия Шапиро–Уилка. Для сравнений использовались критерии Манна– Уитни и Краскела–Уоллиса.

Для анализа взаимосвязей между клинико-анатомическими факторами и эффективностью лечения использовались — ROC-анализ (для оценки диагностической ценности параметров, таких как возраст и диаметр артерий); одно- и многофакторный регрессионный анализ (для определения прогностических факторов регрессии опухоли).

Под эффективностью лечения понималась степень уменьшения объёма опухоли после ХЭМА по данным ТВ УЗИ. Все изменения оценивались как статистически значимые при p<0,05.

Результаты

После проведённой химиоэмболизации маточных артерий у всех 69 пациенток было зафиксировано статистически достоверное уменьшение объема опухоли. Средняя эффективность лечения составила 57,0 %, что отражало степень регрессии опухоли по данным трансвагинального УЗИ через 10–14 дней после процедуры.

Токсичность процедуры

ХЭМА продемонстрировала удовлетворительный профиль безопасности. По данным лабораторного мониторинга — гематологическая токсичность была минимальной. После процедуры наблюдалось временное повышение уровня лейкоцитов (лейкоцитоз), обусловленное реакцией на интервенционное вмешательство. Данный эффект носил преходящий характер и не требовал специализированной коррекции. Нефротоксичность не отмечалась, показатели мочевины и креатинина на всех этапах (до и после ХЭМА, а также при поступлении на ЛТ) оставались в пределах возрастной нормы, без признаков острой или хронической почечной дисфункции.

Прогностические факторы эффективности

При анализе взаимосвязей между клинико-анатомическими параметрами и уровнем опухолевой регрессии были выявлены следующие статистически значимые предикторы.

- Возраст старше 45 лет ассоциировался с более выраженным лечебным эффектом: в данной подгруппе эффективность ХЭМА составила 62,7 %, тогда как у пациенток младше 45 лет 51,4 % (p = 0,012). ROC-анализ показал, что порог в 43 года был прогностически значимым для регрессии опухоли >50% (AUC = 0,730, p<0,0001).
- Диаметр маточной артерии (MA) слева ≥2,71 мм достоверно прогнозировал регрессию опухо-

ли >60 % (p<0,05, чувствительность/специфичность — 68 %).

Среди других значимых факторов были выявлены — длина афферентного сосуда слева: чем она была больше, тем выше оказывалась эффективность процедуры; доза цисплатина: при дозах >92 мг/м² достигался лучший лечебный ответ; объём МА слева также положительно коррелировал с уровнем регрессии опухоли (p<0,05).

Зависимости между эффективностью лечения и стадией опухоли (FIGO/TNM), гистологическим типом, формой роста опухоли или временем рентгеноскопии установлено не было.

Обсуждение

Полученные в настоящем исследовании результаты подтверждают высокую клиническую ценность химиоэмболизации маточных артерий как эффективного и безопасного метода локального воздействия при местнораспространённом раке шейки матки, осложнённом кровотечением.

Средняя эффективность лечения в виде регрессии опухоли составила 57 %, что сопоставимо с результатами, представленными в литературе. Так, в исследовании Ві и соавт. (2021), изучавшем DEB-TACE у пациенток с МРШМ, также была зафиксирована выраженная опухолевая регрессия, при этом не отмечено серьёзных осложнений [15]. В работе Song и соавт. (2019), где ХЭМА сравнивалась с химиолучевой терапией (ХЛТ), авторы показали схожие онкологические исходы, но лучшую переносимость и экономическую эффективность ХЭМА [14]. Yu и соавт. (2009) продемонстрировали более выраженное уменьшение объема опухоли в группе ХЭМА по сравнению с внутриартериальной инфузионной ХТ (64,1 % против 47 %) [17].

Особый интерес представляют результаты Косенко и соавт. (2012; 2015), в которых ХЭМА с использованием цисплатина приводила к повышению резектабельности опухоли у пациенток с МРШМ до 83,3 % [18, 19]. При этом частота гематологических осложнений составляла 20–56 %, включая анемию, лейкопению и тромбоцитопению. В настоящем исследовании выраженной гематои нефротоксичности выявлено не было, что, вероятно, связано с выбором препарата и техники эмболизации.

Преимущества метода, использованного в настоящей работе, связаны с применением липофильного эмболизирующего агента — липиодола. В отличие от твердых микросфер, липиодол вызывает временную облитерацию артерий и одновременно обеспечивает депонирование химиопрепарата в опухоли, создавая условия для ишемии и локального воздействия препарата. Это по-

зволяет снизить риск некроза окружающих тканей и сохранить возможность дальнейшего комбинированного лечения (van Breugel et al., 2019) [11].

Дополнительной ценностью проведённого исследования является идентификация предикторов эффективности ХЭМА, что может способствовать персонализации терапии. Установлены значимые прогностические факторы: возраст, диаметр и объём маточной артерии слева, длина афферента и доза цисплатина, что может использоваться для стратификации риска и прогноза.

Тем не менее, работа имеет ряд ограничений — ретроспективный характер исследования, что снижает уровень доказательности; относительно малый объем выборки (n=69), ограничивающий возможность широкого обобщения результатов; отсутствие контрольной группы, что не позволяет сделать прямое сравнение с другими методами лечения (например, ХЛТ или системной ХТ).

В дальнейшем необходимы проспективные рандомизированные исследования с большим числом наблюдений, а также оценка долгосрочных онкологических исходов (выживаемость, контроль заболевания, качество жизни).

Выводы

Химиоэмболизация маточных артерий с применением цисплатина и липиодола продемонстрировала высокую клиническую эффективность (средняя регрессия опухоли — 57 %) и удовлетворительный профиль безопасности. На всех этапах наблюдения не выявлено выраженной гематологической и нефротоксичности, а зарегистрированные изменения лабораторных показателей носили транзиторный характер и не требовали специальной коррекции.

В ходе проведённого анализа были выявлены предикторы высокой эффективности ХЭМА, к числу которых относятся — возраст пациентки >43 лет, что ассоциировалось с более выраженной регрессией опухоли; анатомические характеристики сосудистого русла, включая диаметр маточной артерии слева ≥2,71 мм, увеличенную длину афферентного сосуда и объём МА; доза цисплатина >92 мг/м², положительно коррелирующая с опухолевым ответом.

Учитывая минимальную токсичность и клиническую результативность, XЭМА может быть рекомендована как компонент комбинированного или паллиативного лечения пациенток с местнораспространённым раком шейки матки, осложнённым кровотечением, особенно в случаях, когда проведение стандартной лучевой терапии затруднено или противопоказано.

ЛИТЕРАТУРА

- 1. Arbyn M., Weiderpass E., Bruni L., et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020. V. 8(2). P. e191—e203.
- 2. Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2024. 276 с.
- 3. Петрова Г.В., Старинский В.В., Грецова О.П. Состояние онкологической помощи населению России в 2017 г. по данным федерального статистического наблюдения // Онкология. Журнал им. П.А. Герцена. 2019. Т. 8, №1. С. 32—40.
- 4. Burmeister C.A., Khan S.F., Schäfer G., et al. Cervical cancer therapies: Current challenges and future perspectives. // Tumour Virus Res. 2022. V. 13. P. 200238
- 5. Moreno-Acosta P., Vallard A., Carrillo S., et al. Biomarkers of resistance to radiation therapy: a prospective study in cervical carcinoma. // Radiat Oncol. 2017. V. 12(1). P. 120.
- 6. Eleje G.U., Eke A.C., Igberase G.O., et al. Palliative interventions for controlling vaginal bleeding in advanced cervical cancer // Cochrane Database Syst Rev. 2019; 3:CD011000. DOI: 10.1002/14651858.CD011000.pub2.
- 7. Alméciga A., Rodriguez J., Beltrán J., et al. Emergency Embolization of Pelvic Vessels in Patients With Locally Advanced Cervical Cancer and Massive Vaginal Bleeding: A Case Series in a Latin American Oncological Center // JCO Glob Oncol. 2020;6:1376–1383. DOI: 10.1200/GO.20.00106.
- 8. Серова Л.Г., Хмелевский Е.В., Бойко А.В., и др. Вариант комбинированного лечения местнораспространенного рака шейки матки с неоадъювантной регионарной химиотерапией // Онкология. Журнал им. П.А. Герцена. 2022;11(1):17—22.
- 9. Рухляда Н.Н., Бирюкова Е.И. Неотложная специализированная помощь больным с раком шейки матки // Медицина: теория и практика. 2017;2(1):33—42.
- 10. Chen C.S., Park S., Shin J.H., et al. Endovascular treatment for the control of active vaginal bleeding from uterine cervical cancer treated with radiotherapy. // Acta Radiol. 2018. V. 59(11). P. 1336–1342.
- 11. Aishanjiang D., Han L., Niyazi M., Hou Q. Clinical analysis of uterine arterial interventional chemoembolization combined with radiotherapy in mid-advanced cervical cancer // J BUON. 2021;26(3):656–662.
- 12. van Breugel J.M.M., Geschwind J.F., Mirpour S., et al. Theranostic application of lipiodol for transarterial chemoembolization in a VX2 rabbit liver tumor model // Theranostics. 2019;9(13):3674—3686. DOI: 10.7150/thno.33368.
- 13. Tanaka T., Terai Y., Fujiwara S., et al. Neoadjuvant intraarterial chemotherapy using an original four-lumen double-balloon catheter for locally advanced uterine cervical cancer // Oncotarget. 2018;9(28):19794—19804. DOI: 10.18632/oncotarget.24337.
- 14. Song J., Chen W., Zhu X., et al. Short-term efficacy, safety, and cost-effectiveness of transarterial chemoembolization with drug-eluting beads versus synchronous radiochemotherapy for cervical cancer // Int J Gynaecol Obstet. 2019;147(1):29–35. DOI: 10.1002/ijgo.12855.
- 15. Bi Y., Wang Y., Zhang J., et al. Clinical outcomes of uterine arterial chemoembolization with drug-eluting beads for advanced-stage or recurrent cervical cancer // Abdom Radiol (NY). 2021;46(12):5715–5722. DOI: 10.1007/s00261-021-03100-9.
- 16. Raba G., Szczupak K., Stabiszewski P., Skibinski W. Vascular changes responsible for the reduced effectiveness of obliteration of uterine arteries in women with advanced cervical cancer // Wideochir Inne Tech Maloinwazyjne. 2015;10(2):229–232. DOI: 10.5114/wiitm.2015.52905.
- 17. Yu L., Tan G.S., Xiang X.H., et al. Comparison of uterine artery chemoembolization and internal iliac arterial infusion chemotherapy for the combining treatment for women with locally advanced cervical cancer // Ai Zheng (Chin J Cancer). 2009;28(4):402–407.
- 18. Косенко И.А., Литвинова Т.М., Матылевич О.П. Эффективность комплексного лечения местнораспространенного рака шейки матки с использованием химиоэмболизации маточных артерий // Онкология. Журнал им. П.А. Герцена. 2012;1:15—19.
- 19. Косенко И.А., Литвинова Т.М., Дударев В.С., и др. Особенности неоадъювантной химиоэмболизации при местнораспространенном раке шейки матки // Репродуктивное здоровье. Восточная Европа. 2015;4(40):76—83.

© Трифонов Федор Александрович (dr.trifonov.mrrc@gmail.com); Иванов Сергей Анатольевич (ivanov.obninsk@mail.ru); Кучеров Валерий Владимирович (v.v.kucherov@gmail.com); Петросян Артур Павлович (79533162464@yandex.ru); Надинский Дмитрий Олегович (dr.nadinskiy@gmail.com); Игольников Илья Борисович (igolnikovib@gmail.com); Стехова Армина Тиграновна (armina.doc@mail.ru)

Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.35

ЭФФЕКТИВНОСТЬ РЕГУЛЯРНОГО ПРОВЕТРИВАНИЯ СТОМАТОЛОГИЧЕСКОГО КАБИНЕТА В СНИЖЕНИИ МИКРОБНОЙ АЭРОЗОЛЬНОЙ НАГРУЗКИ ВОЗДУХА И ПРОФИЛАКТИКЕ РЕСПИРАТОРНЫХ ИНФЕКЦИЙ

EFFECTIVENESS OF REGULAR
VENTILATION IN DENTAL OPERATORIES
FOR REDUCING AIRBORNE AEROSOL
LOAD AND PREVENTING RESPIRATORY
INFECTIONS

V. Khanaliev T. Abakarov S. Omarova K.-M. Musalov G. Budaichiev

Summary. The article presents the results of an experimental and clinical study evaluating the effectiveness of regular ventilation in dental operatories to reduce airborne aerosol load and prevent respiratory infections. In simulated dental sessions, 10-minute ventilation after each patient halved both aerosol sedimentation time and microbial air contamination (p<0.01). A 12-month observational phase showed a reduction in respiratory infections among staff (0.44 cases per person per year with ventilation vs. 1.0 without; p=0.048). Regular ventilation is confirmed as a simple and effective infection control measure to improve sanitary safety in dental practice.

Keywords: aerosol, dental infection, ventilation, air exchange, respiratory diseases, prevention, microbial air contamination, airborne transmission.

Ханалиев Висампаша Юсупович

д.м.н., профессор, ректор ФГБОУ ВО «Дагестанский государственный медицинский университет» Минздрава России, Махачкала

Абакаров Тагир Абакарович

к.м.н., доцент ФГБОУ ВО «Дагестанский государственный медицинский университет» Минздрава России, Махачкала

Омарова Салидат Магомедовна

д.б.н., профессор ФГБОУ ВО «Дагестанский государственный медицинский университет» Минздрава России, Махачкала

Мусалов Хаджи-Мурад Гусейнович

главный врач ГБУ РД «Республиканская стоматологическая поликлиника им. М.М. Максудова» Махачкала

Будайчиев Гасан Магомед-Алиевич

к.м.н., доцент ФГБОУ ВО «Дагестанский государственный медицинский университет»
Минздрава России, Махачкала
gasan.budaychiev005@mail.ru

Аннотация. В статье представлены результаты экспериментально-клинического исследования, оценивающего эффективность регулярного проветривания стоматологического кабинета для снижения аэрозольной нагрузки воздуха и профилактики респираторных инфекций. При моделировании приёма 10-минутное проветривание после каждого пациента сокращало время оседания аэрозоля более чем в 2 раза и снижало микробную контаминацию воздуха почти на 50 % (р<0,01). В ходе 12-месячного наблюдения зарегистрировано снижение частоты ОРВИ среди персонала (0,44 случая на человека в год при проветривании против 1,0 без; р=0,048). Регулярное проветривание подтверждено как доступная и эффективная мера повышения инфекционной безопасности в стоматологии.

Ключевые слова: аэрозоль, стоматологическая инфекция, вентиляция, проветривание, респираторные заболевания, профилактика, микробная контаминация воздуха, воздушно-капельная передача.

Актуальность

А эрозоли, образующиеся при работе высокоскоростных боров, ультразвуковых скейлеров и других инструментов в стоматологии, признаны существенным фактором риска передачи инфекций воздушно-капельным путём [1]. Пандемия COVID-19 особо подчеркнула эту проблему: стоматологический персонал оказался в группе повышенного риска из-за близкого контакта с ротовой полостью пациентов и образования биологических аэрозолей [2]. В начале пандемии SARS-CoV-2 серопревалентность среди стоматологов Великобритании достигала ~16 %, что значительно превышало показатель в общей популяции (~6–7 %) [3]. Однако

строгие противоэпидемические меры (СИЗ, антисептика, проветривание) позволили снизить заболеваемость стоматологов до фонового уровня [4]. Например, в США доля стоматологов с подтверждённым COVID-19 в июне 2020 г. составила менее 1 %, тогда как среди иных медицинских работников — до 35 % [5]. Это подтверждает эффективность усиленных протоколов инфекционного контроля в стоматологии. Помимо вирусных инфекций (COVID-19, грипп и др.), в стоматологической практике актуальна передача воздушно-капельным путём бактерий (туберкулёз, стафилококк) и грибков [6]. Аэрозоль, генерируемый вращающимся инструментом, содержит смесь слюны, крови и микрофлоры полости рта пациента, способной длительно оставаться в воздухе кабинета [7]. Мелкие частицы (<5 мкм) могут оставаться взвешенными до 30 минут и распространяться на расстояние до ~1,5-2 м от источника оседая на поверхностях и оборудовании. Исследования показывают, что без специальной вентиляции аэрозольные облака после процедур обнаруживаются даже на удалении нескольких метров [8]. При этом основная масса микробного аэрозоля концентрируется в пределах 0,5-0,8 м от головы пациента, тогда как на расстоянии ~1,5 м уровень микроконтаминации сопоставим с исходным фоновым воздухом помещения [9]. Таким образом, наибольшему риску подвергается врач и ассистент в зоне рабочего поля. Это диктует необходимость эффективных мер защиты от аэрозолей. Стандартные средства снижения биологических аэрозолей в стоматологии включают высокообъёмные эвакуаторы (хирургический пылесос), коффердам, предоперационные антисептические полоскания и использование бактерицидных рециркуляторов воздуха [10]. Тем не менее, в условиях реального приёма их эффективность ограничена, и надёжный способ уменьшить концентрацию аэрозоля — обеспечить достаточный воздухообмен в кабинете [11]. Согласно российским санитарным нормам, в небольших стоматологических клиниках допускается естественная приточно-вытяжная вентиляция с кратностью ~1,5 обмена воздуха в час, а в хирургических кабинетах требуется механическая вентиляция минимум 10-кратного обмена в час [12]. Международные рекомендации времён пандемии COVID-19 советовали проводить проветривание операционной не менее 15–30 минут после аэрозоль-генерирующей процедуры [13]. Однако до последнего времени научных данных о влиянии регулярного проветривания (естественного воздухообмена через окна) на биологические аэрозоли в стоматологии было недостаточно [14]. Обзор Malmgren и соавт, отметил отсутствие исследований, напрямую оценивающих передачу инфекций через стоматологические аэрозоли, и призвал к изучению эффективности вентиляции в снижении микробной контаминации воздуха [15]. Лишь в последние годы появились работы, подтверждающие, что улучшение вентиляции (в т.ч. установка воздушных фильтров и новых схем воздушных потоков) способно существенно уменьшить рассе-

иваемость аэрозоля в клинике [16]. Так, имитационные и клинические исследования показывают, что при оптимальной организации воздухообмена можно удалять до ~70–90 % аэрозольных частиц из воздуха за короткое время [17]. Тем не менее, в реальных условиях многие частные кабинеты по-прежнему полагаются на периодическое открывание окон между приёмами как основной метод вентиляции. Вклад именно регулярного проветривания помещения (естественного притока наружного воздуха) в снижение инфекционных рисков остаётся недостаточно изученным, особенно применительно к бактериальной и вирусной нагрузке аэрозоля.

Цель исследования — оценить эффективность регулярного проветривания стоматологического кабинета как меры снижения аэрозольной нагрузки воздуха и профилактики инфекций, передающихся воздушно-капельным путём.

Материал и методы исследования

Исследование представляет собой проспективное контролируемое экспериментально-клиническое исследование, состоящее из двух этапов. Первый этап — экспериментальное сравнение аэрозольной нагрузки воздуха при двух режимах вентиляции стоматологического кабинета: с 10-минутным проветриванием после каждого пациента (интервенционная группа) и без него (контроль). Второй этап — 12-месячное (январь-декабрь 2024 г.) продольное наблюдение за частотой острых респираторных инфекций (ОРВИ, включая COVID-19, грипп и др.) у медицинского персонала при разных режимах проветривания. Работа проведена в ГБУ РД «Республиканская стоматологическая поликлиника им. М.М. Максудова» (г. Махачкала) с получением информированного согласия от всех участников. Для моделирования использовался стандартный стоматологический кабинет площадью 14 м² с фрамугой и естественной вентиляцией (~1 обмен/ч). В интервенционной группе окно открывали настежь на 10 минут между приёмами, в контрольной — не открывали. Каждое условие воспроизводилось в 30 приёмах (n=30 на группу), рандомизируемо чередуемых. Стандартная процедура включала препарирование кариозной полости под охлаждением и ультразвуковую обработку (~5 мин на этап); ассистирование — в четыре руки. Аэрозоль оценивали лазерным счётчиком частиц TSI PCD 3007 (США) в трёх временных точках (до, во время, после процедуры) на уровне дыхательной зоны врача, дополнительно определяя время оседания частиц до фонового уровня (t_90 %). Микробную контаминацию воздуха оценивали методом пассивной седиментации (осадительные чашки Петри с агаром, экспозиция — во время процедуры и 10 мин после, дистанция 1 м от пациента), с последующей инкубацией и подсчётом КОЕ/м³ по МУК 4.2.2942-11, с идентификацией выделенных культур. Во втором этапе участвовали

18 сотрудников (6 врачей, 12 ассистентов), разделённые на 2 равные группы (по 9 чел.): в одной — работа по протоколу с проветриванием, в другой — обычный режим без регламента. Критерии включения: работа в данной поликлинике, ставка 0,5–1,0, отсутствие хронических заболеваний лёгких, ≥30 ч/нед. Исключались вакцинированные против гриппа. Пациенты отбирались по критериям: плановая терапия кариеса или ультразвуковая чистка, возраст 18-65 лет, отрицательный ПЦР на SARS-CoV-2; исключались лица с ОРВИ или иммунодефицитом. Случаи ОРВИ, включая COVID-19 и грипп, регистрировались по результатам ПЦР, экспресс-тестов и заключениям врачей, с использованием справок о временной нетрудоспособности и активных опросов. Размер выборки (n=30) рассчитан с ожидаемой разницей аэрозольной концентрации ~50 %, при α=0,05 и мощности 80 %. Статобработка выполнена в SPSS 26.0; нормальность проверяли по Шапиро-Уилку; межгрупповые различия оценивали t-критерием Стьюдента или критерием Манна-Уитни, частоту заболеваний — точным критерием Фишера; значимыми считались различия при p<0,05.

Результаты исследования

В исходном фоновом воздухе до начала работы средняя концентрация частиц ≥0,5 мкм составляла 2,8±0,4 тыс. частиц/л и не различалась между группами (р=0,47). Во время стоматологических манипуляций в контроле (без проветривания) наблюдалось резкое увеличение аэрозольной концентрации до 18,5±3,2 тыс./л, тогда как при условии проветривания — до 17,9±3,1 тыс./л (разница статистически незначима, p=0,64). Максимальные пики концентрации совпадали с работой бормашины и ультразвука и достигали 25–30 тыс. частиц/л. После окончания обработки зубов в контроле аэрозоль оседал медленно: через 5 мин концентрация оставалась ~8 тыс./л, через 10 мин — 5,1±1,0 тыс./л, и лишь спустя ~20 мин снижалась до исходного уровня. В опытной группе, где сразу после процедуры было проведено 10-минутное проветривание, наблюдалось значительно более быстрое очищение воздуха: уже через 5 мин после открытия окна концентрация уменьшилась до 3,4±0,6 тыс./л, что близко к фону. Визуально было отмечено исчезновение мутного аэрозольного облака из луча операционного света за 5-7 мин проветривания, тогда как без проветривания взвесь оставалась видимой более 10 мин.

В контрольных условиях среднее время снижения концентрации аэрозоля до 10 % от пикового значения составило 15,4±2,1 мин. В условиях проветривания этот показатель снизился до 6,2±1,5 мин, что более чем в 2 раза быстрее (p<0,001). Таким образом, регулярное проветривание позволило почти полностью устранить аэрозольную взвесь в интервале между приёмами пациентов.

В контроле среднее число выросших колоний на осадительных чашках составляло 52±10 KOE/м³ (за экспозицию~15мин),тогдакакприпроветривании—27±8КОЕ/м³, то есть снизилось практически вдвое (p=0,003). В контрольных пробах преобладали колонии Streptococcus spp. (α-гемолитические стрептококки полости рта) и коагулазо-негативных стафилококков; также выделены Staphylococcus aureus (в 3 случаях) и грибки рода Candida (в 2 случаях). Данные приведены в Таблице 1. Оседание аэрозоля на близлежащих поверхностях (наборы инструментов, светильник) оценивали по тампонам: в контроле во всех 10 пробах с лампы роста бактерий не было, со столика — в 2 пробах отмечен идентифицирован рост единичных колоний Streptococcus mitis. В группе проветривания результаты аналогичные. Это указывает, что основная микробная нагрузка аэрозоля концентрируется в воздухе и на полу вокруг кресла, а отдалённое осаждение мало значимо.

Таблица 1. Микробное обсеменение воздуха (осадительные чашки) при разных режимах вентиляции

Условие	КОЕ на чашке (ср.±σ)	Streptococcus spp.	Staphylococcus aureus	Грибки (Candida spp.)	Другие бактерии (грам-отриц.)
Без прове- тривания	52±10	+ (B0 BCEX)	обнару- жен (3/30)	обнаруже- ны (2/30)	единично (Neisseria, 1/30)
С проветри- ванием	27±8 ★	+ (B0 BCEX)	не обнару- жен	не обнару- жены	не обнару- жены

★ Примечание: различие по общему КОЕ статистически значимо при p=0,003 (в пользу меньшего при проветривании).

В интервенционной группе (кабинет с проветриванием) суммарно за год зафиксировано 4 случая ОРВИ (из них 1 — COVID-19, 1 — грипп A, 2 — ОРВИ неуточнённые). В контрольной группе (без проветривания) — 9 случаев (2 — COVID-19, 2 — грипп A, 5 — прочие ОРВИ). Таким образом, на одного сотрудника в группе без проветривания приходилось 1,0 эпизода инфекции за год, тогда как при работе с проветриванием — 0,44 эпизода. Разница по частоте заболевших существенна: заболели 6 из 9 человек в контроле (66,7 %) и 3 из 9 (33,3 %) в опытной группе. Хотя выборка небольшая, тенденция статистически значима (p=0,048, Fisher's exact). Ни одного случая внутрибольничной вспышки или передачи инфекции от пациента к врачу зарегистрировано не было. Все эпизоды COVID-19 и гриппа связывались эпидемиологически с внерабочими контактами. Тем не менее, суммарная заболеваемость персонала при наличии проветривания оказалась достоверно ниже, чем без него.

Обсуждение

Полученные результаты подтвердили, что регулярное проветривание стоматологического кабинета между приёмами пациентов приводит к заметному снижению аэрозольной нагрузки воздуха и потенциально уменьшает риск воздушно-капельной передачи инфекции. В опытах имитационного приёма проветривание позволило ускорить очищение воздуха от аэрозоля более чем в 2 раза (время осаждения частиц сокращено с ~15 до 6 минут) и почти вдвое снизить микробное обсеменение воздуха (по осадительным чашкам) [18]. Это согласуется с принципами аэробиологии: усиленный воздухообмен разрежает концентрацию аэрозольных частиц и удаляет их наружу, предупреждая длительную суспензию патогенов в помещении [19]. В нашем исследовании естественное проветривание (через открытое окно) оказалось достаточным, чтобы уже через 5-7 минут после окончания работы инструментов концентрация аэрозоля вернулась практически к фоновому уровню. Для сравнения, без проветривания аэрозольные частицы обнаруживались в воздухе даже спустя 15 минут, что требует увеличенных «фаллоу-таймов» между пациентами для осаждения аэрозоля [20]. Таким образом, простая мера — открыть окно на несколько минут — существенно повышает безопасность воздушной среды кабинета.

Наши данные хорошо согласуются с результатами других исследований. Так, Holliday и соавт. (2021) показали, что организация перекрёстной вентиляции в клинике уменьшает распространение аэрозоля на отдалённые зоны на 80-89 % [21]. Du и др. (2025) с помощью моделирования установили, что применение оптимизированной системы вентиляции способно выводить до ~70 % аэрозольных частиц наружу, тогда как при стандартной вентиляции большая часть аэрозоля оседает на близлежащих поверхностях [11]. В другом исследовании (Chen et al., 2025) предложен настенный вытяжной модуль, позволивший сократить концентрацию аэрозоля в дыхательной зоне врача почти вдвое по сравнению с обычной смешанной вентиляцией [9]. Совокупно эти данные свидетельствуют, что именно улучшение вентиляции (естественной или принудительной) является эффективнейшим способом контроля инфекционных аэрозолей в стоматологии [17]. Наше исследование внесло дополнительный вклад, продемонстрировав эффективность простого регулярного проветривания — доступной меры, не требующей оборудования. Это особенно актуально для небольших клиник и частных кабинетов, где может отсутствовать современная приточно-вытяжная система: как показал опрос Plaza-Ruiz et al. (2021), лишь ~17 % стоматологов внесли изменения в вентиляцию своих кабинетов во время пандемии [22]. Важно отметить, что, хотя проветривание снизило общую микробную обсемененность аэрозоля, полностью элиминировать потенциальные патогены из воздуха только за счёт

него невозможно. В наших опытах даже при проветривании на чашках осаждались бактерии нормальной оральной микрофлоры (Streptococcus spp.), которые в высоких концентрациях тоже могут представлять опасность для уязвимых пациентов. Кроме того, мы не проводили прямого выявления вирусов в аэрозоле из-за ограниченности метода; предыдущие исследования показывают, что вирусная нагрузка аэрозоля в стоматологии невелика при наличии стандартных мер защиты [23]. Так, в реальных клинических условиях не удавалось культивировать активный вирус из воздуха, хотя PHK SARS-CoV-2 обнаруживали методом ПЦР примерно в 30-40 % проб в разгар пандемии [24]. Это означает, что риск аэрогенной передачи COVID-19 при соблюдении протоколов относительно невысок — что подтвердилось эпидемиологически низкой заболеваемостью стоматологов [25]. По данным крупного 6-месячного наблюдения ADA, кумулятивная инфицированность стоматологов COVID-19 составила лишь 2,6 %, что существенно меньше, чем среди врачей других специальностей. Причиной называется строгое соблюдение усиленных мер защиты (экранов, респираторов, антисептики и пр.) [5]. В нашем исследовании тоже не было зарегистрировано ни одного случая явного профессионального заражения от пациента. Тем не менее, выявленная разница в общей заболеваемости ОРВИ персонала (0,44 случая на человека с проветриванием vs 1,0 — без) позволяет предположить влияние воздушной среды. Можно предположить, что регулярное проветривание опосредованно снижает риск распространения любых респираторных вирусов, удаляя не только аэрозоли от пациентов, но и фоновые вируссодержащие частицы, которые могут выделять сами сотрудники (например, при бессимптомном носительстве). Интересно сравнить наши результаты с данными об ультразвуковой чистке зубов — процедуре, изначально считавшейся высокоаэрозольной. Недавнее исследование AEROTOR (Dudding et al., 2022) показало, что ультразвуковой скейлинг генерирует в основном неабразивный «чистый» аэрозоль от самого прибора и практически не распространяет биоматериал пациента [26]. Авторы даже предлагают пересмотреть его классификацию как процедуры повышенного риска. Наши наблюдения частично согласуются: наибольшее микробное загрязнение мы отмечали при работе бормашины с охлаждением (смесь слюны и воды), тогда как вклад ультразвука в биоаэрозоль был меньше. Тем не менее, мы придерживаемся мнения о комплексном характере риска: любой аэрозоль в зоне лечения потенциально опасен, поскольку даже «чистые» на вид капли могут содержать бактерии кожи, полости рта или вирусы от бессимптомных носителей. Поэтому снижение общей аэрозольной нагрузки — в том числе путём проветривания — остается важной профилактической мерой.

Исследование имеет ряд ограничений. Объём выборки персонала был ограничен, что снижает обобща-

емость результатов, хотя статистическая значимость различий (р≈0,048) указывает на наличие реального эффекта. Микробиологическая оценка аэрозоля проводилась только культурным методом, без учёта вирусной и некультивируемой флоры; в дальнейшем целесообразно использовать молекулярные методы, включая ПЦР, для более полной картины. Кроме того, работа выполнена в условиях одной клиники с естественной вентиляцией; архитектурные особенности помещений могут влиять на воспроизводимость результатов. Не проводилось прямое сравнение с механической вентиляцией, что представляет интерес для будущих исследований. Несмотря на это, полученные данные подтверждают, что регулярное проветривание — простая, доступная и практически реализуемая мера, способная существен-

но снизить аэрозольную нагрузку и повысить инфекционную безопасность стоматологических учреждений.

Выводы

Регулярное проветривание стоматологического кабинета — простая, доступная и эффективная мера инфекционного контроля, способная значительно уменьшать аэрозольную нагрузку воздуха и снижать риск респираторных инфекций среди персонала. Полученные данные обосновывают включение регламентированного проветривания в стандартные протоколы профилактики внутриклинических инфекций в стоматологической практике.

ЛИТЕРАТУРА

- 1. Choi J.J.E., Chen J., Choi Y.J. et al. Dental high-speed handpiece and ultrasonic scaler aerosol generation levels and the effect of suction and air supply // Infect Control Hosp Epidemiol. 2023. Vol. 44, № 6. P. 926–933.
- 2. Meng L., Hua F., Bian Z. Coronavirus Disease 2019 (COVID-19): Emerging and Future Challenges for Dental and Oral Medicine // J Dent Res. 2020. Vol. 99, № 5. P. 481–487.
- 3. Shields A.M., Faustini S.E., Hill H. et al. COVID-19: Seroprevalence and vaccine responses in UK dental care professionals // J Dent Res. 2021. Vol. 100, № 11. P. 1220—1227.
- 4. Estrich C.G., Mikkelsen M., Morrissey R. et al. Estimating COVID-19 prevalence and infection-control practices among US dentists // J Am Dent Assoc. 2020. Vol. 151, № 11. P. 815–824.
- 5. Araujo M.W.B., Estrich C.G., Harrison B. et al. COVID-2019 among dentists in the United States: A 6-month longitudinal report of accumulative prevalence and incidence // J Am Dent Assoc. 2021. Vol. 152. № 6. P. 425–433.
- 6. Boccia G., Salerno C., Cantile T. et al. Microbial air contamination in a dental setting environment during ultrasonic scaling: a prospective study // Int J Environ Res Public Health. 2023. Vol. 20, № 3. P. 2710.
- 7. Allison J.R., Currie C.C., Edwards D.C. et al. Evaluating aerosol and splatter following dental procedures: addressing new challenges for oral health-care and rehabilitation // J Oral Rehabil. 2021. Vol. 48, № 1. P. 61–72.
- 8. Choudhary S., Durkin M.J., Stoeckel D.C. et al. Comparison of aerosol mitigation strategies and aerosol persistence in dental environments // Infect Control Hosp Epidemiol. 2022. Vol. 43, № 12. P. 1779—1784.
- 9. Chen M., Guo J., Pang X. et al. Distribution characteristics of microbial aerosols and optimization of protective methods during ultrasonic scaling procedure // Sci Rep. 2025. Vol. 15. P. 19598.
- 10. Cao R., Qiu P., Xu B. et al. Effectiveness of interventions to reduce aerosol generation in dental environments: a systematic review // Prev Med Rep. 2023. Vol. 35. P. 102383.
- 11. Du L., Wan Z., Guo L. et al. Aerosol dynamics in dental clinics: Effects of ventilation mode on the mitigation of airborne diseases transmission // Environ Pollut. 2025. Vol. 367. P. 125645.
- 12. СП 2.1.3678-20. Санитарно-эпидемиологические требования к эксплуатации помещений медицинских организаций (утв. постановлением Главного государственного санитарного врача РФ от 24.12.2020 № 44).
- 13. National Center for Immunization and Respiratory Diseases (U.S.). Division of Viral Diseases. Guidance for dental settings: interim infection prevention and control guidance for dental settings during the COVID-19 response. 2020.
- 14. Kumbargere Nagraj S., Eachempati P., Pais C.C. et al. Interventions to reduce contaminated aerosols produced during dental procedures for preventing infectious diseases // Cochrane Database Syst Rev. 2020. CD013686.
- 15. Malmgren R., Välimaa H., Oksanen L. et al. High-volume evacuation mitigates viral aerosol spread in dental procedures // Sci Rep. 2023. Vol. 13, № 1. P. 18984.
- 16. Allison J.R., Dowson C., Pickering K. et al. Local exhaust ventilation to control dental aerosols and droplets // J Dent Res. 2022. Vol. 101, № 4. P. 384–391.
- 17. Ren Y.F., Huang Q., Marzouk T. et al. Effects of mechanical ventilation and portable air cleaner on aerosol removal from dental treatment rooms // J Dent. 2021. Vol. 105. P. 103576.
- 18. Collins J.R., Rodríguez N., Soto S. et al. Effect of open windows on airborne contamination and its topographical distribution in the dental operatory // Eur J Oral Sci. 2023. Vol. 131, № 5–6. P. e12954.
- 19. Allison J.R., Tiede S., Holliday R. et al. Bioaerosols and Airborne Transmission in the Dental Clinic // Int Dent J. 2024. Vol. 74, Suppl 2. P. S418—S428.
- 20. Ghoneim A., Proaño D., Kaur H., Singhal S. Aerosol-generating procedures and associated control/mitigation measures: Position paper from the Canadian Dental Hygienists Association and the American Dental Hygienists' Association // Can J Dent Hyg. 2024. Vol. 58, № 1. P. 48–63.
- 21. Holliday R., Allison J.R., Currie C.C. et al. Evaluating contaminated dental aerosol and splatter in an open-plan clinic environment: implications for the COVID-19 pandemic // J Dent. 2021. Vol. 105. P. 103565.

- 22. Plaza-Ruiz S.P., Barbosa-Liz D.M., Agudelo-Suárez A.A. Ventilation and air-conditioning systems in dental clinics and COVID-19: how much do we know? // J Clin Exp Dent. 2021. Vol. 13, № 7. P. e692—e700.
- 23. Meethil A.P., Saraswat S., Chaudhary P.P., Dabdoub S.M., Kumar P.S. Sources of SARS-CoV-2 and other microorganisms in dental aerosols // J Dent Res. 2021. Vol. 100, № 8. P. 817–823.
- 24. Akin H., Karabay O., Toptan H. et al. Investigation of the presence of SARS-CoV-2 in aerosol after dental treatment // Int Dent J. 2022. Vol. 72, № 2. P. 211–215.
- 25. Schwarz K.M., Nienhaus A., Diel R. Risk of SARS-CoV-2 infection in dental healthcare workers: a systematic review and meta-analysis // GMS Hyg Infect Control. 2024. Vol. 19. Doc09.
- 26. Dudding T., Sheikh S., Gregson F. et al. A clinical observational analysis of aerosol emissions from dental procedures // PLoS One. 2022. Vol. 17, № 3. P. e0265076.

© Ханалиев Висампаша Юсупович; Абакаров Тагир Абакарович; Омарова Салидат Магомедовна; Мусалов Хаджи-Мурад Гусейнович; Будайчиев Гасан Магомед-Алиевич (gasan.budaychiev005@mail.ru) Журнал «Современная наука: актуальные проблемы теории и практики» DOI 10.37882/2223-2966.2025.09.36

ЭКСПЕРИМЕНТАЛЬНОЕ ОБОСНОВАНИЕ СПОСОБА СОНОДИНАМИЧЕСКОЙ СТИМУЛЯЦИИ СПАЕЧНОГО ПРОЦЕССА В ПЛЕВРАЛЬНОЙ ПОЛОСТИ У ЛАБОРАТОРНЫХ ЖИВОТНЫХ

EXPERIMENTAL SUBSTANTIATION
OF THE METHOD OF SONODYNAMIC
STIMULATION OF ADHESIONS
IN THE PLEURAL CAVITY IN LABORATORY
ANIMALS

A. Khmara M. Polidanov S. Kapralov R. Petrunkin R. Mayorov A. Prokhnitskaya

Summary. The aim of the study is experimental substantiation of the method of stimulation of adhesions in the pleural cavity in laboratory animals. Materials and methods. The studies were carried out on 80 female laboratory rats of «standard» breed weighing 200±50 g. All experimental animals were divided into two groups: 40 rats in each group. The first group included experimental animals that underwent pleurodesis of visceral and parietal pleural laminae by solid-state laser radiation (laser device Lasermed 1–10, near-infrared range); the second group included experimental animals that underwent pleurodesis of visceral and parietal pleural laminae by ultrasound exposure using a portable ultrasound therapy device Sonopulse S2N with simultaneous treatment with photosensitizer — sodium hypochlorite. General anesthesia of laboratory animals was performed according to the standard technique. Under aseptic conditions, a thoracotomy was performed through 5-6 intercostal spaces from periorbital to midclavicular line. Atypical resection of the lung was performed. Subsequently, the resection site and healthy (unchanged) lung area of the animals of the first group were exposed to the solid-state laser radiation with the wavelength of 1064 nm, power 7–8 W. Exposure to pleural sheets was performed with the help of quartz light guide by non-contact method, but not more than 2 cm from the pleura and visual assessment of the appearance of coagulation signs (as at direct contact with pleura its destruction occurs, and more than 2 cm — there will be no coagulation, this is due to the power density of the laser beam). Animals of the second group were exposed to the resection site and healthy (unchanged) lung area by ultrasound treatment using a portable ultrasound therapy device Sonopulse S2N with the working frequency of ultrasound oscillations from 1 MHz to 3 MHz $\pm 10\%$, working area of the emitter from 1 cm² to 3.5 cm² in a continuous mode for 10 minutes with simultaneous treatment of the areas with photosensitizer — sodium hypochlorite. Results. Due to this method in experimental animals of the second group in comparison with the first group there was an earlier, more pronounced and voluminous adhesion process in experimental animals of the second group, which

Хмара Артём Дмитриевич

к.м.н., врач-хирург торакального хирургического отделения, Саратовский государственный медицинский университет им. В.И. Разумовского premdania@yandex.ru

Полиданов Максим Андреевич

специалист научно-исследовательского отдела, ассистент, Университет «Реавиз», г. Санкт-Петербург maksim.polidanoff@yandex.ru

Капралов Сергей Владимирович

д.м.н., доцент, Саратовский государственный медицинский университет им. В.И. Разумовского sergejkapralov@yandex.ru

Петрунькин Родион Павлович

Университет «Реавиз», г. Санкт-Петербург

Майоров Родион Владимирович

к.м.н., Саратовский государственный медицинский университет им. В.И. Разумовского docmay@mail.ru

Прохницкая Анастасия Алексеевна

врач-рентгенолог,

Саратовская городская клиническая больница № 9 a.prohan@rambler.ru

Аннотация. Цель исследования — экспериментальное обоснование способа стимуляции спаечного процесса в плевральной полости у лабораторных животных. Материалы и методы. Исследования проводили на 80 лабораторных крысах-самках породы «стандарт» массой 200±50 г. Все экспериментальные животные были разделены на две группы: по 40 крыс в каждой. В первую группу входили экспериментальные животные, которым осуществляли плевродез висцерального и париетального листков плевры излучением твердотельного лазера (лазерный аппарат Lasermed 1–10, ближнего инфракрасного диапазона); во вторую группы входили экспериментальные животные, которым осуществляли плевродез висцерального и париетального листков плевры ультразвуковым воздействием с помощью портативного аппарата для ультразвуковой терапии Sonopulse S2N с одновременной обработкой фотосенсибилизатором — гипохлоритом натрия. По стандартной методике проводили общую анестезию лабораторных животных. В асептических условиях выполняли торакотомию через 5-6 межреберья от околопозвоночной до среднеключичной линии. Выполняли атипичную резекцию легкого. В дальнейшем на место резекции и здоровую (неизменённую) область легких животных первой группы воздействовали излучением твердотельного лазера длиной волны 1064 нм, мощностью 7-8 Вт. Воздействие на плевральные листки проводили при помощи кварцевого световода бесконтактным способом, но не более 2 см от плевры и визуальной оценкой появления признаков коагуляции (так как при прямом контакте с плеврой происходит её деструкция, а более 2 см — не будет коагуляции, это связано с плотностью мощности лазерного луча). Животным второй группы на место резекции и на здоровую (неизменённую)

was confirmed by the results of histologic study. *Conclusions*. Thus, the conducted experiment proved that the use of sodium hypochlorite as a photosensitizer followed by ultrasound exposure using a portable ultrasound therapy device Sonopulse S2N in continuous mode for 10 minutes allows to provide better adhesion after the completion of the formation of coarse-fiber connective tissue and to achieve denser and more extensive sclerosing when exposed to both pleural sheets, reducing the treatment time by 4 days.

Keywords: bullous emphysema, minimally invasive thoracoscopic surgeries, adhesion stimulation, laser surgery, sonodynamic therapy.

область легких воздействовали ультразвуковым воздействием с помощью портативного аппарата для ультразвуковой терапии Sonopulse S2N с рабочей частотой ультразвуковых колебаний от 1 МГц до 3 МГц $\pm 10~\%$, рабочей площадью излучателя от 1 cm^2 до 3.5 cm^2 в непрерывном режиме в течение 10 минут с одновременной обработкой областей фотосенсибилизатором гипохлоритом натрия. Результаты. Благодаря данному способу у экспериментальных животных второй группы по сравнению с первой группой наблюдался более ранний, выраженный и объемный спаечный процесс, что подтверждалось результатами гистологического исследования. Выводы. Таким образом, проведенный эксперимент доказал, что использование гипохлорита натрия в качестве фотосенсибилизатора с последующим ультразвуковым воздействием с помощью портативного аппарата для ультразвуковой терапии Sonopulse S2N в непрерывном режиме в течение 10 минут, позволяет обеспечить лучшую адгезию после завершения формирования грубоволокнистой соединительной ткани и достичь более плотного и более обширного склерозирования при воздействии на оба листка плевры, сокращая сроки лечения на 4 дня.

Ключевые слова: буллезная эмфизема, миниинвазивные торакоскопические операции, стимуляция спаечного процесса, лазерная хирургия, сонодинамическая терапия.

Введение

эмфизема легких продолжает оставаться одной из наиболее распространенных патологий дыхательной системы [1]. В клинической практике различают две основные формы патологии: буллезную болезнь легких и буллезную эмфизему. Буллезная болезнь проявляется образованием воздушных полостей (булл) в структурно неизмененной легочной ткани, тогда как буллезная эмфизема характеризуется формированием булл на фоне диффузного эмфизематозного поражения легких.

Наиболее серьезными осложнениями буллезной эмфиземы считаются пневмоторакс, который может осложняться развитием эмпиемы плевры, а также легочное кровотечение и, в редких случаях, малигнизация патологически измененных участков легочной ткани [2-4]. При формировании гигантских булл ведущим клиническим симптомом становится прогрессирующая дыхательная недостаточность.

Патогенетической основой образования булл служат дегенеративные изменения межальвеолярных перегородок, приводящие к их атрофии, слиянию альвеол и повреждению терминальных бронхиол [5]. Эти патологические изменения инициируют развитие панацинарной эмфиземы, которая впоследствии трансформируется в буллезную форму. Наиболее часто подобные изменения локализуются в верхних долях легких, при этом буллы отделены от висцеральной плевры тонким слоем легочной ткани.

Буллезная патология легких проявляется различными формами распространенности, что дает основание для клинической классификации заболевания. В зависимости от характера поражения выделяют четыре основных типа: солитарный (единичная булла), фокальный (группа булл в пределах одной доли), мультифокальный (поражение нескольких долей) и диффузный (вовлечение всех легочных долей с возможным преобладанием изменений в определенных участках) [6,7].

Особую значимость приобретает онкологическая составляющая данной патологии. Многочисленные исследования подтверждают, что буллезные изменения в легких повышают риск развития злокачественных новообразований в четыре раза по сравнению с неизмененной легочной тканью. Это обусловливает необходимость особого внимания к любым патологическим уплотнениям или изменениям вблизи буллезных образований, требующим проведения расширенного диагностического поиска для исключения онкопатологии [8,9].

Социальная значимость буллезной патологии легких определяется тремя ключевыми аспектами. Во-первых, отмечается устойчивый рост заболеваемости среди лиц трудоспособного возраста. Во-вторых, существуют значительные сложности в выборе оптимальных подходов к лечению. В-третьих, сохраняется острая потребность в разработке эффективных хирургических методик. Особую тревогу вызывает высокий процент госпитализаций (10–35 % случаев), связанных с развитием спонтанного пневмоторакса как наиболее частого осложнения, что подчеркивает актуальность данной медицинской проблемы и необходимость поиска новых решений.

Совершенствование хирургических подходов к лечению буллезной патологии легких представляет собой актуальную задачу современной торакальной хирургии. Оптимизация лечебных стратегий позволит не только повысить эффективность терапии, но и существенно уменьшить вероятность рецидивов. Для достижения этих целей необходим комплексный подход, предусматривающий: 1) создание инновационных хирургических методик, 2) уточнение диагностических критериев, 3) разработку четких показаний к оперативному вмешательству, 4) внедрение передовых медицинских технологий [10].

Особый интерес представляет идиопатический (первичный) спонтанный пневмоторакс, развивающийся у пациентов без явных признаков легочной патологии. Клинические исследования демонстрируют прямую корреляцию между этим состоянием и наличием субплевральных булл — их выявляют у 76–100 % пациентов с данной формой пневмоторакса.

Диагностика субплевральных булл требует обязательного применения современных визуализационных методов. Компьютерная томография органов грудной клетки (КТ ОГК) и торакоскопия являются золотым стандартом в выявлении данной патологии. Отсутствие доступа к этим высокотехнологичным методам диагностики существенно затрудняет своевременную постановку точного диагноза и начало адекватного лечения.

В связи с этим, алгоритм обследования пациентов с подозрением на первичный спонтанный пневмоторакс в обязательном порядке должен включать современные методы визуализации легких, такие как КТ ОГК или торакоскопическое исследование [11–14]. Это позволяет не только подтвердить диагноз, но и выбрать оптимальную тактику лечения, минимизировав риск повторных эпизодов заболевания.

Современные подходы к диагностике и лечению буллезных изменений легких при пневмотораксе требуют особого внимания. Выявление булл и блебов в легочной ткани становится решающим фактором при определении тактики лечения как первичного, так и рецидивирующего пневмоторакса. Клиническая практика показывает, что даже однократный эпизод пневмоторакса при наличии буллезных изменений является веским основанием для рассмотрения вопроса о плановом хирургическом вмешательстве [15–17].

При этом важно учитывать диагностические особенности современных методов исследования. Компьютерная томография органов грудной клетки (КТ ОГК), несмотря на свою высокую информативность, имеет определенные ограничения в выявлении мелких воздушных полостей. Особые трудности возникают при ди-

агностике булл диаметром менее 1 см, что в некоторых случаях требует применения дополнительных методов исследования для полной оценки состояния легочной ткани.

Особый интерес в современной медицине представляет изучение возможностей плевродеза с использованием различных методов стимуляции (физических, химических или биологических). Этот подход рассматривается как перспективная альтернатива при специфических патологиях плевральной полости, а также у пациентов с противопоказаниями к радикальным хирургическим вмешательствам [18–20].

Плевральные спайки, являющиеся распространенным следствием различных патологических процессов в грудной полости, формируются вследствие воспалительных заболеваний легочной ткани, разнообразных поражений плевры, травматических повреждений грудной клетки и перенесенных торакальных операций. В настоящее время активно разрабатываются альтернативные методы терапии патологий плевральной полости, что особенно актуально для пациентов с ограниченными возможностями проведения традиционного хирургического лечения. Эти исследования направлены на поиск менее инвазивных, но не менее эффективных способов помощи данной категории больных.

В современной торакальной хирургии плевродез рассматривается как перспективная альтернатива традиционным хирургическим вмешательствам, особенно в случаях, когда радикальное лечение противопоказано или нежелательно. Данная методика реализуется тремя основными способами: посредством физического воздействия, химических агентов или биологических препаратов [21–24, 28].

В настоящее время плевродез продолжает активно изучаться в клинических исследованиях. Ученые сосредоточены на решении нескольких ключевых задач: определении четких показаний к применению, сравнительном анализе эффективности различных методик (физической, химической и биологической), а также разработке оптимальных протоколов выполнения процедуры. Особую актуальность эти исследования приобретают в контексте лечения пациентов с абсолютными противопоказаниями к хирургическому вмешательству [25–27, 29].

Несмотря на очевидный потенциал плевродеза в терапии патологий плевральной полости, для его широкого внедрения в клиническую практику требуется проведение дополнительных масштабных исследований. Эти исследования должны обеспечить доказательную базу для стандартизации методики, объективной оценки ее эффективности и безопасности, а также определения

оптимальных показаний к применению в различных клинических ситуациях.

В связи с вышеперечисленным, *целью исследования* стало экспериментальное обоснование способа стимуляции спаечного процесса в плевральной полости у лабораторных животных.

Материалы и методы исследования

Исследования проводили на 80 лабораторных крысах-самках породы «стандарт» массой 200±50 г. Все манипуляции и содержание животных было регламентировано локальным этическим комитетом Медицинского университета «Реавиз» (протокол № 10, 10.10.2024). Условия содержания в виварии лабораторных животных регламентированы РД-АПК 3.10.07.02-09 «Методические рекомендации по содержанию лабораторных животных в вивариях научно-исследовательских институтов и учебных заведений», приказом Министерства здравоохранения Российской Федерации от 01.04.2016 г. № 199н «Об утверждении правил надлежащей лабораторной практики», ГОСТ 33216-2014 «Руководство по содержанию и уходу за лабораторными животными. Правила содержания и ухода за лабораторными грызунами и кроликами» (актуализированным от 01.01.2021).

Все экспериментальные животные были разделены на две группы: по 40 крыс в каждой. В первую группу входили экспериментальные животные, которым осуществляли плевродез висцерального и париетального листков плевры излучением твердотельного лазера (лазерный аппарат Lasermed 1–10 (Россия), ближнего инфракрасного диапазона); во вторую группы входили экспериментальные животные, которым осуществляли плевродез висцерального и париетального листков плевры ультразвуковым воздействием с помощью портативного аппарата для ультразвуковой терапии Sonopulse S2N (SonoScape Medical Corp., Китай) с одновременной обработкой фотосенсибилизатором — гипохлоритом натрия.

По стандартной методике проводили общую анестезию лабораторных животных. В асептических условиях выполняли торакотомию через 5–6 межреберья от околопозвоночной до среднеключичной линии. Выполняли атипичную резекцию легкого.

В дальнейшем на место резекции и здоровую (неизменённую) область легких животных первой группы воздействовали излучением твердотельного лазера длиной волны 1064 нм, мощностью 7–8 Вт. Воздействие на плевральные листки проводили при помощи кварцевого световода бесконтактным способом, но не более 2 см от плевры и визуальной оценкой появления признаков коагуляции (так как при прямом контакте с плеврой про-

исходит её деструкция, а более 2 см— не будет коагуляции, это связано с плотностью мощности лазерного луча).

Животным второй группы на место резекции и на здоровую (неизменённую) область легких воздействовали ультразвуковым воздействием с помощью портативного аппарата для ультразвуковой терапии Sonopulse S2N с рабочей частотой ультразвуковых колебаний от 1 МГц до 3 МГц ± 10 %, рабочей площадью излучателя от 1 см² до 3,5 см² в непрерывном режиме в течение 10 минут с одновременной обработкой областей фотосенсибилизатором — гипохлоритом натрия.

Воздействие в каждой группе вели под визуальным контролем и прекращали при появлении признаков коагуляции. После чего зашивали рану грудной стенки.

Результаты исследования

Благодаря данному способу у экспериментальных животных второй группы по сравнению с первой группой наблюдался более ранний, выраженный и объемный спаечный процесс, что подтверждалось результатами гистологического исследования.

Микроскопически у животных первой группы через 14 дней после оперативного вмешательства в зоне воздействия лазером на оба слоя плевры (париетальный и висцеральный) наблюдались следующие изменения: грануляционная ткань, образование рыхлой волокнистой соединительной ткани, утолщение стенок между альвеолами легких с признаками воспаления и отека, а также лейкоцитарная инфильтрация (рисунок 1). У животных второй группы уже на 10 день было отмечено: незначительный очаг воспаления, появление спаек на обоих слоях плевры, начало формирования новой молодой соединительной ткани (рисунок 2).

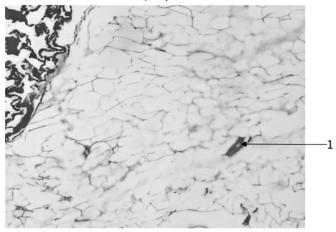


Рис. 1. Результаты микроскопического исследования плевральной полости лабораторных животных первой группы

Примечание: цифрой 1 на рисунке обозначена грануляционная ткань.

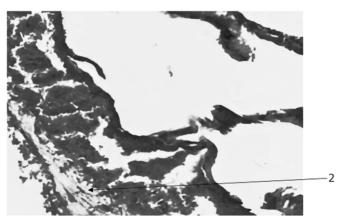


Рис. 2. Результаты микроскопического исследования плевральной полости лабораторных животных второй группы

Примечание: цифрой 2 на рисунке обозначено появление спаек на обоих слоях плевры, начало формирования новой молодой соединительной ткани.

Заключение

Таким образом, проведенный эксперимент доказал, что использование гипохлорита натрия в качестве фотосенсибилизатора с последующим ультразвуковым воздействием с помощью портативного аппарата для ультразвуковой терапии Sonopulse S2N в непрерывном режиме в течение 10 минут, позволяет обеспечить лучшую адгезию после завершения формирования грубоволокнистой соединительной ткани и достичь более плотного и более обширного склерозирования при воздействии на оба листка плевры, сокращая сроки лечения на 4 дня.

ЛИТЕРАТУРА

- 1. Клинические рекомендации «Эмфизема легких» (утв. Минздравом России, 2021 г.) 18.10.2021. Разработчик клинической рекомендации Российское респираторное общество Одобрено Научно-практическим Советом Минздрава РФ.
- 2. Бродская О.Н., Поливанов Г.Э. Буллезная эмфизема и буллезная болезнь легких. Практическая пульмонология. 2019; 1: 15–21
- 3. Корымасов Е.А. и др. Национальные клинические рекомендации «Эмпиема плевры» М.: 2015. 33 с.
- 4. Базаров Д.В. Обоснование показаний и объема резекции при хирургическом уменьшении легкого у больных диффузной эмфиземой Дисс... на к.м.н. Москва. 2007. 1с.
- 5. Иванов С.В., Лазаренко В.А., Юдина С.М., и др. Цитоморфологические изменения в легких при моделировании буллузной эмфиземы в зависимости от стимуляции неоколлагеногенеза в эксперименте. Человек и его здоровье. 2019. №2.
- 6. Горбунков С.Д., Варламов В.В., Черный С.М., и др. Критерии хирургического риска у больных с диффузной эмфиземой лёгких с крупными или гигантскими буллами. Вестник хирургии 2016. №3.
- 7. Raoof S., et al. Cystic lung diseases: algorithmic approach. Chest. 2016; 150 (4): 945–965
- 8. Жестков К.Г., и др. Национальные клинические рекомендации по лечению спонтанного пневмоторакса. 2018; 22 с..03.2025).
- 9. Яблонский П.К., и др. Выбор лечебной тактики и возможности прогнозирования рецидивов у больных с первым эпизодом спонтанного пневмоторакса. Вестник Санкт-Петербургского университета. Серия 11. Медицина. 2010; 1: 118—129.
- 10. Дробязгин Е.А., и др. Двухпортовые видеоторакоскопические операции при буллезной эмфиземе легких. Эндоскопическая хирургия. 2020; 26 (4): 22—27.
- 11. Корымасов Е.А., и др. Анализ ошибок, опасностей и осложнений в лечении спонтанного пневмоторакса. Тольяттинский медицинский консилиум. 2013; 3-4: 44—51.
- 12. Афендулов С.А., Мощин С.А. Современные способы лечения спонтанного пневмоторакса. Системный анализ и управление в биомедицинских системах. 2009; 8 (1): 58—61.
- 13. Полянцев А.А., и др. Ошибки, опасности, осложнения при первом эпизоде спонтанного пневмоторакса. Хирургия. Журнал им. Н.И. Пирогова. 2018; 3: 64—69.
- 14. Яблонский П.К. Протоколы оказания помощи пациентам со спонтанным пневмотораксом. СПб. 2013. 42
- 15. Asano H., et al. Risk factors for recurrence of primary spontaneous pneumothorax after thoracoscopic surgery. J Thorac Dis. 2019; 11 (5): 1940–1944.
- 16. Bintcliffe O.J., et al. Lung Parenchymal Assessment in Primary and Secondary Pneumothorax. Annals of the American Thoracic Society. 2016; 13 (3): 350–355.
- 17. Сушко А.А., и др. Миниинвазивная хирургия пневмоторакса. Журнал Гродненского государственного медицинского университета. 2014; 3 (47): 21–23.
- 18. Соколов С.А., и др. Оригинальный способ тотальной плеврэктомии в радикальном оперативном пособии при первичном спонтанном пневмотораксе. Омский научный вестник. 2014; 128 (1): 60-62
- 19. Воробьёв А.А., Калашников А.В., Салимов Д.Ш. Патологические проявления внутриплевральной адгезии. Современная наука и инновации. 2017; 1:228—236.
- 20. Калашников А.В., Воробьёв А.А., Салимов Д.Ш. и др. Стимуляция адгезиогенеза при хронической эмпиеме плевры. Новости хирургии. 2018; 4 (26): 412—419.
- 21. Чикинев Ю.В., и др. Анализ осложнений торакоскопических оперативных методов лечения буллезной формы эмфиземы легких. Сибирский научный медицинский журнал. 2018; 1: 65—68.
- 22. Милованов А.П. Патолого-анатомический анализ причин смертей. М.: Медицина. 2003; 76 с.
- 23. Чикинев Ю.В., Дробязгин Е.А., Пионтковская К.А., и др. Сравнительная оценка торакоскопии и деструкции булл в сочетании с плевродезом и плеврэктомией. Вестник хирургии. 2016. №2.

- 24. Иванов О.В., Клименко В.Н., Решетов А.В. Экономическое обоснование использование амбулаторного плевродеза в лечении экссудативных опухолевых плевритов. Ученые записки СПбГМУ им. И.П.Павлова. 2020. №1.
- 25. Чарышкин А.Л., Кузьмина Е.А., Хуснутдинов Б.И., и др. Методы лечения резистентного экссудативного плеврита. Ульяновский медико-биологический журнал. 2020. №1.
- 26. Плаксин С.А., Фаршатова Л.И. Диагностические и лечебные возможности видеоторакоскопии при плевральных выпотах различной этиологии. Пермский медицинский журнал. 2017. №2.
- 27. Плаксин С.А., Фаршатова Л.И. Роль торакоскопии и плевродеза в диагностике и лечении воспалительных плевральных выпотов. Вестник хирургии 2018. №6.
- 28. Хмара А.Д., Мудрак Д.А., Капралов С.В., Полиданов М.А., Данилов А.Д., Волков К.А., Петрунькин Р.П. Патоморфологическая оценка результатов экспериментального способа лазерного плевродеза у крыс. Морфологические ведомости. 2025; 33(1): id-916.
- 29. Хмара А.Д., Капралов С.В., Полиданов М.А., Масляков В.В., Данилов А.Д., Волков К.А. Хирургическая тактика в лечении двухсторонней буллезной эмфиземы легких. // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и Технические Науки. 2025; 2: 230—235.

© Хмара Артём Дмитриевич (premdania@yandex.ru); Полиданов Максим Андреевич (maksim.polidanoff@yandex.ru); Капралов Сергей Владимирович (sergejkapralov@yandex.ru); Петрунькин Родион Павлович; Майоров Родион Владимирович (docmay@mail.ru); Прохницкая Анастасия Алексеевна (a.prohan@rambler.ru) Журнал «Современная наука: актуальные проблемы теории и практики» DOI 10.37882/2223-2966.2025.09.37

ПРИМЕНЕНИЕ КЛАСТЕРНОГО АНАЛИЗА ДЛЯ ПРОГНОЗИРОВАНИЯ УГНЕТЕНИЯ ПЕРИСТАЛЬТИЧЕСКОЙ АКТИВНОСТИ КИШЕЧНИКА НА ОСНОВЕ ДАННЫХ ВИДЕОФИКСАЦИИ У ЛАБОРАТОРНЫХ ЖИВОТНЫХ

APPLICATION OF CLUSTER ANALYSIS TO PREDICT INTESTINAL PERISTALTIC INHIBITION BASED ON VIDEO RECORDING PERISTALSIS DATA IN LABORATORY ANIMALS

S. Chernyadyev K. Kubasov A. Zhilyakov V. Borodikhina N. Sivkova

Summary. Introduction. Paresis and paralytic intestinal obstruction, which occur in the context of severe forms of peritonitis, represent a pressing issue in modern medicine, as they are a fairly common phenomenon after surgeries on abdominal organs and other types of surgery. The pathogenesis of paralytic intestinal obstruction is diverse and has various causes.

Materials and Methods. The development of diffuse peritonitis was modeled in rabbits of the «White Giant» and «Gray Giant» breeds. The animals were divided into two groups (15 subjects in each): 1 — experimental group, treated using electrical stimulation; 2 — control group. The total observation period for the laboratory animals was 7 days. Results. Intestinal electrical stimulation is an effective treatment method only in cases of pronounced motility reduction observed in Cluster 0. For this group, the use of electrical stimulation has a significant therapeutic effect. In groups with moderate (Cluster 1) and minimal (Cluster 2) motility reduction, no statistically significant effect of electrical stimulation was identified.

Conclusion. A comprehensive analysis of changes in peristaltic velocity combined with clinical manifestations (time to first stool and gas passage) provides a reliable basis for predicting the postoperative course and justifying the need for additional measures to combat enteric insufficiency in specific patients.

Keywords: paresis, paralytic intestinal obstruction, peritonitis.

Чернядьев Сергей Александрович

Доктор медицинских наук, профессор, Федеральное государственное бюджетное образовательное учреждение «Уральский государственный медицинский университет», Екатеринбург kafedra@akado-ural.ru

Кубасов Кирилл Александрович

Ассистент, Федеральное государственное бюджетное образовательное учреждение «Уральский государственный медицинский университет»,
Екатеринбург kafedra@akado-ural.ru

Жиляков Андрей Викторович

Доктор медицинских наук, ассистент, Федеральное государственное бюджетное образовательное учреждение «Уральский государственный медицинский университет», Екатеринбург basket@olympus.ru

Бородихина Валерия Анатольевна

Ассистент, Федеральное государственное бюджетное образовательное учреждение «Уральский государственный медицинский университет», Екатеринбург Valera rikhter@bk.ru

Сивкова Надежда Ивановна

Кандидат социологических наук, Уральский гуманитарный институт Федерального государственного автономного образовательного учреждения «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина», г. Екатеринбург kirub1985@gmail.com

Аннотация. Введение. Парез и паралитическая кишечная непроходимость возникающие на фоне тяжелых форм перитонита является актуальной проблемой современной медицины, поскольку является достаточно частым явлением после операций на органах брюшной полости и других типов хирургии. Патогенез развития паралитической кишечной непроходимости многообразен и имеет разные причины.

Материалы и методы. У кроликов породы «Белый великан» и «Серый великан» моделировали возникновение распространённого перитонита. Животные разделены на 2 группы (по 15 особей в каждой): 1-основная группа пролеченные с помощью электростимуляции; 2-контрольная группа. Общий срок наблюдения за лабораторными животными составил 7 суток.

Результаты. Электростимуляция кишечника является эффективным методом лечения лишь в случае выраженного снижения моторики, наблюдаемого в кластере 0. Для данной группы использование электростимуляции

Введение

арушения моторики кишечника представляют собой серьезную проблему в гастроэнтерологии и хирургии, особенно в контексте послеоперационного пареза и воспалительных заболеваний брюшной полости. Замедление или угнетение перистальтики может приводить к серьезным осложнениям, включая кишечную непроходимость, усиление воспалительной реакции и замедление процессов восстановления после хирургических вмешательств [4, 8].

В связи с этим актуальной задачей является поиск эффективных методов стимуляции моторной активности кишечника, среди которых особое внимание уделяется фармакологическим и аппаратным методам [23]. Одним из перспективных направлений является электростимуляция кишечника, которая уже продемонстрировала свою эффективность при моделях паралитического и механического илеуса [11]. Однако объективные количественные критерии прогнозирования эффективности данного метода до сих пор не разработаны, что ограничивает его широкое клиническое применение [13].

Современные методы диагностики нарушений моторики кишечника включают рентгеноконтрастные исследования, манометрию, электромиографию и ультразвуковую диагностику [14]. Однако эти методы имеют ряд ограничений: они дорогостоящи и зачастую недостаточно чувствительны к динамическим изменениям моторной активности кишечника, или их технически невозможно использовать в ближайший послеоперационный период.

В последние годы активно развивается метод видеофиксации моторной активности кишечника, позволяющий регистрировать изменения перистальтики в реальном времени [7]. В сочетании с алгоритмами машинного обучения и кластерного анализа это открывает новые возможности для выявления скрытых закономерностей в данных и повышения точности прогностических моделей [15].

имеет значительное терапевтическое влияние. В группах с умеренным (кластер 1) и минимальным (кластер 2) снижением моторики кишечника статистически значимого эффекта от применения электростимуляции выявлено не было.

Заключение. Комплексный анализ изменений скорости перистальтики в сочетании с клиническими проявлениями (время до первого стула и отхождения газов) предоставляет надежную основу для прогнозирования течения послеоперационного периода и обоснования необходимости дополнительных мер по борьбе с энтеральной недостаточностью конкретных пациентов.

Ключевые слова: парез, паралитическая кишечная непроходимость, перитонит

Электростимуляция, как метод прямого воздействия на нервно-мышечный аппарат кишечника, в ряде исследований показала эффективность при лечении послеоперационного илеуса [10]. Однако до настоящего времени отсутствуют строгие критерии отбора пациентов или экспериментальных животных, для которых данный метод будет наиболее эффективен [12]. Это обуславливает необходимость разработки объективных критериев оценки эффективности электростимуляции на основе многомерного анализа данных, включая скорость перистальтических движений и временные характеристики восстановления функции кишечника.

Несмотря на значительные успехи в изучении моторики кишечника и методов ее коррекции, остаются нерешенные проблемы, препятствующие повышению эффективности диагностики и лечения. В настоящее время отсутствуют универсальные биомаркеры, позволяющие предсказать эффективность электростимуляции, что затрудняет выбор оптимальной тактики терапии [5]. Кроме того, кластерный анализ, пока недостаточно используются для группировки пациентов или экспериментальных моделей на основе их индивидуального ответа на лечение, что ограничивает персонализированный подход в терапии. Дополнительную сложность создает отсутствие стандартизированных протоколов видеофиксации моторики кишечника, что снижает воспроизводимость результатов исследований и затрудняет их внедрение в клиническую практику.

Цель и задачи исследования

Цель исследования

Разработка объективных критериев оценки моторики кишечника и прогнозирования основе данных видеофиксации и кластерного анализа у экспериментальных животных.

Задачи исследования:

1. Разработать методику анализа моторики кишечника с использованием видеофиксации и алгоритмов обработки данных.

- 2. Применить методы кластерного анализа для выявления групп с различной динамикой восстановления моторной функции кишечника.
- 3. Оценить взаимосвязь между параметрами перистальтической активности, временем восстановления функции кишечника и эффективностью электростимуляции.
- 4. Определить влияние электростимуляции на восстановление моторики кишечника в различных кластерах экспериментальных животных.
- 5. Разработать прогностическую модель для персонализированного подхода к коррекции нарушений моторики кишечника.

Выдвигаемые гипотезы

- 1. Нарушение моторики кишечника при перитоните проявляется в разных формах, которые могут быть классифицированы на основе объективных параметров моторной активности с использованием кластерного анализа.
- 2. Различные степени угнетения моторики кишечника, возникающие в ответ на повреждающий агент, формируют группы с различной динамикой восстановления, что предопределяет вариативность эффективности терапевтического вмешательства, включая электростимуляцию.
- 3. Прямая последовательная электростимуляция кишечника оказывает наиболее выраженный эффект при значительном угнетении моторики, умеренно влияет при среднетяжелых формах дисфункции и практически неэффективна при минимальных изменениях перистальтики.
- 4. Комплексный подход, основанный на видеофиксации моторной активности и кластерном анализе, позволяет объективно оценивать выраженность моторных нарушений и прогнозировать эффективность электростимуляции, обеспечивая персонализированные стратегии коррекции нарушений моторики кишечника.

Цель исследования

Разработка объективных критериев оценки моторики кишечника и прогнозирования эффективности электростимуляции на основе данных видеофиксации и кластерного анализа у экспериментальных животных.

Задачи исследования:

- 1. Разработать методику анализа моторики кишечника с использованием видеофиксации и алгоритмов обработки данных.
- 2. Применить методы кластерного анализа для выявления групп с различной динамикой восстановления моторной функции кишечника.

- 3. Оценить взаимосвязь между параметрами перистальтической активности, временем восстановления функции кишечника и эффективностью электростимуляции.
- 4. Определить влияние электростимуляции на восстановление моторики кишечника в различных кластерах экспериментальных животных.
- 5. Разработать прогностическую модель для персонализированного подхода к коррекции нарушений моторики кишечника.

Материалы и методы

Эксперимент выполнен в соответствии с положениями директивы «О защите животных, используемых в научных целях» и ГОСТ 33215-2014. Животные содержались в условиях вивария при естественном освещении, свободном доступе к воде и пище.

В эксперименте использовали 30 кроликов породы «Белый великан» и «Серый великан» весом 3,5–4,0 кг. Животные были разделены на 2 группы (по 15 особей в каждой): 1-основная группа пролеченные с помощью электростимуляции; 2-контрольная группа. У кроликов моделировали распространенный перитонит, затем проводили две санационные релапаротомии каждые 24 часа. На санационных релапаротомиях оценивали изменение скорости сокращения кишечной стенки с помощью программы «Gut Peristaltis». Затем оценивали изменение скорости сокращения кишечной стенки в продольном и поперечном направлении в динамике относительно каждого для эксперимента.

С целью стимуляции перистальтики кишечника в обеих группах проводили стандартную терапию прозерином, в основной группе дополнительно проводили прямую последовательную электростимуляцию кишечника.

Для группировки объектов (кроликов) на основе множества признаков нами был выбран кластерный анализ методом K-средних (K-means). Этот метод был выбран, так как он позволяет структурировать многомерные данные, учитывая все переменные одновременно. В данном случае это важно, так как степень тяжести перитонита и способность к восстановлению определяются не одним параметром, а комбинацией изменений продольной и поперечной скорости перистальтики, времени до первого стула и отхождения газов. Также этот статический метод выделает четкие кластеры, что облегчает интерпретацию результатов и их использование в дальнейших исследованиях и клинической практике. Также может выступать основой для разработки персонализированного подхода к лечению, так как позволяет выявить группы пациентов со схожими паттернами течения заболевания и разработать для них индивидуализированные протоколы лечения. На основе полученных кластеров можно не только классифицировать текущие случаи, но и прогнозировать принадлежность новых пациентов к определенной группе, что делает данный метод особенно ценным для создания систем поддержки принятия клинических решений и оптимизации терапевтических стратегий.

Для проведения анализа были использованы следующие признаки: Δ Продольная = Продольная скорость (24 ч) — Продольная скорость (0 ч), Δ Поперечная = Поперечная скорость (24 ч) —Поперечная скорость (0 ч), время первого стула после последней релапаротомии (в часах) и время появления отхождения первых газов после последней релапаротомии (в часах). Объектами исследования стали 30 кроликов. В ходе предобработки данных все признаки были нормализованы и использованием StandardScaler. Для определения оптимального числа кластеров использовались Elbow Method и Silhouette Score. На основе проведенного анализа выбрано оптимальное число кластеров (k=3), поскольку дальнейшее увеличение количества кластеров приводит к незначительным улучшениям.

Рассчитанный средний силуэтный коэффициент для различных чисел кластеров также подтвердил выбор (k=3). Для (k=2) он составил 0.52, для (k=3) — 0.62, а для (k=4) снизился до 0.57. Максимальное значение 0.62 при (k=3) указывает на хорошее разделение кластеров, где границы между ними четкие, а перекрытие минимальное, что подтверждает удовлетворительное качество кластеризации.

Дополнительно на основе алгоритма (k)-средних удалось провести подразделение объектов также на три кластера с аналогичными характеристиками. В результате кластеризации три выделенных кластера можно описать следующим образом:

В итоге были получены следующие кластеры:

- кластер 0 (n=10) характеризовался наиболее выраженным снижением продольной и поперечной скорости;
- кластер 1 (n=14) демонстрировал умеренные изменения;
- кластер 2 (n=6) имел минимальные изменения скорости и более короткие сроки восстановления.

Для повышения информативности результатов и применимости их экстраполяции на человека дополнительно рассчитывались относительные изменения скоростей в процентах.

Результаты

В таблице 1 представлены абсолютные и относительные изменения продольной и поперечной скоростей

перистальтики кишечника через 24 часа после моделирования перитонита для каждого из трех кластеров. Данные представлены в виде среднего значения \pm стандартное отклонение.

Таблица 1. Абсолютные и относительные изменения продольной и поперечной скорости перистальтики кишечника в зависимости от кластера

Параметр	Кластер 0	Кластер 1	Кластер 2
Δ Продольная (абс.)	-1.5 ± 0.4	-0.7 ± 0.3	$+0.2 \pm 0.1$
∆ Продольная (%)	-62 % ± 14	-28 % ± 10	+8 % ± 4
∆ Поперечная (абс.)	-0.9 ± 0.2	-0.4 ± 0.1	-0.1 ± 0.05
∆ Поперечная (%)	-45 % ± 11	-18 % ± 7	-5 % ± 2

«**Кластер 0**» характеризуется наиболее выраженным снижением продольной скорости на 62 % (–1.5 мм/с) и поперечной скорости на 45 % (–0.9 мм/с) через 24 часа.

«Кластер 1» отмечается умеренное снижение скоростей — продольной на 28 % (-0.7 мм/с) и поперечной на 18 % (-0.4 мм/с).

«Кластер 2» наблюдается минимальное снижение поперечной скорости на 5 % (-0.1 мм/с), а продольная скорость, напротив, увеличивается на 8 % (+0.2 мм/с).

Время восстановления функции кишечника оценивалось по двум показателям: времени появления первого стула и времени появления первых газов после хирургического вмешательства (Табл. 2).

Таблица 2. Время восстановления функции кишечника после хирургического вмешательства в зависимости от кластера

Параметр	Кластер 0	Кластер 1	Кластер 2
Первый стул (часы)	22.5 ± 3.1	18.3 ± 2.4	12.0 ± 1.8
Первые газы (часы)	16.8 ± 2.5	12.1 ± 1.9	8.2 ± 1.2

«**Кластер 0».** В этой группе восстановление функции кишечника происходило наиболее медленно. Время появления первых газов составляло в среднем 16.8 часов, а первого стула — 22.5 часов.

«**Кластер 1».** Для этой группы отмечено среднее время восстановления: первые газы появлялись через 12.1 часа, первый стул — через 18.3 часа.

«**Кластер 2».** В группе отмечено быстрое восстановление функции кишечника — первые газы наблюдались уже через 8.2 часа, а первый стул через 12.0 часов.

Все параметры характеризуются высокой статистической значимостью (р < 0.001), что свидетельствует о существенных различиях между тремя кластерами.

На основании полученных кластеров было проведено определение критериев для проведения электростимуляции и оценка её эффективности в разных группах (основная группа, контрольная группа).

При анализе распределения в группах было установлено, что большинство животных из кластера 0 (сильное снижение перистальтики) было включено в основную группу, получавшую электростимуляцию (7 из 10 кроликов). Это демонстрирует целесообразность применения данной методики в случаях с выраженными нарушениями моторики. Наоборот, в кластере 2 (минимальное снижение моторики) основная группа была представлена меньшим числом животных (2 из 6), что указывает на ограниченную необходимость электростимуляции в условиях незначительных изменений перистальтики (Табл. 3).

Таблица 3. Оценка эффективности стимуляции в основной и контрольной группах (в абс. значениях)

Кластер	Основная группа (n)	Контрольная группа (n)	
0 (Сильное снижение)	7	3	
1 (Умеренное снижение)	6	8	
2 (Минимальное снижение)	2	4	

Для каждого кластера было проведено сравнение времени появления первого стула и газов между основной группой и контрольной группой (Табл. 4). Статистический анализ (t-тест, α =0.05) выявил значимые различия в эффективности применения электростимуляции только для кластера 0.

В кластере с сильным снижением моторики (кластер 0) основная группа демонстрировала существен-

ное сокращение времени до появления первого стула (на 36 %) и газов (на 46 %) по сравнению с контрольной группой, что свидетельствует о высокой эффективности электростимуляции в данной категории. В кластерах с умеренным (кластер 1) и минимальным снижением (кластер 2) различия между группами были статистически незначимыми (р > 0.05).

Изменение продольной и поперечной скорости перистальтики (Δ Продольная и Δ Поперечная) между 24-м и 48-м часами наблюдения было использовано в качестве дополнительного критерия оценки эффективности электростимуляции (Табл. 5).

В кластере с сильным снижением моторной активности (кластер 0) скорость восстановления продольной и поперечной перистальтики была значительно выше в основной группе по сравнению с контрольной (в 3 и 4 раза быстрее соответственно, р < 0.001). Это указывает на интенсивное стимулирующее воздействие метода в условиях тяжёлого нарушения моторики.

В кластере с умеренным снижением (кластер 1) наблюдалась тенденция к ускорению восстановления в основной группе, однако различия не достигли статистической значимости (р > 0.05). Для кластера с минимальными изменениями (кластер 2) достоверных различий между группами не было выявлено.

Обсуждение

Проведенное нами исследование продемонстрировало значимую эффективность электростимуляции кишечника в коррекции послеоперационного пареза, особенно выраженную в группе пациентов с тяжелым угнетением перистальтики (кластер 0). Эти результаты согласуются с данными других исследователей, показывающих перспективность электростимуляции в лечении послеоперационной кишечной непроходимости, которая возникает у 5–15 % пациентов после обширных абдоминальных

Таблица 4. Сравнение эффективности лечения в основной и контрольной группах в зависимости от принадлежности к кластеру

Параметр		Основная группа (часы)	Контрольная группа (часы)	p-value	Эффективность
Кластер 0	Первый стул	14.2 ± 2.1	22.4 ± 3.5	<0.001	Сокращение времени на 36 %
	Первые газы	8.5 ± 1.3	15.7 ± 2.2	<0.001	Сокращение времени на 46 %
Кластер 1	Первый стул	18.5 ± 3.0	21.3 ± 2.8	0.12	Различия незначимы
	Первые газы	12.0 ± 2.1	14.2 ± 1.7	0.08	Различия незначимы
Кластер 2	Первый стул	20.1 ± 2.5	19.8 ± 1.9	0.85	Различия отсутствуют
	Первые газы	13.5 ± 1.8	12.9 ± 1.5	0.65	Различия отсутствуют

Таблица 5. Сравнение эффективности лечения в основной и контрольной группы в зависимости от принадлежности к кластеру

Параметр		Основная группа (единицы)	Контрольная группа (единицы)	P-value	Эффективность
Кластер 0	Δ Продольная	+0.6 ± 0.2	+0.2 ± 0.1	<0.001	Ускорение в 3 раза
	Δ Поперечная	+0.4 ± 0.1	+0.1 ± 0.05	<0.001	Ускорение в 4 раза
Кластер 1	∆ Продольная	$+0.3 \pm 0.1$	+0.1 ± 0.05	0.06	Тенденция к улучшению
	Δ Поперечная	$+0.2 \pm 0.1$	$+0.05 \pm 0.03$	0.09	Тенденция к улучшению
Кластер 2	Δ Продольная	+0.1 ± 0.05	+0.05 ± 0.02	0.45	Различия отсутствуют
	Δ Поперечная	+0.05 ± 0.02	+0.02 ± 0.01	0.32	Различия отсутствуют

Полученные нами результаты коррелируют с данными недавнего исследования самодвижущегося проглатываемого устройства INSPIRE, где было продемонстрировано улучшение сократительной способности кишечника на 140 % и сокращение времени прохождения содержимого с 8,6 до 2,5 дней при химически индуцированном илеусе [8]. Схожие положительные результаты были получены при изучении чрескожной электрической стимуляции акупунктурных точек (TEAS), где отмечалось снижение частоты послеоперационного паралитического илеуса на 8,7 % и уменьшение риска его развития на 32 % [6]

В нашем исследовании следует отметить как сильные стороны, так и существенные ограничения. Основным преимуществом работы является высокая объективность полученных данных, достигнутая благодаря применению видеофиксации и автоматизированного анализа перистальтики с помощью программы «Gut Peristaltis». Использование рандомизации методом подброса монетки также способствовало минимизации систематических ошибок. Однако ключевым ограничением исследования является малый размер выборки (30 кроликов), что существенно влияет на статистическую мощность результатов. Согласно современным исследованиям, увеличение размера выборки критически важно для повышения вероятности обнаружения истинного эффекта и снижения вероятности ошибок второго рода [14]. Исследования с недостаточной статистической мощностью часто не способны выявить клинически значимые различия [10]. Особенно явно это ограничение проявилось в кластерах 1 и 2, где, например, различия во времени появления газов между группами составили 2.2 часа (12.0 vs. 14.2), но не достигли статистической значимости (p=0.08) из-за малого числа наблюдений (n=14). Увеличение выборки до 50-60 животных могло бы позволить более достоверно оценить наблюдаемые тенденции.

Селективное применение электростимуляции в группе высокого риска (кластер 0) представляется не только клинически эффективным, но и экономически целесообразным решением, особенно в условиях ограниченных ресурсов здравоохранения. Такой подход может существенно улучшить результаты лечения за счет улучшения моторики желудочно-кишечного тракта, уменьшения воспаления и эффективного обезболивания.

Заключение

Таким образом, проведенное исследование подтверждает эффективность применения электростимуляции кишечника как метода лечения паралитической непроходимости при распространенном перитоните, особенно в группе пациентов высокого риска, с выраженным, более 62 % снижением скорости перистальтики. Персонализированный подход, основанный на видеофиксации скорости сокращения кишечной стенки и комплексной оценке степени тяжести заболевания, позволяет обосновать необходимость применения электростимуляции и прогнозировать течение послеоперационного периода. Электростимуляция демонстрирует не только клиническую эффективность, но и экономическую целесообразность, однако для широкого внедрения метода в клиническую практику требуется дальнейшая работа по стандартизации протоколов и устранению методологических ограничений.

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов.

Соответствие принципам этики. Протокол исследования утверждён этическим комитетом Уральского государственного медицинского университета (протокол заседания N 5 от 20.05.2016).

ЛИТЕРАТУРА

- 1. Соловьев, И.А. Послеоперационный парез кишечника проблема абдоминальной хирургии / И.А. Соловьев, А.В. Колунов // Вестник Национального медико-хирургического Центра им. Н.И. Пирогова. 2013. Т. 8, No2. C.112118.
- 2. Суковатых, Б.С. Механизмы развития распространенного перитонита / Б.С. Суковатых, Ю.Ю. Блинков, О.Г. Фролова // Вестник экспериментальной и клинической хирургии. 2012. Т. 2. С. 469477.
- 3. Проблемы и перспективы программированной релапаротомии в абдоминальной хирургии / А.О. Остаев, А.А. Бархударов, А.Е. Климов, И.А. Бадретдинов // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2023. No 12. C. 184—187. DOI 10.37882/2223-2966.2023.12.26. EDN ZZBDOQ.
- 4. Chaudhari A.A., Kariyawasam S. An experimental infection model for Escherichia coli egg peritonitis in layer chickens Avian diseases. 2013; 58 (1): 25–33.
- 5. Abrams D, Montesi SB, Moore SKL, Manson DK, Klipper KM, Case MA, Brodie D, Beitler JR. Powering Bias and Clinically Important Treatment Effects in Randomized Trials of Critical Illness. Crit Care Med. 2020 Dec; 48(12):1710–1719. doi: 10.1097/CCM.0000000000004568. PMID: 33031148; PMCID: PMC7708428.
- 6. Datta E, Ballal A, Lopez JE, Izu LT (2023) MapperPlus: Agnostic clustering of high-dimension data for precision medicine. PLOS Digital Health. 2023. № 8 (2). C. e0000307.
- 7. Docsa T, Sipos A, Cox CS, Uray K. The Role of Inflammatory Mediators in the Development of Gastrointestinal Motility Disorders. Int J Mol Sci. 2022 Jun 22;23(13):6917. doi: 10.3390/ijms23136917. PMID: 35805922; PMCID: PMC9266627.
- 8. Dubrovsky G, Lo YK, Wang PM, Wu MD, Huynh N, Liu W, Dunn JCY. Intestinal Electrical Stimulation to Increase the Rate of Peristalsis. J Surg Res. 2019 Apr;236:153–158. doi: 10.1016/j.jss.2018.11.044. Epub 2018 Dec 17. PMID: 30694750.
- 9. Li WJ, Gao C, An LX, Ji YW, Xue FS, Du Y. Perioperative transcutaneous electrical acupoint stimulation for improving postoperative gastrointestinal function: A randomized controlled trial. J Integr Med. 2021 May;19(3):211—218. doi: 10.1016/j.joim.2021.01.005. Epub 2021 Jan 13. PMID: 33495134.
- 10. Karthik N, Lodha M, Baksi A, Dutt A, Banerjee N, Swathi M, Choudhary IS, Meena SP, Sharma N, Puranik AK. Effects of transcutaneous electrical nerve stimulation on recovery of gastrointestinal motility after laparotomy: A randomized controlled trial. World J Surg. 2024 Jul;48(7):1626–1633. doi: 10.1002/wjs.12233. Epub 2024 May 27. PMID: 38801218.
- 11. Li W. [и др.]. Perioperative transcutaneous electrical acupoint stimulation for improving postoperative gastrointestinal function: A randomized controlled trial // Journal of Integrative Medicine. 2021. № 3 (19). C. 211—218.
- 12. Penfold JA, Wells CI, Du P, Bissett IP, O'Grady G. Electrical Stimulation and Recovery of Gastrointestinal Function Following Surgery: A Systematic Review. Neuromodulation. 2019 Aug;22(6):669–679. doi: 10.1111/ner.12878. Epub 2018 Nov 19. PMID: 30451336.
- 13. Schiemer, J.F., Heimann, A., Somerlik-Fuchs, K.H., Ruff, R., Hoffmann, K., Baumgart, J., & Kneist, W. (2018). Electrical stimulation with motility analysis of five parts of the gastrointestinal tract. Current Directions in Biomedical Engineering, 4, 9–11.
- 14. Stakenborg N, Gomez-Pinilla PJ, Boeckxstaens GE. Postoperative lleus: Pathophysiology, Current Therapeutic Approaches. Handb Exp Pharmacol. 2017;239:39–57. doi: 10.1007/164_2016_108. PMID: 27999957.

© Чернядьев Сергей Александрович (kafedra@akado-ural.ru); Кубасов Кирилл Александрович (kafedra@akado-ural.ru); Жиляков Андрей Викторович (basket@olympus.ru); Бородихина Валерия Анатольевна (Valera_rikhter@bk.ru); Сивкова Надежда Ивановна (kirub1985@gmail.com)

Журнал «Современная наука: актуальные проблемы теории и практики»

DOI 10.37882/2223-2966.2025.09.39

ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ РАЗЛИЧНЫХ МЕТОДИК ОТБЕЛИВАНИЯ ЗУБОВ: ОБЗОР ЛИТЕРАТУРЫ

THE EFFECTIVENESS OF VARIOUS TOOTH WHITENING TECHNIQUES: A LITERATURE REVIEW

E. Yakubiv

Summary. In recent years, the demand for aesthetic dentistry, particularly teeth whitening, has significantly increased. The aim of this article is to provide a comprehensive analysis of the effectiveness of various teeth whitening methods based on modern scientific data. The review covers over-the-counter products, at-home methods with custom trays, professional in-office bleaching, laser technologies, and combined protocols. Materials and methods included a systematic search in PubMed, Scopus, and Web of Science, selecting randomized controlled trials, meta-analyses, and clinical studies. The results showed that professional methods, especially in-office bleaching and combined approaches, offer the highest effectiveness ($\Delta E > 6.0$) and long-lasting results (up to 12– 18 months). Over-the-counter products demonstrate limited efficacy (ΔΕ 1.0–2.5), while at-home methods occupy an intermediate position. The discussion emphasizes the importance of individualized method selection based on clinical conditions, tooth sensitivity, and patient compliance. In conclusion, teeth whitening remains a highly sought-after procedure, and future research may focus on developing personalized approaches.

Keywords: teeth whitening, professional methods, home methods, aesthetic dentistry, whitening techniques, effectiveness, professional whitening, clinical research.

Якубив Екатерина Владимировна Врач-стоматолог, ИП Якубив Е.В. syyuan@mail.ru

Аннотация. В последние годы спрос на эстетическую стоматологию, в частности на отбеливание зубов, значительно вырос. Цель данной статьи — провести комплексный анализ эффективности различных методик отбеливания зубов на основе современных научных данных. В обзоре рассмотрены безрецептурные средства, домашние методы с индивидуальными каппами, профессиональное кабинетное отбеливание, лазерные технологии и комбинированные протоколы. Материалы и методы включали систематический поиск в базах PubMed, Scopus и Web of Science с отбором рандомизированных контролируемых исследований, метаанализов и клинических исследований. Результаты показали, что профессиональные методы, особенно кабинетное отбеливание и комбинированные подходы, обеспечивают наибольшую эффективность ($\Delta E > 6.0$) и длительный эффект (до 12–18 месяцев). Безрецептурные средства демонстрируют ограниченное действие (ДЕ 1.0-2.5), а домашние методы занимают промежуточное положение. Обсуждение подчеркивает важность индивидуального выбора методики с учетом клинической ситуации, чувствительности зубов и готовности пациента. В заключении отмечается, что отбеливание зубов остается востребованной процедурой, а будущие исследования могут быть направлены на разработку персонализированных методов.

Ключевые слова: отбеливание зубов, профессиональные методы, домашние методы, эстетическая стоматология, методики отбеливания, эффективность, профессиональное отбеливание, клинические исследования.

Введение

В последние десятилетия стремление к эстетически привлекательной улыбке приобрело особую значимость, что обусловлено не только медицинскими, но и социально-психологическими факторами. Белизна зубов воспринимается как маркер здоровья, гигиенической культуры и даже социального статуса, что особенно актуально в условиях современного общества, где визуальная коммуникация играет ключевую роль. Этот тренд находит отражение в устойчивом росте спроса на процедуры отбеливания зубов, которые занимают одно из ведущих мест в структуре эстетической стоматологии [1].

Развитие технологий и расширение спектра доступных методик привели к формированию разнообразного арсенала средств для коррекции дисколораций зубов. В клинической практике применяются профессиональ-

ные методы, такие как кабинетное отбеливание с использованием высококонцентрированных пероксидных гелей, активируемых светом или лазером, а также системы для домашнего применения, включающие индивидуальные каппы с пероксидом карбамида или водорода в более низких концентрациях. Параллельно широкое распространение получили безрецептурные средства — отбеливающие зубные пасты, ополаскиватели и полоски, содержащие абразивные компоненты или мягкие окислители.

Несмотря на кажущуюся простоту процедуры, отбеливание зубов остается сложным биохимическим процессом, требующим взвешенного подхода. Различия в механизмах действия, концентрациях активных веществ и методиках применения обуславливают существенную вариабельность результатов. При этом ключевыми аспектами, определяющими выбор метода, являются не только его эффективность, оцениваемая по параметрам изменения цвета (ΔΕ, шкала VITA), но и безопасность, продолжительность сохранения эффекта, а также риск развития осложнений, таких как гиперчувствительность зубов или раздражение слизистых оболочек [2].

Особую актуальность приобретают вопросы долгосрочных последствий отбеливания, включая потенциальное влияние на структуру эмали и дентина при многократном применении агрессивных методик. В научной литературе продолжаются дискуссии относительно оптимальных протоколов, направленных на минимизацию рисков при сохранении высокой эффективности. Кроме того, важным аспектом остается проблема рецидива дисколораций, связанная с пищевыми привычками пациентов и необходимостью поддерживающей терапии.

В работе рассматриваются сравнительные характеристики различных методик, их эффективность, продолжительность действия, профиль безопасности и практические аспекты применения, что позволит сформировать научно обоснованные рекомендации для клинической практики.

Цель: комплексный анализ эффективности различных методик отбеливания зубов на основе данных современной литературы.

Материалы и методы

Для составления систематического обзора были использованы данные из баз PubMed, Scopus, Web of Science. Были включены рандомизированные контролируемые исследования (RCT), метаанализы, систематические обзоры и проспективные клинические исследования, в которых сравнивались методы отбеливания зубов у взрослых пациентов.

Критерии включения:

- сравнение не менее двух методик отбеливания;
- оценка эффективности в терминах цветовых показателей (например, ΔЕ или шкала VITA);
- указание побочных эффектов (чувствительность, повреждение эмали);
- наличие доступа к полному тексту статьи и действующего DOI.

Критерии исключения:

- эксперименты in vitro без клинического подтверждения;
- отсутствие количественной оценки результатов;
- исследования на детях и подростках.

По результатам поиска было отобрано 47 статей, из которых 22 соответствовала критериям включения и была проанализирована в статье.

Обзор литературы

1. Безрецептурные методы (OTC — Over-the-counter)

Безрецептурные средства для отбеливания зубов — это доступные продукты, включая зубные пасты, ополаскиватели, отбеливающие полоски и гели. Их основное преимущество — простота применения и низкая стоимость, однако эффективность таких средств ограничена и зачастую временная.

Зубные пасты содержат абразивы (карбонат кальция, кремнезем) или химические отбеливатели (перекись водорода в низкой концентрации). Несмотря на то, что такие пасты демонстрируют незначительное улучшение цвета (Δ E ~1.5–2.0), их способность проникать в дентин ограничена, и поэтому они не подходят для устранения глубоких дисколораций.

Систематический обзор Joiner (2010) показал, что отбеливающие зубные пасты могут привести к улучшению цвета на один-два тона по шкале VITA в течение 4–6 недель регулярного применения [4]. В исследование Hasson подтвердило незначительное, но статистически значимое изменение цвета при длительном использовании таких паст [5].

Ополаскиватели и полоски, содержащие низкие концентрации перекиси водорода (до 6 %), демонстрируют лучшие результаты по сравнению с зубными пастами, однако при длительном применении возможна повышенная чувствительность зубов и раздражение дёсен. В исследовании было показано, что полоски с 6 % H_2O_2 обеспечивают ΔE до 3.0 при применении дважды в день в течение 14 дней .

Таким образом, ОТС-методы безопасны, но обладают ограниченной эффективностью. Они подходят для устранения поверхностного окрашивания, но не заменяют профессиональные методы при выраженной пигментации.

2. Домашнее отбеливание с использованием индивидуальных капп

Домашнее отбеливание зубов с применением индивидуальных капп представляет собой широко распространенную методику, сочетающую клиническую эффективность с относительной простотой использования. Данный подход основан на применении специально изготовленных стоматологических капп, в которые наносится отбеливающий гель на основе карбамида пероксида или перекиси водорода. Концентрации активных веществ в таких гелях обычно варьируют в пределах 10–22 % для карбамида пероксида (что соответствует 3.5–7.5 % перекиси водорода), что обеспечивает баланс

между эффективностью и безопасностью при длительном применении [6].

Клинический протокол предполагает ношение капп с гелем в течение 2–8 часов в сутки (в зависимости от концентрации и индивидуальной переносимости) на протяжении курса лечения, составляющего в среднем 7–14 дней. Важным преимуществом данной методики является возможность адаптации режима применения под индивидуальные особенности пациента — от кратковременного дневного ношения до продолжительного ночного использования, что значительно повышает комплаентность лечения [7].

Многочисленные клинические исследования подтверждают высокую эффективность данного метода. Систематический обзор Meireles et al. (2009), включавший анализ 17 рандомизированных контролируемых исследований, продемонстрировал, что домашнее отбеливание с каппами позволяет достичь изменения цвета зубов с показателем $\Delta E > 5.0$, что является клинически значимым и визуально заметным результатом. При этом достигнутый эффект сохраняется в течение 8-12 месяцев при условии соблюдения рекомендаций по поддерживающей терапии [6]. Особого внимания заслуживают работы Haywood и Heymann, которые доказали, что использование 10 % карбамида пероксида при ночном режиме применения не только обеспечивает выраженный отбеливающий эффект, но и характеризуется меньшей частотой развития гиперчувствительности по сравнению с более высокими концентрациями [7].

Несмотря на очевидные преимущества, методика имеет ряд ограничений и потенциальных недостатков. Основной проблемой остается зависимость результата от соблюдения пациентом предписанного режима — несвоевременное или нерегулярное использование капп, их неплотное прилегание к зубам может привести к неравномерности отбеливания и снижению общей эффективности процедуры. Кроме того, при неправильном применении возможно развитие местных побочных эффектов, таких как раздражение десен вследствие вытекания геля из-под краев каппы [8].

Важным аспектом является безопасность метода для твердых тканей зубов. Многочисленные исследования подтверждают, что при соблюдении рекомендованных концентраций и сроков применения риск повреждения эмали минимален. Это связано с более низкими концентрациями активных веществ по сравнению с кабинетными методиками и постепенным характером воздействия. Однако специалисты подчеркивают необходимость предварительной санации полости рта и оценки состояния эмали перед началом отбеливающих процедур [8].

Сравнительный анализ показывает, что домашние системы с индивидуальными каппами по своей конеч-

ной эффективности сопоставимы с кабинетными методами отбеливания, однако требуют более длительного времени для достижения результата (в среднем 1–2 недели против 1–2 посещений при профессиональном отбеливании). Это делает их идеальным выбором для пациентов, предпочитающих постепенное, щадящее отбеливание без необходимости частых посещений стоматологической клиники. При этом успех методики во многом зависит от мотивации и дисциплинированности пациента, что следует учитывать при выборе оптимального метода коррекции цвета зубов в каждом конкретном случае [6,8].

3. Профессиональное кабинетное отбеливание (inoffice bleaching)

Кабинетное отбеливание проводится в условиях стоматологической клиники и предполагает применение высококонцентрированных гелей перекиси водорода (25–40 %) с активацией или без неё. Сеанс обычно длится 30–60 минут, курс — 1–3 процедуры.

Данное направление считается наиболее эффективным при необходимости быстрого результата. В мета-анализе Maran et al. (2020) было показано, что кабинетное отбеливание обеспечивает изменение цвета в пределах $\Delta E > 6.0$, что воспринимается как значительное улучшение [9]

Peydro-Herrero et al. подтвердил, что результаты сохраняются на протяжении 6–12 месяцев при соблюдении гигиены и отсутствии красящих пищевых продуктов [10].

Однако частыми побочными эффектами являются временная гиперчувствительность зубов (до 67 % случаев) и раздражение мягких тканей при неправильной изоляции. Также существуют опасения по поводу снижения микротвердости эмали при многократных процедурах, особенно при коротких интервалах между ними.

Исходя из вышесказанного, можно сделать вывод, что кабинетное отбеливание — наиболее быстрое и заметное по эффекту решение, однако оно сопровождается большей частотой побочных эффектов, требует тщательной изоляции тканей и контроля врача [11].

4. Лазерные и фотоактивируемые технологии

Лазерное отбеливание представляет собой разновидность in-office bleaching, при котором отбеливающий гель активируется источником света (лазер, светодиод, плазма). Основное преимущество заключается в ускорении реакции и потенциале для повышения глубины проникновения активных компонентов [12, 13].

Рандомизированное исследование Buchalla et al. по-казало, что лазерная активация 35 $\,\%$ перекиси водорода

обеспечивает сопоставимые значения изменения цвета (Δ E ~6.1), но позволяет сократить общее время процедуры и снизить частоту гиперчувствительности [14].

Однако преимущества лазерной активации не всегда статистически значимы, а стоимость оборудования делает метод менее доступным.

Лазерное отбеливание потенциально сокращает длительность процедуры и может снизить побочные эффекты, но не показывает радикального прироста эффективности по сравнению с традиционным in-office методом.

У пациентов, прошедших процедуру светоактивированного отбеливания, наблюдалось выраженное изменение цвета зубов независимо от используемого отбеливающего средства. Что касается чувствительности, результаты различных исследований оказались противоречивыми. Лазерная активация отбеливающего вещества повышает эффективность лечения, но не снижает послеоперационную чувствительность [15].

5. Комбинированные протоколы

Смешанные подходы (например, кабинетное отбеливание с последующим домашним ношением капп) набирают популярность из-за улучшения долговременного эффекта. Сравнительные исследования показали, что комбинация in-office + home bleaching обеспечивает наиболее устойчивый результат, снижая вероятность рецидива в течение 12 месяцев. Комбинированные схемы также позволяют индивидуализировать лечение: быстрый старт достигается в клинике, а поддержание эффекта продолжается дома [16, 17]. Комбинированные методы обладают максимальной устойчивостью эффекта, но требуют большей вовлечённости пациента и координации между клиническим и домашним этапом лечения [18].

Обсуждение

Проведённые исследования демонстрируют, что все существующие методы отбеливания зубов обладают подтверждённой клинической эффективностью, однако существенно различаются по ряду ключевых параметров: глубине воздействия на дентин и эмаль, продолжительности сохранения достигнутого эффекта, частоте возникновения побочных реакций, а также доступности для различных групп пациентов.

Изменение цвета зубов традиционно оценивается с помощью двух основных методик:

 Параметр ΔЕ (разница в цвете между исходным и конечным состоянием), где значение ΔΕ > 3.3 считается клинически значимым и визуально заметным улучшением. 2. Шкала VITA, широко применяемая в стоматологической практике для стандартизированной оценки оттенков зубов.

Сравнительная характеристика методов отбеливания зубов раскрывает ключевые различия между существующими подходами по таким параметрам, как эффективность (ΔЕ), продолжительность процедуры, длительность сохранения результата, частота побочных эффектов и стоимость, что позволяет клиницистам и пациентам сделать осознанный выбор оптимальной методики в зависимости от клинической ситуации и индивидуальных предпочтений.

- 1. Безрецептурные средства (пасты, ополаскиватели, жевательные резинки)
- Эффективность: ΔЕ варьируется в пределах 1.0–2.5, что соответствует слабовыраженному отбеливанию.
- Особенности: Эффект проявляется только при длительном и регулярном применении (не менее 4–6 недель).
- Показания: Оптимальны для коррекции поверхностных дисколораций, вызванных курением, чаем или кофе.
- 2. Домашнее отбеливание (капы с пероксидом карбамида 10–20 %)
- Эффективность: ∆Е достигает 4.0–6.0, что обеспечивает заметный визуальный результат.
- Устойчивость: При соблюдении рекомендованного режима (ношение капп 2–4 часа в день в течение 10–14 дней) эффект сохраняется 6–9 месяцев.
- 3. Кабинетное (in-office) отбеливание (пероксид водорода 25–40 %)
- Эффективность: ΔE > 6.0, что обеспечивает максимально выраженное осветление уже после первой процедуры.
- Преимущества: Контроль стоматолога, быстрота достижения результата (1–2 визита).
- 4. Лазерная и LED-активация
- Эффективность: ΔE незначительно выше, чем при традиционном in-office отбеливании.
- Основное преимущество: Сокращение времени процедуры (до 30–40 минут) за счёт ускоренной активации геля.
- 5. Комбинированные подходы (домашнее + кабинетное)
- Эффективность: ΔΕ 5.5–7.5, что обеспечивает наиболее длительный результат (12–18 месяцев).
- Механизм: Сочетание начального мощного осветления в клинике с поддерживающей терапией дома.

Таким образом, наибольшая эффективность наблюдается при профессиональных методиках и их комбинации, тогда как безрецептурные средства играют вспомогательную роль в поддержании эффекта [19].

Несмотря на широкое распространение методик отбеливания зубов, их применение сопряжено с определенными побочными эффектами, среди которых наиболее распространенными являются временная гиперчувствительность зубов, сохраняющаяся до 48 часов после процедуры [20], и раздражение слизистой оболочки полости рта, возникающее преимущественно при контакте отбеливающих гелей с десневой тканью [21, 22]. Частота и выраженность этих осложнений существенно варьируют в зависимости от применяемой методики.

Наибольший риск развития гиперчувствительности наблюдается при проведении кабинетного отбеливания с использованием высококонцентрированных пероксидных гелей, где частота этого осложнения достигает 60-70 % случаев, особенно при недостаточной защите дентина и десневого края в ходе процедуры. В случае домашнего отбеливания с применением индивидуальных капп и гелей меньшей концентрации чувствительность зубов встречается значительно реже, а ее интенсивность напрямую зависит от продолжительности ношения капп и индивидуальной чувствительности пациента. Наименьший риск осложнений характерен для безрецептурных отбеливающих средств, где частота побочных эффектов не превышает 5 % случаев, что объясняется их щадящим составом и поверхностным механизмом действия.

Особого внимания заслуживает вопрос влияния отбеливающих процедур на структуру зубных тканей. Современные исследования свидетельствуют, что при соблюдении рекомендованных протоколов и концентраций активных веществ значимых структурных изменений эмали не происходит. Однако при чрезмерно частом проведении процедур, особенно с интервалами менее 6 месяцев, могут наблюдаться явления поверхностной деминерализации эмали, повышающие риск развития кариеса и некариозных поражений. Это подчеркивает важность соблюдения рекомендованных интервалов между курсами отбеливания и проведения реминерализирующей терапии в восстановительном периоде.

Многочисленные клинические исследования подтверждают, что при соблюдении протоколов отбеливания структурные повреждения эмали отсутствуют. Однако при злоупотреблении (интервалы между процедурами менее 6 месяцев) возможны:

- Деминерализация поверхностного слоя эмали.
- Повышенная стираемость.

Длительность сохранения эффекта зависит от метода и образа жизни пациента:

ОТС-средства — 1–2 месяца (быстрое возвращение исходного цвета при употреблении кофе, чая, красного вина).

- Домашние системы 6–9 месяцев.
- Кабинетные методы 6–12 месяцев.
- Комбинированные схемы 12–18 месяцев.

Выбор оптимального метода отбеливания зубов определяется комплексом взаимосвязанных факторов, среди которых ключевое значение имеет характер дисколорации. Так, при глубоких и стойких изменениях цвета, обусловленных флюорозом или тетрациклиновым окрашиванием, предпочтение следует отдавать профессиональным кабинетным методикам, в то время как поверхностные пигментации, вызванные пищевыми красителями или курением, могут быть скорректированы спомощью менее инвазивных домашних систем. Особого внимания требует состояние твердых тканей зубов: при истонченной эмали или повышенной чувствительности показаны щадящие протоколы с использованием низкоконцентрированных пероксидных гелей и обязательной предварительной реминерализирующей терапией.

Важным практическим аспектом является временной фактор. В ситуациях, когда требуется быстрый видимый результат к определенной дате, безусловным преимуществом обладают in-office методики, обеспечивающие моментальный эффект за одну процедуру. Однако при планировании отбеливания необходимо учитывать и организационные моменты, включая финансовые возможности пациента и его готовность к продолжительным поддерживающим процедурам, поскольку кабинетные методы, несмотря на их высокую эффективность, требуют существенных материальных затрат по сравнению с домашними аналогами.

Особое значение в обеспечении безопасности процедуры имеет стоматологический контроль, позволяющий минимизировать потенциальные риски за счет индивидуального подбора концентрации активных веществ, защиты слизистых оболочек и мониторинга состояния эмали на всех этапах отбеливания.

Для сохранения достигнутого результата пациентам рекомендуется придерживаться «белой диеты» в первые 48-72 часа после процедуры, исключив употребление красящих продуктов и напитков. Не менее важным компонентом поддерживающей терапии является тщательная гигиена полости рта с использованием реминерализующих зубных паст, способствующих восстановлению структуры эмали. Существенную роль в предотвращении рецидивов дисколорации играет отказ от курения и регулярное проведение профессиональных гигиенических чисток, позволяющих своевременно удалять зубные отложения и поддерживать оптимальное состояние твердых тканей зубов. Комплексный подход, сочетающий правильно подобранную методику отбеливания с последующим уходом, обеспечивает не только выраженный, но и продолжительный эстетический эффект.

Заключение

Отбеливание зубов остаётся одним из самых востребованных и клинически значимых методов эстетической стоматологии. Разнообразие доступных методик позволяет индивидуализировать подход к пациенту в зависимости от его потребностей, клинической картины, уровня чувствительности и желаемого результата.

Наибольшей эффективностью обладают профессиональные методы отбеливания, особенно кабинетное лечение с высокой концентрацией перекиси водорода, а также комбинированные протоколы, сочетающие клиническую и домашнюю фазы. В то же время домашние системы с индивидуальными каппами демонстрируют сопоставимый результат при условии соблюдения режима, обладают меньшей частотой побочных эффектов и большей доступностью.

Безрецептурные средства, несмотря на широкую популярность, обеспечивают ограниченный и краткосрочный эффект, и, скорее, выступают как дополнение к основной терапии либо как поддерживающий компонент после профессионального отбеливания.

Рекомендованным подходом является индивидуальный выбор методики отбеливания с учётом клинической ситуации, оценки риска гиперчувствительности и готовности пациента к соблюдению рекомендаций. Врач-стоматолог должен информировать пациента о реалистичных ожиданиях, длительности эффекта, возможных осложнениях и необходимости регулярного контроля.

В будущем перспективным направлением может стать разработка персонализированных формул отбеливания, основанных на микробиоме полости рта, плотности эмали и генетической чувствительности тканей.

ЛИТЕРАТУРА

- 1. Carey CM. Tooth whitening: what we now know. J Evid Based Dent Pract. 2014 Jun;14 Suppl:70-6. doi: 10.1016/j.jebdp.2014.02.006. Epub 2014 Feb 13.
- 2. Kahler B. Present status and future directions Managing discoloured teeth. Int Endod J. 2022 Oct;55 Suppl 4(Suppl 4):922-950. doi: 10.1111/iej.13711. Epub 2022 Mar 8.
- 3. Fioresta R, Melo M, Forner L, Sanz JL. Prognosis in home dental bleaching: a systematic review. Clin Oral Investig. 2023 Jul;27(7):3347—3361. doi: 10.1007/s00784-023-05069-0. Epub 2023 Jun 5.
- 4. Joiner A. Whitening toothpastes: a review of the literature. J Dent. 2010;38 Suppl 2:e17–24. doi: 10.1016/j.jdent.2010.05.017. Epub 2010 May 24
- 5. Hasson H, Ismail AI, Neiva G. Home-based chemically-induced whitening of teeth in adults. Cochrane Database Syst Rev. 2006 Oct 18;(4):CD006202. doi: 10.1002/14651858.CD006202. Update in: Cochrane Database Syst Rev. 2018 Dec 18;12:CD006202. doi: 10.1002/14651858.CD006202.pub2.
- 6. Meireles SS, dos Santos Ida S, Della Bona A, Demarco FF. A double-blind randomized controlled clinical trial of 10 percent versus 16 percent carbamide peroxide tooth-bleaching agents: one-year follow-up. J Am Dent Assoc. 2009 Sep;140(9):1109—17. doi: 10.14219/jada.archive.2009.0337.
- 7. Haywood VB, Heymann HO. Nightquard vital bleaching: how safe is it? Quintessence Int. 1991 Jul;22(7):515–23.
- 8. Mounika A, Mandava J, Roopesh B, Karri G. Clinical evaluation of color change and tooth sensitivity with in-office and home bleaching treatments. Indian J Dent Res. 2018 Jul-Aug;29(4):423–427. doi: 10.4103/ijdr.IJDR_688_16.
- 9. Maran BM, Matos TP, de Castro ADS, et al. In-office bleaching with low/medium vs. high concentrate hydrogen peroxide: A systematic review and meta-analysis. Journal of Dentistry. 2020 Dec;103:103499. DOI: 10.1016/j.jdent.2020.103499.
- 10. Peydro-Herrero, Marta & Montiel-Company, Jose & Labaig-Rueda, Carlos & Solá-Ruiz, Mª Fernanda & Agustín-Panadero, Rubén & Amengual, José. (2020). Clinical Efficacy of Four In-Office Vital Tooth Bleaching Products with Different Concentrations of Hydrogen Peroxide: A Randomized, Quadruple-Blind Clinical Trial. Applied Sciences. 10. 4650. 10.3390/app10134650.
- 11. Guanaes BKA, Duarte TN, Correr GM, Kaizer MDR, Gonzaga CC. In-office dental bleaching with violet light emitting diode: bleaching efficacy and pulpal temperature rise. Restor Dent Endod. 2022 Feb 3;47(1):e7. doi: 10.5395/rde.2022.47.e7. PMID: 35284332;
- 12. Dionysopoulos D, Strakas D, Koliniotou-Koumpia E, Koumpia E. Effect of Er, Cr: YSGG laser irradiation on bovine enamel surface during in-office tooth bleaching ex vivo. Odontology. 2017 Jul; 105(3):320–328. doi: 10.1007/s10266-016-0273-2. Epub 2016 Oct 14. P
- 13. Surmelioglu D, Usumez A. Effectiveness of Different Laser-Assisted In-Office Bleaching Techniques: 1-Year Follow-Up. Photobiomodul Photomed Laser Surg. 2020 0ct;38(10):632–639. doi: 10.1089/photob.2019.4741. Epub 2020 Apr 15.
- 14. Buchalla W, Attin T. External bleaching therapy with activation by heat, light or laser--a systematic review. Dent Mater. 2007 May;23(5):586–96. doi: 10.1016/j. dental.2006.03.018. Epub 2006 Jul 3.
- 15. Kikly A, Jaáfoura S, Sahtout S. Vital laser-activated teeth bleaching and postoperative sensitivity: A systematic review. J Esthet Restor Dent. 2019 Sep;31(5):441–450. doi: 10.1111/jerd.12482. Epub 2019 Apr 16.
- 16. da Rosa G, Maran BM, Schmitt VL, Loguercio AD, Reis A, Naufel FS. Effectiveness of Whitening Strips Use Compared With Supervised Dental Bleaching: A Systematic Review and Meta-analysis. Oper Dent. 2020 Nov 1;45(6):E289—E307. doi: 10.2341/19-160-L.
- 17. Cardenas AFM, Maran BM, Araújo LCR, de Siqueira FSF, Wambier LM, Gonzaga CC, Loguercio AD, Reis A. Are combined bleaching techniques better than their sole application? A systematic review and meta-analysis. Clin Oral Investig. 2019 Oct;23(10):3673—3689. doi: 10.1007/s00784-019-03042-4. Epub 2019 Aug 29.
- 18. Mounika A, Mandava J, Roopesh B, Karri G. Clinical evaluation of color change and tooth sensitivity with in-office and home bleaching treatments. Indian J Dent Res. 2018 Jul-Aug;29(4):423–427. doi: 10.4103/ijdr.IJDR_688_16.
- 19. Abouelfotouh IFI, Fahmy OMI, Khairy AE, Eldine DMS. A comparative study of different bleaching techniques, regarding the color change, stability and postoperative hypersensitivity: a randomized controlled clinical trial. Stomatological Dis Sci. 2018;2:5. http://dx.doi.org/10.20517/2573-0002.2018.01.

- 20. Rezende M, Coppla FM, Chemin K, Chibinski AC, Loguercio AD, Reis A. Tooth Sensitivity After Dental Bleaching With a Desensitizer-containing and a Desensitizer-free Bleaching Gel: A Systematic Review and Meta-analysis. Oper Dent. 2019 Mar/Apr;44(2):E58–E74. doi: 10.2341/17-253-L.
- 21. Moran BM, Ziegelmann PK, Berger SB, Burey A, de Paris Matos T, Fernández E, Loguercio AD, Reis A. Evaluation of Tooth Sensitivity of In-office Bleaching with Different Light Activation Sources: A Systematic Review and a Network Meta-analysis. Oper Dent. 2021 Sep 1;46(5):E199—E223. doi: 10.2341/20-127-L. Erratum in: Oper Dent. 2022 Mar 1;47(2):236—237. doi: 10.2341/1559-2863-47.2.236.
- 22. Petersen M, Braun A, Franzen R. Thermal Effects on Dental Pulp during Laser-Assisted Bleaching Procedures with Diode Lasers in a Clinical Study. J Clin Med. 2024 Apr 16;13(8):2301. doi: 10.3390/jcm13082301.

© Якубив Екатерина Владимировна (syyuan@mail.ru) Журнал «Современная наука: актуальные проблемы теории и практики»

Наши авторы

- **Abakarov T.** MD, Associate Professor of the Federal State Budgetary Educational Institution of Higher Education «Dagestan State Medical University» of the Ministry of Health of the Russian Federation, Makhachkala
- **Adieva A.** Doctor of Biological Sciences, Associate Professor, Caspian Institute of Biological Resources, Dagestan Federal Research Center of the Russian Academy of Sciences (Makhachkala)
- **Afanasyeva Z.** Kazan State Medical Academy, Ministry of Health of the Russian Federation
- **Alieva Z.** PhD in Biological Sciences, Associate Professor, Dagestan State Pedagogical University named after R. Gamzatov (Makhachkala)
- **Bakanov A.** Doctor of Engineering, Leading Researcher, Institute of Psychology of the Russian Academy of Sciences, Moscow, Russia
- **Balter R.** MD, Professor, Samara State Medical University
- **Bekshokova P.** PhD in Biological Sciences, Associate Professor, Dagestan State University (Makhachkala)
- **Bogatyreva V.** Postgraduate student, Omsk State Medical University of the Ministry of Health of the Russian Federation; Rheumatologist of the Rheumatology Department of the Regional Clinical Hospital
- **Bogdasarov A.** MD, Professor, Ulyanovsk State University
- **Bogomolov A.** Doctor of Technical Sciences, Saratov State University named after N.G. Chernyshevsky
- **Borodikhina V.** Assistant, Ural State Medical University, Ministry of Health of Russia, Yekaterinburg, Russia
- **Budaichiev G.** MD, Associate Professor of the Federal State Budgetary Educational Institution of Higher Education «Dagestan State Medical University» of the Ministry of Health of the Russian Federation, Makhachkala
- **Burmistrova I.** Ph.D. of Medicine, anesthesiologist-resuscitator, FSBI «NMRCC named after academitian E.I. Chazov» Ministry of Health of the Russian Federation (Moscow)
- **Chernyadyev S.** Doctor of Medical Sciences, Professor, Ural State Medical University, Ministry of Health of Russia, Yekaterinburg, Russia

Our authors

- **Daudova R.** Candidate of Biological Sciences, Associate Professor, Dagestan State Pedagogical University named after R. Gamzatov (Makhachkala)
- **Davidyan L.** Doctor of Medical Sciences, Ulyanovsk State University
- **Dmitriev A.** Candidate of Technical Sciences, Altai State University, Barnaul, Russia
- **Dolgova E.** Candidate of Medical Sciences, Saratov State Medical University named after V.I. Razumovsky
- **Dubenko Yu.** Doctor of Technical Sciences, Associate Professor, Kuban State Technological University (Krasnodar)
- **Elin V.** PhD (Pedagogical), V.Ya. Kikot Moscow University of the Ministry of Internal Affairs of Russia (Moscow)
- **Ermolaeva L.** Doctor of Medical Sciences, Professor, St. Petersburg State University, Russian Federation
- **Filimonova D.** Researcher, Institute of Soil Science and Agrochemistry, SB RAS (Novosibirsk)
- **Galyautdinov D.** Ph.D. of Medicine, Cardiovascular Surgeon, FSBI «NMRCC named after academitian E.I. Chazov» Ministry of Health of the Russian Federation (Moscow)
- **Garbul A.** Candidate of Biological Sciences, Docent, Murmansk Arctic University
- **Gilfanova R.** surgeon in the department of radiological surgical diagnostic and treatment methods Nº2 of the State Autonomous Healthcare Institution «Republican Clinical Hospital» of the Ministry of Health of the Republic of Tatarstan, Kazan
- **Glavinskaya A.** Teacher, Federal State Budgetary Educational Institution of Higher Education «East Siberian State University of Technology and Management», Ulan-Ude, Russian Federation
- **Goryachkin B.** candidate of technical sciences, associate professor, Bauman Moscow State Technical University
- **Gribanova E.** PhD student, Senior Lecturer, BSU, Minsk, Belarus
- **Grishin K.** undergraduate, Bauman Moscow State Technical University
- **Guley Yu.** postgraduate student, Ulyanovsk State University

Gurevich Yu. — PhD, Altai State Medical University of the Ministry of Health of the Russian Federation

Igolnikov I. — cardiovascular surgeon, Medical Radiological Research Center named after A.F. Tsyba — branch of the Federal State Budgetary Institution «NMITs of Radiology» of the Ministry of Health of the Russian Federation

Ilchenko O. — Postgraduate student, Samara State Medical University; obstetrician-gynecologist, State Budgetary Healthcare Institution of the Samara Region, Samara City Hospital No. 3, Samara

Ilyina L. — Ph.D. of Medicine, Cardiologist, FSBI «NMRCC named after academitian E.I. Chazov» Ministry of Health of the Russian Federation (Moscow)

Isaev A. — PhD in Chemistry, Associate Professor, Dagestan State University (Makhachkala)

Israpilova A. — PhD Student, Caspian Institute of Biological Resources, Dagestan Federal Research Center of the Russian Academy of Sciences (Makhachkala)

Ivanov E. — PhD student, St. Petersburg State University, Russia

Ivanov S. — Doctor of Medical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, Honored Doctor of the Russian Federation, director of the Medical Radiological Research Center named after A.F. Tsyba — branch of the Federal State Budgetary Institution «NMITs of Radiology» of the Ministry of Health of the Russian Federation

Ivanova T. — MD, PhD, Associate Professor, Samara State Medical University

Kapralov S. — Doctor of Medicine Sciences, associate professor, Saratov State Medical University named after V.I. Razumovsky

Khanaliev V. — MD, Professor, Rector of the Federal State Budgetary Educational Institution of Higher Education "Dagestan State Medical University" of the Ministry of Health of the Russian Federation, Makhachkala

Khmara A. — Candidate of Medical sciences, surgeon of thoracic surgical department, Saratov State Medical University named after V.I. Razumovsky

Klimova A. — candidate of medical sciences, associate professor, Orenburg state medical university

Klimova M. — Cardiologist, Budgetary Institution of the Khanty-Mansi autonomous okrug-Yugra «District Clinical Hospital of Khanty-Mansiysk»

Kochenkov A. — postgraduate student, Russian Presidential Academy of National Economy and Public Administration

Kozhukhova E. — Lecturer, Murmansk Arctic University

Kravchenya A. — Candidate of Medical Sciences, Saratov State Medical University named after V.I. Razumovsky

Kubasov K. — Assistant, Ural State Medical University, Ministry of Health of Russia, Yekaterinburg, Russia

Kucherov V. — Candidate of Medical Sciences, Head of the Department of X-ray Surgical Methods of Diagnosis and Treatment, Medical Radiological Research Center named after A.F. Tsyba — branch of the Federal State Budgetary Institution «NMITs of Radiology» of the Ministry of Health of the Russian Federation

Kuvika I. — Postgraduate student, Institute of Animal husbandry named after academy member L.K. Ernst

Latypov R. — Ph.D. of Medicine, Head of Department, FSBI «NMRCC named after academitian E.I. Chazov» Ministry of Health of the Russian Federation (Moscow)

Litvinova M. — Candidate of Biological Sciences, Docent, Murmansk Arctic University

Lobanov L. — candidate of medical sciences, deputy chief physician for surgery of the city clinical hospital №1, Chita

Lobanov S. — Doctor of Medical Sciences, Professor, Chita State Medical Academy

Lobanov Yu. — Candidate of Medical Sciences, Chita State Medical Academy

Magomedova A. — Candidate of Chemical Sciences, Senior Lecturer, Dagestan State University (Makhachkala)

Mansurov A. — Candidate of Technical Sciences, Altai State University, Barnaul, Russia

Mayorov R. — Candidate of Medical Sciences, Saratov State Medical University named after V.I. Razumovsky

Minakova N. — Doctor of Physics and Mathematics, Altai State University, Barnaul, Russia

Morova N. — doctor of Medical Sciences, Professor, Omsk State Medical University of the Ministry of Health of the Russian Federation

Musalov Kh.-M. — Chief Physician of the State Budgetary Educational Institution of Higher Education «Republican Dental Clinic named after M.M. Maksudov» Makhachkala

- **Makarevich E.** Candidate of Biological Sciences, Murmansk Arctic University
- **Nadinsky D.** doctor of X-ray endovascular, diagnostics and treatment, Medical Radiological Research Center named after A.F. Tsyba branch of the Federal State Budgetary Institution «NMITs of Radiology» of the Ministry of Health of the Russian Federation
- **Omarova S.** MD, Professor of the Federal State Budgetary Educational Institution of Higher Education «Dagestan State Medical University» of the Ministry of Health of the Russian Federation, Makhachkala
- **Pavlov V.** PhD in Economics and Associate Professor, Moscow University of Finance and Law MFUA
- **Petrosyan A.** Candidate of Medical Sciences, Doctor of X-ray Endovascular Diagnostics and Treatment, Department of X-ray Surgical Methods of Diagnosis and Treatment
- **Petrovskii D.** Graduate student, FSBI «NMRCC named after academitian E.I. Chazov» Ministry of Health of the Russian Federation (Moscow)
- **Petrunkin R.** University «Reaviz», Saint Petersburg, Russian Federation
- **Plotnikov G.** PhD (Engineering), V.Ya. Kikot Moscow University of the Ministry of Internal Affairs of Russia (Moscow)
- **Podgornyaya M.** Applicant, Samara State Medical University
- **Polidanov M.** research department specialist, assistant, University «Reaviz», Saint Petersburg, Russian Federation
- **Polyakov N.** Post-graduate student, Moscow University of Finance and Law (MFUA)
- **Prohorova V.** PhD, Altai State Medical University of the Ministry of Health of the Russian Federation
- **Prokhnitskaya A.** Radiologist, Saratov City Clinical Hospital № 9
- **Rashkueva Z.** Candidate of Biological Sciences, Associate Professor, Dagestan State Pedagogical University named after R. Gamzatov (Makhachkala)
- **Sakhno V.**—Leading massage specialist at the rehabilitation center in Almaty; Higher Medical and Dental College of Professor Ruzuddinov
- **Salita D.** Candidate of Technical Sciences, Altai State University, Barnaul, Russia

- **Sapunova D.** Candidate of Medical Sciences, FSBEI HE «ROSUNIMED» OF MOH OF RUSSIA (Moscow)
- **Shapovalov K.** Doctor of Medical Sciences, Professor, Chita State Medical Academy
- **Sharonov P.** Graduate student, Gagarin Yuri State Technical University of Saratov
- **Shibichenko M.** postgraduate student, Moscow University of Finance and Law MFUA
- **Shiryaev A.** MD, Professor, Corresponding Member of RAS, head of department, FSBI «NMRCC named after academitian E.I. Chazov» Ministry of Health of the Russian Federation (Moscow)
- **Shnaider I.** Postgraduate Student, Saratov State University named after N.G. Chernyshevsky
- **Sidorova Yu.** postgraduate student, Ulyanovsk State University
- **Sivkova N.** Candidate of Sociological Sciences, Ural Institute of Humanities of the Federal State Autonomous Educational Institution «Ural Federal University named after the first President of Russia B.N. Yeltsin», Yekaterinburg, Russia
- **Smolentseva T.** Doctor of Technical Sciences, Associate Professor, RTU MIREA (Moscow)
- **Solobuto A.** graduate student, Moscow University of Finance and Law MFUA
- **Stefanov S.** PhD, Cardiovascular surgeon, Head of the Department of Cardiac Surgery Budgetary Institution of the Khanty-Mansi autonomous okrug-Yugra «District Clinical Hospital of Khanty-Mansiysk»
- **Stekhova A.** doctor of X-ray endovascular diagnostics and treatment, Medical Radiological Research Center named after A.F. Tsyba branch of the Federal State Budgetary Institution «NMITs of Radiology» of the Ministry of Health of the Russian Federation
- **Stepanova M.** Cardiologist, Budgetary Institution of the Khanty-Mansiysk autonomous okrug-Yugra «District Clinical Hospital of Khanty-Mansiysk»
- **Terentyeva S.** Federal State Autonomous Educational Institution of Higher Education «Russia university of people's friendship named after Patrice Lumumba» (Rudn)
- **Tereshkov P.** Candidate of Medical Sciences, Chita State Medical Academy

Teterin N. — Assistant, RTU MIREA (Moscow)

Timchuk A. — Assistant, Kuban State Technological University (Krasnodar)

Timofeev A. — Junior researcher, Financial University under the Government of the Russian Federation, Moscow, Russian Federation

Trifonov F. — doctor of X-ray endovascular diagnostics and treatment, Medical Radiological Research Center named after A.F. Tsyba — branch of the Federal State Budgetary Institution «NMITs of Radiology» of the Ministry of Health of the Russian Federation

Tsaregorodtsev A. — Doctor of Sciences (Engineering), Professor, RUDN University (Moscow)

Tselkovich L. — MD, Professor, Samara State Medical University

Ulitovskiy S. — Doctor of Medical Sciences, Professor, Saint Petersburg State University; First Saint Petersburg State Medical University named after academician I.P. Pavlov, Russian Federation

Urusov D. — Anesthesiologist-resuscitator, Head of the Department of Anesthesiology and Resuscitation for Cardiac Patients Budgetary Institution of the Khanty-Mansi autonomous okrug-Yugra «District Clinical Hospital of Khanty-Mansiysk»

Vasiliev V. — Ph.D. of Medicine, Head of Department, FSBI «NMRCC named after academitian E.I. Chazov» Ministry of Health of the Russian Federation (Moscow)

Vikentev V. — Candidate of Medical Sciences, FSBEI HE «ROSUNIMED» OF MOH OF RUSSIA (Moscow)

Vlasova E. — Ph.D. of Medicine, Cardiologist, FSBI «NMRCC named after academitian E.I. Chazov» Ministry of Health of the Russian Federation (Moscow)

Volkov K. — Saratov State Medical University named after V.I. Razumovsky

Vorob'eva I. — Doctor of Biological Sciences, professor, Novosibirsk State Pedagogical University

Yakubiv E. — Dentist, IP Yakubiv E.V.

Zhavoronkova M. — Master of Medical Sciences (Ph.D.), Associate Professor, St. Petersburg State University, Russian Federation

Zhilyakov A. — Doctor of Medical Sciences, Ural State Medical University, Ministry of Health of Russia, Yekaterinburg, Russia

Zhuravleva V. — Lecturer, Altai State University, Barnaul, Russia

Zinovieva N. — Doctor of Biology, Professor, Director of the Federal State Budgetary Budgetary Institute of Animal husbandry named after academy member L.K. Ernst

Требования к оформлению статей, направляемых для публикации в журнале

Для публикации научных работ в выпусках серий научно-практического журнала "Современная наука: актуальные проблемы теории и практики" принимаются статьи на русском языке. Статья должна соответствовать научным требованиям и общему направлению серии журнала, быть интересной достаточно широкому кругу российской и зарубежной научной общественности.

Материал, предлагаемый для публикации, должен быть оригинальным, не опубликованным ранее в других печатных изданиях, написан в контексте современной научной литературы, и содержать очевидный элемент создания нового знания. Представленные статьи проходят проверку в программе "Антиплагиат".

За точность воспроизведения дат, имен, цитат, формул, цифр несет ответственность автор.

Редакционная коллегия оставляет за собой право на редактирование статей без изменения научного содержания авторского варианта.

Научно-практический журнал "Современная наука: актуальные проблемы теории и практики" проводит независимое (внутреннее) рецензирование.

Правила оформления текста.

- Текст статьи набирается через 1,5 интервала в текстовом редакторе Word для Windows с расширением ".doc", или ".rtf", шрифт 14 Times New Roman.
- Перед заглавием статьи указывается шифр согласно универсальной десятичной классификации (УДК).
- Рисунки и таблицы в статью не вставляются, а даются отдельными файлами.
- Единицы измерения в статье следует выражать в Международной системе единиц (СИ).
- Все таблицы в тексте должны иметь названия и сквозную нумерацию. Сокращения слов в таблицах не допускается.
- Литературные источники, использованные в статье, должны быть представлены общим списком в ее конце. Ссылки на упомянутую литературу в тексте обязательны и даются в квадратных скобках. Нумерация источников идет в последовательности упоминания в тексте.
- Литература составляется в соответствии с ГОСТ 7.1-2003.
- Ссылки на неопубликованные работы не допускаются.

Правила написания математических формул.

- В статье следует приводить лишь самые главные, итоговые формулы.
- Математические формулы нужно набирать, точно размещая знаки, цифры, буквы.
- Все использованные в формуле символы следует расшифровывать.

Правила оформления графики.

- Растровые форматы: рисунки и фотографии, сканируемые или подготовленные в Photoshop, Paintbrush, Corel Photopaint, должны иметь разрешение не менее 300 dpi, формата TIF, без LZW уплотнения, CMYK.
- Векторные форматы: рисунки, выполненные в программе CorelDraw 5.0-11.0, должны иметь толщину линий не менее 0,2 мм, текст в них может быть набран шрифтом Times New Roman или Arial. Не рекомендуется конвертировать графику из CorelDraw в растровые форматы. Встроенные 300 dpi, формата TIF, без LZW уплотнения, CMYK.

По вопросам публикации следует обращаться к шеф-редактору научно-практического журнала «Современная наука: актуальные проблемы теории и практики» (e-mail: redaktor@nauteh.ru).