РАССЕЯНИЕ СВЕТА ГЕКСАГОНАЛЬНОЙ ПИРАМИДОЙ И ИГЛОПОДОБНЫМ СТОЛБИКОМ В ПРИБЛИЖЕНИИ РЭЛЕЯ-ГАНСА-ДЕБАЯ

LIGHT SCATTERING BY HEXAGONAL PYRAMID AND NEEDLE-SHAPED COLUMN IN THE RAYLEIGH-GANS-DEBYE APPROXIMATION

Annotation

K. Shapovalov

The formulas for light scattering amplitude of hexagonal pyramid and hexagonal needle-shaped column (columns with two pyramidal tops) in the Rayleigh-Gans-Debye approximation are obtained. The numerical results for light scattering phase functions of hexagonal pyramid and hexagonal needle-shaped column in the Rayleigh-Gans-Debye approximation and in the method of Purcell-Pennypacker (or discrete dipole method, or coupled dipole method) are compared. The good agreement for particles with small phase shifts are obtained.

Keywords: optically "soft" particles, hexagonal pyramid, light scattering phase function.

Шаповалов Константин Алексеевич

К.ф–м.н., доцент, ГБОУ ВПО "Красноярский государственный медицинский университет им. профессора В.Ф. Войно–Ясенецкого" Министерства здравоохранения Российской Федерации

Аннотация

Получены формулы для амплитуды светорассеяния гексагональной пирамиды и иглоподобного гексагонального столбика в приближении Рэлея–Ганса–Дебая. Проведено численное сравнение индикатрис светорассеяния гексагональной пирамиды и иглоподобного гексаго– нального столбика в приближении Рэлея–Ганса–Дебая с результата– ми расчета методом Парселла–Пеннипакера или Дискретных дипо– лей. Получено хорошее согласие для частиц с малым фазовым сдви– гом.

Ключевые слова:

Оптически "мягкие" частицы, гексагональная пирамида, индикатриса светорассеяния.

введение

Методы светорассеяния широко и успешно применяются для таких приложений, как оптика атмосферы и океана, физическая химия растворов и коллоидов, материаловедение, биофизика и лазерная биомедицина [1–5]. При решении задачи рассеяния света аэрозольные частицы атмосферы и др. моделируются частицами различной формы. Так, для сферических частиц известно полученное методом разделения переменных аналитическое решение или теория Ми [1,2]. Однако, ледяные кристаллы перистых облаков имеют часто несферическую форму и моделируются гексагональными призмами, пластинками и иглоподобными частицами. В белковых коллоидных и кристаллических системах, также часто встречаются разнообразные иглоподобные частицы [4, 6].

Если частицы дисперсной среды оптически "мягкие" (*m*-1 <<1, где *m* – относительный показатель преломления светорассеивающей частицы), то можно использовать приближенные методы Рэлея–Ганса–Дебая (РГД) и Ано– мальной Дифракции (АД) [1,2]. Формулы для характери– стик светорассеяния призм произвольного многоуголь– ного сечения в приближении АД [7,8] и пирамид в при– ближении геометрической оптики [9] получены ранее. Подобные выражения в приближении РГД получены ранее только для пирамиды с прямоугольным основанием [10, 11].

Целью настоящей работы явилось получение аналитических выражений в приближении РГД для амплитуды и индикатрисы светорассеяния пирамиды, имеющей гексагональное основание, а также частиц иглоподобной формы, составленных из гексагональной призмы и двух торцевых пирамид.

Амплитуда светорассеяния

Используем интегральное представление амплитуды для однородной частицы в скалярном виде в приближении РГД [11,12]:

$$f(\boldsymbol{\theta},\boldsymbol{\beta}) = \frac{k^2}{4\pi} \int_{V} (m^2 - 1) \exp(i \, \boldsymbol{k}_s \cdot \boldsymbol{r}) dV, \qquad (1)$$

где

i, s – единичные векторы вдоль направлений падаю-

щего и рассеянного света соответственно, **r** радиус-вектор точки внутри частицы, $\mathbf{k}_{\mathrm{s}} = k(\mathbf{i}\cdot\mathbf{s}), \ k = 2\pi/\lambda$ - волновое число и λ – длина волны света,

$$\left|\boldsymbol{k}_{s}\right| = 2k\sin\!\left(\frac{\theta}{2}\right)$$

 θ — угол между векторами і и s , β угол между осью z и вектором $\mathbf{k}_{\rm s}.$

Заметим, что амплитуда может быть выражена и подругому через углы в сферических координатах, указывающих направление падающего θ_i , ϕ_i и рассеянного света θ_s , ϕ_s соответственно:

$$k_{1} = k(\sin\theta_{i}\cos\varphi_{i} - \sin\theta_{s}\cos\varphi_{s}) ,$$

$$k_{2} = k(\sin\theta_{i}\sin\varphi_{i} - \sin\theta_{s}\sin\varphi_{s}) ,$$

$$k_{3} = k(\cos\theta_{i} - \cos\theta_{s}) ,$$

$$k_{4} = \sqrt{k_{1}^{2} + k_{2}^{2}} , \qquad k_{s} = \sqrt{k_{1}^{2} + k_{2}^{2} + k_{3}^{2}}$$

причем

$$k_3(\theta,\beta) = k_s \cos \beta$$
, $k_4(\theta,\beta) = k_s \sin \beta$.

Форм-фактор в приближении РГД [1,2,4] для однородной частицы с объемом *V* может быть записан как

$$\Phi(\theta,\beta) = \frac{4\pi f(\theta,\beta)}{k^2(m^2-1)V} = \frac{1}{V} \int_V \exp(i \, \mathbf{k}_s \cdot \mathbf{r}) dV. \quad ^{(2)}$$

Гексагональная пирамида

Амплитуда светорассеяния для клина в пирамиде с nугольным основанием (см. рис. 1 а) [11]:

$$f_{W} = \frac{k^{2} (m^{2} - 1) 3V_{W}}{4\pi k_{1} k_{3} R H \sin(\gamma')} [U(k_{6} R, 0) - U(k_{5} R, 0) + U(k_{5} R, k_{3} H) - U(k_{6} R, k_{3} H)],$$
⁽³⁾

где

$$V_{W} = \frac{-6}{6}HR^{2}\sin\gamma - \text{объем клина,}$$

$$\gamma = \frac{2\pi}{n}, \ \gamma' = \frac{\gamma}{2},$$

$$k_{5} = k_{2}\cos\gamma' + k_{1}\sin\gamma', \ k_{6} = k_{2}\cos\gamma' - k_{1}\sin\gamma',$$

$$U(x, y) = \frac{\exp(ix) - \exp(iy)}{x - y}.$$

1 ____ 2

Вращая вокруг оси OZ *n*-1 раз амплитуду светорассеяния клином пирамиды (З) на угол и суммируя все слагаемые с учетом изменения *k*₁, *k*₂, *k*₅, *k*₆ [11], получим амплитуду целой пирамиды:

$$f_{PN} = \sum_{s=0}^{n-1} f_W(s\gamma) \tag{4}$$

Таким образом, амплитуда светорассеяния пирамидой с гексагональным основанием (n=6, $\gamma = \pi/3$, рис. 1 б) из (4) получится вида

$$f_{PD} = \frac{k^2 (m^2 - 1) V_{PD}}{2\pi k_3 R H} \left[\frac{k_5}{k_6 k_1} p(k_5 R, k_3 H) - \frac{k_6}{k_5 k_1} p(k_6 R, k_3 H) - \frac{k_1}{k_5 k_6} p(k_1 R, k_3 H) \right],$$
⁽⁵⁾

где

$$p(x,y) = h_0(x) - \frac{x}{2} j_0 \left(\frac{x+y}{2}\right) j_0 \left(\frac{x-y}{2}\right) + i \frac{xy}{x^2 - y^2} \{j_0(x) - j_0(y)\},$$

$$k_5 = \frac{k_1 + \sqrt{3}k_2}{2}, \quad k_6 = \frac{-k_1 + \sqrt{3}k_2}{2},$$

$$V_{PD} = \frac{\sqrt{3}HR^2}{2}, \quad j_0(x) = \frac{\sin(x)}{x},$$

$$h_0(x) = \frac{1 - \cos(x)}{x} \qquad - \text{сферические функции Бесселя и Ханкеля ну левого порядка.}$$

Иглоподобный гексагональный столбик

Амплитуду светорассеяния для иглоподобного столбика, составленного из гексагональной призмы и двух торцевых гексагональных пирамид (см. рис. 1 в), используя отмеченные ранее свойства сложения, перемещения и вращения форм-факторов в приближении РГД [11,13– 18], получим в скалярном виде:

$$f = \frac{k^{2}(m^{2} - 1)}{4\pi} \left[\Phi_{HEX} V_{HEX} + 1 \right]$$
(6)
+ $2V_{PD} \left(\Phi_{PD}^{Re} \cos\left(\frac{k_{3}H}{2}\right) - \Phi_{PD}^{Im} \sin\left(\frac{k_{3}H}{2}\right) \right) ,$
rge $\Phi_{HEX} = \frac{2}{3} j_{0} \left(\frac{k_{3}H}{2}\right) [F_{1} + F_{2} + F_{3}]$

- форм-фактор для гексагональной призмы [11,13],

(в)

Рис. 1. Геометрия светорассения клином многоугольной пирамиды (а), целой гексагональной пирамиды (б) и гексагональным иглоподобным столбиком (в).

$$\begin{split} \mathbf{F}_{1} &= j_{0} \left(\frac{k_{1}R}{2} \right) j_{0} \left(\frac{k_{2}\sqrt{3}R}{2} \right), \\ \mathbf{F}_{2} &= \frac{1}{4} \left(1 - \sqrt{3} \frac{k_{1}}{k_{2}} \right) j_{0} \left(\frac{\sqrt{3}R(k_{2} - \sqrt{3}k_{1})}{4} \right) j_{0} \left(\frac{R(k_{1} + \sqrt{3}k_{2})}{4} \right), \\ \mathbf{F}_{3} &= \frac{1}{4} \left(1 + \sqrt{3} \frac{k_{1}}{k_{2}} \right) j_{0} \left(\frac{\sqrt{3}R(k_{2} + \sqrt{3}k_{1})}{4} \right) j_{0} \left(\frac{R(k_{1} - \sqrt{3}k_{2})}{4} \right), \\ V_{HEX} &= \frac{3\sqrt{3}HR^{2}}{2} , \end{split}$$

 $\Phi_{PD}^{
m Re}, \Phi_{PD}^{
m Im}, V_{PD}$ – форм–фактор (реальная и мнимая составляющие) и объем пирамидальной торцевой части соответственно.

Индикатриса светорассеяния

Индикатриса светорассеяния [или элемент матрицы рассеяния f_{11}] для естественного света (неполяризованного или произвольно поляризованного света) при $\beta = 0$ рассчитывается по формуле [1, 5, 12]

$$f_{11}(\theta,\beta) = \left(\frac{1+\cos^2\theta}{2}\right)k^2 \left|f(\theta,\beta)\right|^2, \quad (7)$$

где $|f(\theta,\beta)|^2$ квадрат модуля амплитуды светорассения.

Причем, везде далее индикатриса светорассеяния (7) нормализована на направление вперед.

Индикатриса светорассеяния гексагональной пирамиды, расчитанная по амплитуде РГД (5), для частицы с относительным показателем преломления *m* =1.1+*i* 0.01 и *kR*=3, *kH*=3 в сравнении с расчетами методом дискретных диполей (АДДА) [19] при 42791 диполях показана на **рис. 2**.

Рисунок 2. Зависимость индикатрисы светорассеяния $f_{11}(\theta, \beta)/f_{11}(0,0)$ от угла рассеяния θ для гексагональной пирамиды в приближении РГД (2) и по методу АДДА (1) при kR=3, kH=3 для падающего света вдоль оси симметрии (а) и перпендикулярно (б).

Далее на рис. З представлена индикатриса светорассеяния гексагонального столбика, расчитанная по амплитуде РГД (6), для частицы с относительным показателем преломления $m = 1.1 + i \ 0.01$ и kR = 1, kH = 2, kd1 в сравнении с расчетами методом АДДА при 44857 диполях.

Очевидно, что индикатриса светорассеяния гексагонального столбика РГД отличается от метода АДДА только в области больших углов светорассеяния (см. рис. 3).

Затем нами проведено детальное численное сравнение индикатрис светорассеяния в приближении РГД и более точном методе АДДА при в области малых фазовых сдвигов луча

$$\Delta = kL \left| m^2 - 1 \right| << 1$$

Рисунок 3. Зависимость индикатрисы ссветорассеяния $f_{11}(\theta, \beta)/f_{11}(0,0)$ от угла рассеяния θ для гексагонального столбика в приближении РГД (2) и по методу АДДА (1) при kR=1, kH=2, kd=1 для падающего света вдоль оси симметрии (а) и перпендикулярно (6).

(где *L* – наибольшее расстояние в частице вдоль на– правления распространения света), т.е. в области приме– нения приближения РГД (см. табл. 1 и 2).

Относительная погрешность вычислялась как: .

$$\binom{f_{npugn.}}{f_{mouth.}} - 1 \cdot 100\%$$

Индикатрисы светорассеяния в приближении РГД для гексагональной пирамиды при соотношении H/R=1 достаточно хорошо согласуются с индикатрисами в методе АДДА при малых фазовых сдвигах Δ : менее 6% и менее 2% по модулю для углов падения 90 и 0 градусов соответственно (см. табл. 1). Индикатрисы светорассеяния в приближении РГД для гексагонального столбика при соотношениях H/R=2 и H/d=2 также согласуются с индикатрисами в методе АДДА при малых фазовых сдвигах Δ и небольших углах рассеяния (θ <90): менее 4% и менее 6% по модулю для углов падения 90 и 0 градусов соответственно (см. табл. 2).

Таблица 1.

Относительная погрешность индикатрисы светорассеяния гексагональной пирамиды в приближении РГД, рассчитанной в сравнении с методом АДДА, при различных фазовых сдвигах Δ , углах падения θ_i и рассеяния θ .

Угол падения <i>θ</i> і, град	Фазовый сдвиг Δ	Угол рассеяния <i>в</i> , град				
		45	90	135	180	
0	0.05	-0.12	0.04	0.12	-0.03	
0	0.10	-0.15	0.01	0.09	-0.08	
0	0.20	-0.31	-0.18	-0.06	-0.31	
0	0.40	-1.24	-1.50	-0.25	-0.07	
90	0.05	-2.10	-5.71	-1.87	0.01	
90	0.10	-2.10	-5.71	-1.88	-0.01	
90	0.20	2.11	-5.72	-1.91	-0.02	
90	0.40	-2.20	-5.87	-2.16	-0.37	

Таблица 2.

Относительная погрешность индикатрисы светорассеяния гексагонального столбика в приближении РГД, рассчитанной в сравнении с методом АДДА, при различных фазовых сдвигах Δ , углах падения θ_i и рассеяния θ .

Угол падения <i>θ</i> і, град	Фазовый сдвиг Δ	Угол рассеяния <i>0</i> , град				
		45	90	135	180	
0	0.05	-0.01	-0.05	-0.10	-0.13	
0	0.10	0.01	-0.10	-0.36	-0.53	
0	0.20	0.05	-0.30	-1.42	-2.15	
0	0.40	0.70	6.04	17.25	24.04	
90	0.05	1.12	3.61	1.33	0.26	
90	0.10	0.91	3.42	1.72	1.05	
90	0.20	0.05	2.59	3.29	4.29	
90	0.40	-3.68	-1.49	10.74	20.11	

ЗАКЛЮЧЕНИЕ

Таким образом, получены формулы для амплитуды светорассеяния пирамидой, имеющее гексагональное основание, в приближении РГД с помощью полученных ранее общих свойств сложения, перемещения и вращения форм-факторов в приближении РГД. Также получены аналитические формулы для амплитуды светорассеяния иглоподобным гексагональным столбиком в приближении РГД.

Проведено численное сравнение индикатрис светорассеяния гексагональной пирамиды и иглоподобного гексагонального столбика в приближении РГД с результатами расчета методом Парселла-Пеннипакера или Дискретных диполей. Получено хорошее согласие для малых фазовых сдвигов.

ЛИТЕРАТУРА

1. Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. Пер. с англ. М.: Мир, 1986. 664с.

2. Ван де Хюлст Г. Рассеяние света малыми частицами. М.: ИЛ, 1961. 536с.

3. Light scattering by nonspherical particles: theory, measurements, and applications/ Ed. by Mishchenko M.I., Hovenier J.W., Travis L.D. San Diego: Academic Press, 2000. 690 p.

4. Kerker M. The scattering of light and other electromagnetic radiation. New York, London: Academic Press, 1969. 666 p.

5. Методы светорассеяния в анализе дисперсных биологических сред / В.Н. Лопатин, А.В. Приезжев, А.Д. Апонасенко и др. М.: Физматлит, 2004. 384с.

6. Velev O.D., Kaler E.W. and Lenhoff A.M. Protein Interactions in Solution Characterized by Light and Neutron Scattering: Comparison of Lysozyme and Chymotrypsinogen // Biophys. J. 1998. Vol. 75 P. 2682–2697.

7. Chylek P., Klett J.P. Extinction cross section of non-spherical particles in the anomalous diffraction approximation // J. Opt. Soc. Am. A. 1991. vol. 8. P. 274–281. 8. Chylek P., Klett J.P. Absorption and scattering of electromagnetic radiation by prismatic columns: Anomalous diffraction approximation // J. Opt. Soc. Am. A. 1991. Vol. 8. P. 1713–1720.

9. Liu C., Jonas P.R., Saunders C.P.R., Pyramidal ice crystal scattering phase functions and concentric halos // Ann. Geophysicae. 1996. vol. 14, P. 1192–1197.

10. Napper D.H. Light Scattering by Polyhedral Particles in the Rayleigh–Gans Domain // Kolloid–Z. und Z. Polymere. 1968. vol. 223, No 2. P. 141–145.

11. Shapovalov K.A. Light Scattering by a Prism and Pyramid in the Rayleigh–Gans–Debye Approximation // Optics. 2013. Vol. 2. No. 2. P.32–37. – doi:10.11648/j.optics.20130202.11

12. Исимару А. Распространение и рассеяние волн в случайно-неоднородных средах. Пер. с англ. М.: Мир, 1981. т.1. 280с.

13. Шаповалов К.А. Рассеяние света частицами цилиндрической формы в приближении Рэлея–Ганса–Дебая. 1. Строго ориентированные частицы // Оптика атмосферы и океана. 2004. т.17, № 4. С.350–353.

14. Шаповалов К.А. Рассеяние света частицами цилиндрической формы в приближении Рэлея–Ганса–Дебая. 2. Хаотично ориентированные частицы // Оптика атмосферы и океана. 2004. т.17, № 8. С.627–629.

15. Шаповалов К.А. Рассеяние света осесимметричными частицами в приближении Рэлея–Ганса–Дебая // Журнал Сибирского Федерального Университета. Серия "Математика и Физика". 2012. т. 5, № 4. С.586–592. [Электронный ресурс] – Режим доступа. – URL: http://elib.sfu–

kras.ru/bitstream/2311/3112/1/shapevalev.pdf

16. Шаповалов К.А. Рассеяние света цилиндрической капсулой со сфероидальными торцами в приближении Рэлея–Ганса–Дебая // XIV международная научно–практическая конференция: "Научное обозрение физико–математических и технических наук в XXI веке" (г. Москва, 27–28 фев. 2015г.): труды. М.: МНО "Prospero", 2015. С. 102–105.

17. Шаповалов К.А. Амплитуда светорассеяния усеченной пирамиды и конуса в приближении Рэлея–Ганса–Дебая // Европейский исследователь. 2013. т.49. №5–2. С.1291–1297.

18. Шаповалов К.А. Рассеяние света цилиндрической капсулой с произвольными торцами в приближении Рэлея–Ганса–Дебая // Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2015. №5. С.309–318.–doi: 10.7463/0515.0768602

19. Yurkin M.A. and Hoekstra A.G. The discrete–dipole–approximation code ADDA: Capabilities and known limitations // J. Quant. Spectrosc. Rad. Transf. 2011. v.112. P. 2234–2247.

© К.А. Шаповалов, (sh_const@mail.ru), Журнал «Современная наука: актуальные проблемы теории и практики»,

