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Аннотация. Выделены типичные проблемы, специфичные для сегментации 
табличных медицинских данных (например, сложность интерпретации ре-
зультатов из-за необходимости видоизменения данных). Установлено, что 
для решения задачи разделения медицинских данных на однородные груп-
пы зачастую применяют классические методы кластерного анализа. Пред-
ложен альтернативный метод кластеризации многомерных данных, выде-
ленный из  морфологического метода принятия управленческих решений. 
Предложен способ его модификации для работы с  большими массивами 
данных. Для подтверждения действенности и удобства метода приводится 
пример обработки одного открытого околомедицинского датасета. 
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Summary. Typical problems specific to the segmentation of tabular 
medical data are highlighted (for example, the complexity of interpreting 
the results due to the need to modify the data). It is established that 
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Введение

Под сегментацией понимают разделение исследуе-
мых объектов на  группы (сегменты) по  критерию 
схожести по  одному или нескольким признакам. 

Одна и та же совокупность объектов может подвергать-
ся сегментации многократно — по разным группам при-
знаков. В  целом, сегментация позволяет организовать 
большой объем информации и выделить в нем внутрен-
ние структуры, представляемые профилями объектов. 
Обособление объектов со схожими характеристиками 
способствует более предметному их изучению и направ-
ленному на них воздействию. Как правило, с целью сег-
ментации данных используют методы кластерного ана-
лиза (их относят к т.н. разведочным методам машинного 
обучения) [1]. Сегментация по всем признакам формаль-
но является кластеризацией.

В процессе кластеризации структурированные дан-
ные разбиваются на  категориально однородные груп-
пы (кластеры) по  фиксированному набору признаков, 
каждый из которых характеризует конкретное свойство 
объекта. По  существу, кластеризация состоит в  поиске 
«естественной» топологической группировки объектов. 
Уточнение числа кластеров и их границ в пространстве 

признаков осуществляется исходя из  «близости», «по-
хожести» или «различия» унифицированных описаний 
объектов [2]. Отметим, что совокупность изучаемых объ-
ектов должна отвечать статистическому определению 
выборки и алгебраическому определению отношения.

Как базовый механизм машинного обучения класте-
ризация находит свое прикладное применение во мно-
гих предметных областях. Контекстом данной работы 
являются табличные медицинские данные (текстовые 
и  числовые данные из  анамнезов, анкет и  результатов 
анализов пациентов) [3] и потребность в их разделении 
на однородные группы [4–10]. Анализ литературных ис-
точников показал, что зачастую для кластеризации (или 
сегментации) медицинских данных используют стан-
дартные методы, каждый из  которых имеет свои огра-
ничения и  не является универсальным [11–12]. Среди 
самых эксплуатируемых — метод k-means (число кла-
стеров задается) и самоорганизующаяся карта Кохонена 
(число кластеров вычисляется автоматически).

Методы кластеризации, являясь только вспомо-
гательными, интегрируются в  системы информаци-
онной поддержки принятия врачебных решений, по-
этому к  ним предъявляются следующие обязательные 
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требования: возможность работы с  данными смешан-
ного типа (описываемых в общем случае взаимоувязан-
ными качественными и количественными признаками), 
устойчивость решения (стабильность результатов при 
небольших изменениях входных данных) и простота ин-
терпретации результатов (для возможности обоснова-
ния принимаемого решения) [5, 6].

В подавляющем большинстве методов кластериза-
ции форма и  границы кластеров определяются метри-
кой расстояния. Для сравнения данных, содержащих 
как числовые, так и категориальные признаки, наиболее 
распространенной (но  редко используемой) является 
метрика Гауэра [14–16]. Ее значение вычисляется усред-
нением вычисленных независимо расстояний по каждо-
му признаку.

Основными недостатками метрики для случая сме-
шанных данных являются искажение значений количе-
ственных признаков и  доминирование качественных. 
Также усложняет ее применение невозможность адек-
ватной интерпретации результата (для случая смешан-
ных данных) и  высокая вычислительная сложность ал-
горитма его вычисления (для случая больших данных). 
В частных случаях (однотипных данных) наиболее близ-
кими к  метрике Гауэра являются: для количественных 
признаков — расстояния Евклида и Манхэттена, для ка-
чественных — Жаккара и Хэмминга.

Кластерный анализ (явно и  неявно) лежит на  пере-
сечении многих разделов математики, например: ста-
тистики, эконометрики, вычислительной математики, 
теории принятия решений, системного анализа и  ма-
шинного обучения. В  настоящей работе предлагается 
альтернативный метод кластеризации данных, выделен-
ный из  морфологического метода экспертных оценок 
[17–19], который в  свою очередь является развитием 
морфологического анализа Фрица Цвикки [20]. В  нем 
разрешены перечисленные выше принципиальные для 
медицинских исследований проблемы, также он обла-
дает рядом других преимуществ перед классическими 
аналогами.

1. Порядок сегментации данных

Первично морфологический анализ является фор-
мальным методом генерирования альтернатив через 
перечисление всех возможных сочетаний значений за-
данных параметров альтернативы [2]. В  основе морфо-
логического метода принятия управленческих решений 
[17–19] лежит аппроксимация области допустимых зна-
чений качественно однородных объектов многомерной 
плотностью нормального распределения. Кратко опи-
шем порядок применения выделенного из него метода 
кластеризации (или сегментации в прикладном смысле).

Сначала (на первом этапе) значения каждого количе-
ственного признака исследуются на однородность (с по-
мощью построения графика плотности вероятности или 
гистограммы). Каждая область сгущения значений яв-
ляется проявлением некоторой сущности (категории, 
типа) объектов. По  локальным минимумам плотности 
распределения область допустимых значений количе-
ственного признака разбивается на непересекающиеся 
подмножества. Если признак качественный, его область 
допустимых значений является объединением одноэле-
ментных множеств, состоящих из  возможных дискрет-
ных значений признака. 

После этого (на  втором этапе) формируется мно-
жество многомерных областей допустимых значений 
совокупности признаков исследуемых объектов (пу-
тем вычисления декартова произведения полученных 
на первом этапе множеств). Каждый элемент такого мно-
жества описывается многомерным эллипсоидом, пара-
метры которого определяются по «правилу трех сигм».

Затем (на  третьем этапе) для возможности измере-
ния расстояния между произвольными объектами или 
кластерами формируется вспомогательное линейное 
пространство двоичных векторов. Каждому элементу 
построенного на предыдущем этапе множества соответ-
ствует свой двоичный вектор. Структура каждого векто-
ра такова, что каждой подобласти области допустимых 
значений каждого признака соответствует свой бит.

Для каждой многомерной области допустимых значе-
ний требуется вычислить относительную частоту попа-
дания объектов выборки (вероятность в  классическом 
понимании), после чего области следует упорядочить 
по  убыванию частот и  пронумеровать. Номер области 
понимается как случайная величина, поэтому на  осно-
вании неравенства Чебышева возможно разделение 
ее значений на практически возможные (не менее 89%) 
и выбросы. Так определяются число кластеров и их гра-
ницы (поскольку каждое значение случайной величины 
ассоциировано с  конкретной многомерной областью 
допустимых значений объектов).

За метрику расстояния для векторов введенного 
на третьем этапе линейного пространства принимается 
половина расстояния Хемминга, равного количеству по-
зиций, в которых соответствующие биты различны. Зна-
чение метрики трактуется как количество категориально 
различных одноименных признаков двух сравниваемых 
через двоичные векторы объектов или кластеров.

Для возможности работы с  большими массивами 
данных потребовалась модификация данного метода, 
сводящаяся к  иерархическому укрупнению кластеров 
(с помощью описанной функции расстояния). На нижнем 
уровне в  одну группу объединяются те области, между 
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которыми расстояние минимальное и  одинаковое для 
любой пары областей внутри этой группы (причем укруп-
ненные кластеры не должны пересекаться). После этого 
требуется перестроить двоичные векторы (ввести новое 
линейное пространство), поскольку областей сгущения 
у признака может стать меньше или могут изменяться их 
границы. Укрупнения можно итерационно продолжить 
до образования одной области, кластера.

Традиционным же графическим способом представ-
ления результатов агломеративной иерархической кла-
стеризации является построение дендрограммы. Она 
демонстрирует степень близости отдельных кластеров, 
а также последовательность их объединения. 

Принципиальным преимуществом иерархической 
кластеризации является возможность проведения 

структурного анализа многомерных данных с  разной 
степенью детализации.

2. Пример сегментации данных

Для иллюстрации преимуществ представленного 
в  предыдущем разделе метода, приведем результаты 
кластеризации околомедицинских (но  интуитивно по-
нятных) данных, описывающих когнитивные способно-
сти человека1. Датасет содержит порядка 80000 записей 
со значениями девяти признаков (без учета привнесен-
ных агрегирующих признаков). Как правило, результаты 
кластеризации выражаются в разметке (маркировке) за-
писей датасета (путем добавления целевых признаков 
с техническими значениями).

1  https://www.kaggle.com/datasets/samxsam/human-
cognitive-performance-analysis

Рис. 1. Распределения значений количественных признаков
Источник: составлено авторами на основании реализации алгоритма
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Шесть из  признаков количественные (распределе-
ния их значений приведены на  рис. 1): Age (возраст), 
SleepDuration (среднесуточное время сна), StressLevel 
(самооценка уровня стресса), DailyScreenTime (средне-
суточное время, проводимое за  экраном монитора), 
CaffeineIntake (среднесуточное потребление кофеина) 
и  ReactionTime (среднее время когнитивной реакции 
при прохождении тестов). Три являются качественными 
(рис. 2): Gender (пол), DietType (пищевые предпочтения) 
и ExerciseFrequency (уровень физической активности).

Заметим, что метод не требует специальной предобра-
ботки данных (не видоизменяет данные) и может рабо-
тать с пропусками значений (как с вариантами значений).

В таблице 1 приведены вычисленные по локальным 
минимумам гистограмм (или плотностей распределе-
ния) области допустимых значений количественных 
признаков. Так, например, отдельное значение признака 
SleepDuration (среднесуточное время сна, в  часах) мо-
жет принадлежать только одной из четырех качествен-
но однородных подобластей (интервалов): [1.96; 6), [6; 7), 
[7; 8) или [8; 13.12). Каждая из них представляется сред-
ним значением и границами доверительного интервала, 
определяемых по  «правилу трех сигм» (распределение 
полагается нормальным).

В таблице 2 описаны области допустимых значе-
ний качественных признаков. Для примера, признак 

ExerciseFrequency (уровень физической активности) 
может принимать одно из  трех значений —«Medium» 
(средний), «Low» (низкий), «High» (высокий).

Применение базового варианта алгоритма привело 
к образованию 751 кластеров, 84 из которых — это об-
ласти выбросов. Мощность множества многомерных об-
ластей допустимых значений совокупности признаков 
равна произведению мощностей доменов признаков 
(т.е. 46080). Подавляющее большинство образованных 
областей не  соответствует реальной действительности 
(их частота равна нулю). Размерность вспомогательного 
линейного пространства двоичных векторов равна 32.

Для решения проблемы переобучения применена 
итерационная процедура укрупнения кластеров — по-
строено агломеративное дерево, состоящее из 14 уров-
ней. На втором уровне дерева (после первой итерации 
укрупнения) получены 746 кластеров, 84 из которых — 
выбросы. На 11-ом уровне (после 10-ой итерации укруп-
нения) размещаются 18 кластеров (выбросами являют-
ся 7, что составляет 10.8 % данных). На верхнем уровне 
(в корне дерева) содержится всего один кластер (выбро-
сов нет).

В таблице 3 приведены двоичные векторы (ассоци-
ированные с  кластерами), соответствующие кластерам 
10-ой итерации укрупнения (с 12-го по 18-ый — выбро-
сы). Разъясним структуру двоичных векторов этого этапа 

Рис. 2. Распределения значений качественных признаков
Источник: составлено авторами на основании реализации алгоритма
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кластеризации на примере второго из них. Каждый век-
тор имеет девять смысловых частей, каждая из которых 
ассоциирована с  областью допустимых значений кон-
кретного признака и содержит определенное число бит 
(последовательно слева направо): Age, SleepDuration, 

StressLevel, DailyScreenTime, CaffeineIntake, ReactionTime, 
Gender, DietType, ExerciseFrequency.

Таким образом, первые три бита (0, 0 и 1) относятся 
к  описанию составляющих области допустимых значе-
ний признака Age. Единица уточняет возможный воз-
раст для объектов данного кластера (он не может быть 
меньше 36). При  объединении областей объединяются 
(и  сокращаются) и  их наименования: область Age_3_4 
является результатом объединения атомарных областей 
Age_3 и Age_4. Шестая группа битов (0, 1) относится к об-
ласти значений признака ReactionTime — скорость ког-
нитивной реакции для объектов этого кластера принад-
лежит только второму интервалу.

Таблица 1. 
Области допустимых значений количественных 

признаков

№ Признак Область

1
Age 
(возраст)

{Age_1: [2.98; 24), 
Age_2: [24; 36), 
Age_3: [36; 48), 
Age_4: [48; 75.46)}

2
SleepDuration 
(среднесуточное время 
сна)

{SleepDuration_1: [1.96; 6), 
SleepDuration_2: [6; 7), 
SleepDuration_3: [7; 8), 
SleepDuration_4: [8; 13.12)}

3
StressLevel 
(уровень стресса)

{StressLevel_1: [0; 2), 
StressLevel_2: [2; 4), 
StressLevel_3: [4; 6), 
StressLevel_4: [6; 8), 
StressLevel_5: [8; 15.2)}

4
DailyScreenTime 
(среднесуточное время 
за экраном монитора)

{DailyScreenTime_1: [0; 2), 
DailyScreenTime_2: [2; 4), 
DailyScreenTime_3: [4; 9), 
DailyScreenTime_4: [9; 17.15)}

5
CaffeineIntake 
(среднесуточное потре-
бление кофеина, мг)

{CaffeineIntake_1: [0.0; 124), 
CaffeineIntake_2: [124; 274), 
CaffeineIntake_3: [274; 374), 
CaffeineIntake_4: [374; 686.17)}

6
ReactionTime 
(среднее время когнитив-
ной реакции, мс)

{ReactionTime_1: [67.87; 260), 
ReactionTime_2: [260; 499), 
ReactionTime_3: [499; 745.56)}

Источник: составлено авторами на основании реализа-
ции алгоритма.

Таблица 2. 
Области допустимых значений качественных признаков

№ Признак Область

1
Gender 
(пол)

{Gender_1: {‘Male’}, 
Gender_2: {‘Female’}}

2
DietType 
(пищевые предпочтения)

{DietType_1: {‘Vegetarian’}, 
DietType_2: {‘Non-Vegetarian’}, 
DietType_3: {‘Vegan’}}

3
ExerciseFrequency 
(физическая активность)

{ExerciseFrequency_1: {‘Medium’}, 
ExerciseFrequency_2: {‘Low’}, 
ExerciseFrequency_3: {‘High’}}

Источник: составлено авторами на основании реализа-
ции алгоритма.

Таблица 3. 
Двоичные векторы для 11-го уровня дерева кластеров

№  
области

Вектор Частота

1 (0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1) 0.211

2

(0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1)

0.133
Домен для Age: {Age_1: {[2.98; 24)}, Age_2: {[24; 
36)}, Age_3_4:{[36, 75.46)}}

Домен для ReactionTime: {ReactionT_2: {[260; 
499)}, ReactionT_1_3: {[67.87, 260), [499, 745.56)}}

3 (0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1) 0.128

4 (0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1) 0.072

5 (0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1) 0.072

6 (0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1) 0.069

7 (0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1) 0.060

8 (1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1) 0.048

9 (0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1) 0.040

10 (0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1) 0.033

11 (0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1) 0.026

12 (0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1) 0.023

13 (1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1) 0.023

14 (1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1) 0.020

15 (0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1) 0.013

16 (1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1) 0.012

17 (1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1) 0.012

18 (1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1) 0.005

Источник: составлено авторами на основании реализа-
ции алгоритма.
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Для примера сравним кластеры, которым соответ-
ствуют второй и  третий двоичные векторы. Расстояние 
между ними вычисляется как половина расстояния 
Хэмминга и равно 2 — кластеры качественно различны 
по двум признакам (по возрасту и скорости когнитивной 
реакции). Соответствующие области допустимых значе-
ний признаков для каждого кластера приведены в  та-
блице 4.

Таблица 4. 

Области допустимых значений для двух кластеров

№ кла-
стера

Область допустимых значений

2

{Age_3_4: {[36, 75.46)}, SleepD_1_2_3_4: {[1.96, 13.12)}, 
StressL_1_3_5: {[0, 2), [4, 6), [8, 15.2)}, DailyST_1_2_3_4: {[0, 
17.15)}, CaffeineI_1_2_4_3: {[0.0, 686.17)}, ReactionT_1_3: 
{[67.87, 260), [499, 745.56)}, Gender_1_2: {‘Female’, 
‘Male’}, DietT_1_2_3: {‘Non-Vegetarian’, ‘Vegan’, ‘Vegetarian’}, 
ExerciseF_1_2_3: {‘High’, ‘Low’, ‘Medium’}}

3

{Age_2: {[24; 36)}, SleepD_1_2_3_4: {[1.96, 13.12)}, 
StressL_1_3_5: {[0, 2), [4, 6), [8, 15.2)}, DailyST_1_2_3_4: 
{[0, 17.15)}, CaffeineI_1_2_4_3: {[0.0, 686.17)}, ReactionT_2: 
{[260; 499)}, Gender_1_2: {‘Female’, ‘Male’}, DietT_1_2_3: 
{‘Non-Vegetarian’, ‘Vegan’, ‘Vegetarian’}, ExerciseF_1_2_3: 
{‘High’, ‘Low’, ‘Medium’}}

Источник: составлено авторами на основании реализа-
ции алгоритма.

Аналогично осуществляется сравнение и отдельных 
элементов выделенных кластеров. 

Приведен сведенный к  кластеризации частный слу-
чай сегментации исследуемых объектов — по  всем 
признакам, без контекста исследования. В общем и при-
кладном смысле сегментация позволяет делать срезы 
по интересующим (некоторым) признакам внутри сфор-
мированной однородной группы объектов (классе, кла-
стере). Отдельная процедура сегментации может осу-
ществляться посредством методов кластеризации.

Если кластеризации (или сегментации) подлежат все 
объекты и выборку, представленную датасетом, возмож-
но уменьшить с сохранением свойств репрезентативно-
сти, то дерево кластеров может быть построено по реду-
цированному датасету, а принадлежность к выявленным 
кластерам объектов, не  участвовавших в  построении 
дерева, можно определить на основании введенной ме-
трики расстояния (с учетом крайних доверительных ин-
тервалов количественных признаков).

Описанный подход к  кластеризации многомерных 
данных показывает пригодный для практического при-

менения и  достоверный результат, подтверждаемый 
обработкой разнообразных размеченных датасетов: 
получаемые кластеры оказываются преимущественно 
однородными по исходным целевым признакам.

Заключение

Для проверки точности и  корректности предлага-
емого метода кластеризации (с  целью сегментации) 
многомерных данных был разработан специальный 
встраиваемый программный модуль. В  качестве языка 
программирования был использован Python (из-за на-
личия у него большого количества современных библи-
отек для обработки, визуализации и  анализа данных). 
Чтобы модуль было потенциально возможно интегри-
ровать в  любую профессиональную систему поддерж-
ки принятия решений, для него с  помощью фреймвор-
ка FastAPI был дополнительно разработан прикладной 
программный интерфейc (с  облегченным механизмом 
эксплуатации).

Математический аппарат, лежащий в основе работы 
модуля, носит универсальный характер и  может найти 
прикладное применение в  различных предметных об-
ластях. Особую практическую значимость программное 
решение может иметь при проведении медицинских 
исследований, поскольку удовлетворяет заявленным 
медицинским сообществом требованиям. А  именно: 
1)  предусмотрена возможность одновременной рабо-
ты с качественными и количественными признаками; 2) 
число кластеров вычисляется автоматически (без необ-
ходимости подбора параметров кластеризации); 3)  ре-
зультаты кластеризации легко поддаются интерпрета-
ции (что крайне важно для обоснования принимаемых 
на их основе решений). Последнее обеспечивается тем, 
что: 1) данные сохраняют исходные вид и единицы изме-
рения; 2) значение метрики расстояния информативно; 
3) используются базовые математические понятия.

Легко преодолимым недостатком программного ре-
шения в настоящее время является грубая аппроксима-
ция границ областей допустимых значений кластеров 
(посредством разлиновывающей признаковое про-
странство прямоугольной сетки), из-за чего объекты, 
лежащие на  периферии истинных доверительных ин-
тервалов, оказываются в числе выбросов. Существенно 
повысить точность предложенной модели возможно, 
если проверять объекты, маркируемые как выбросы, 
на  принадлежность многомерным эллиптическим до-
верительным областям кластеров. При  этом кластеры 
объектов, лежащих на пересечениях таких областей, по-
требуется дополнительно уточнять с помощью функции 
правдоподобия.
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