ПОТЕНЦИАЛ ИСПОЛЬЗОВАНИЯ RHODOCOCCUS ДЛЯ АКТИВАЦИИ ПРОЦЕССОВ ОЧИЩЕНИЯ ПОЧВ ОТ НЕФТЕЗАГРЯЗНЕНИЙ

POTENTIAL OF USE OF RHODOCOCCUS FOR ACTIVATION OF PROCESSES OF CLARIFICATION OF SOILS FROM PETROPOLLUTION

L. Erofeevskaia V. Chernyavsky

Summary. Kulturalno-morphological, fiziko-biochemical properties and the phylogenetic provision of the new strain Rhodococcus sp are studied., Shergin allocated from a frozen soil of the mine. Prospects of its use for the purpose of activation of processes of a biological destruction of naphtha and oil products in wide temperature range of a surrounding medium are shown. It is established that for the 7 days at a temperature of +4 °C the strain utilizes 14,0-19,8% — naphtha and oil products; at a temperature of +20 °C — 49,77-59,1%; at a temperature of +30 °C — 43,2-66,18%.

Keywords: strain Rhodococcus, oil, destruction, oil productions, hydrocarbons, ecosystems.

ванным развитием нефтегазовой отрасли, освоением новых и эксплуатацией имеющихся нефтегазоносных месторождений, обслуживанием нефтеговодов и участившимися в последнее время аварийными разливами нефти и нефтепродуктов (НП).

Несвоевременная ликвидация нефтезагрязнений приводит к тому, что нефтяные углеводороды (УВ) распространяются на сопредельные территории, земли на долгие годы выводятся из сельскохозяйственного оборота.

В большинстве случаев нефтезагрязнения устраняются с применением механических и физических методов, что влечет за собой нарушение почвенно-растительного покрова. Такие методы не всегда приемлемы, поскольку процесс самовосстановления нарушенных земель занимает от 10 до 50 лет [1, С. 140–159].

Из многочисленных методов, которые позволяют сократить сроки реабилитации экосистем, в настоящее время наиболее экологичными считаются биологические методы, основанные на интенсификации микробиологической деструкции нефтяных углеводородов (УВ). При этом, предполагается как активация аборигенной микро-

Ерофеевская Лариса Анатольевна

Научный сотрудник, ФГБУН Институт проблем нефти и газа Сибирского отделения PAH ipog@ipng.ysn.ru

Чернявский Виктор Федорович

Врач-эпидемиолог, ФГУЗ «Центр гигиены и эпидемиологии в Республике Саха (Якутия)» fbuz@fbuz14.ru

Аннотация. Изучены культурально-морфологические, физико-био-химические свойства и филогенетическое положение нового штамма Rhodococcus sp., выделенного из мерзлотного грунта шахты Шергина. Показана перспективность его использования с целью активации процессов биологической деструкции нефти и нефтепродуктов в широком диапазоне температур окружающей среды. Установлено, что на 7-е сутки при температуре +4 °C штамм утилизирует 14,0—19,8% — нефти и нефтепродуктов; при температуре +20 °C — 49,77—59,1%; при температуре +30 °C — 43,2—66,18%.

Ключевые слова: штамм, Rhodococcus, нефть, нефтепродукты, деструкция, углеводороды, экосистемы.

флоры загрязненных объектов, так и внесение биопрепаратов на основе штаммов углеводородокисляющих микроорганизмов (УОМ) [2, с. 163; 3, С. 1023–1026.; 4, С. 20–21].

В настоящее время известно более 200 видов УОМ. Число новых микроорганизмов, перспективных для очистки нефтезагрязненных экосистем постоянно увеличивается благодаря выделению из почвы и получению новых штаммов методом генной инженерии [5, С. 167–183]. Однако информация о них ограниченна и проходит, в основном, либо под «грифом «коммерческая тайна», либо на уровне реклам, либо на уровне не внедренных в практику патентов и научных разработок [6, С. 179–188.; 7, С. 105–106; 8, С. 192].

Кроме того, проблема существующих разработок по микробиологической очистке почв и грунтов от нефтезагрязнений состоит в том, что некоторые из них основаны на использовании УОМ, относящихся к патогенам различных уровней приоритетности и могут быть отнесены к условно — патогенным микроорганизмам, что значительно сокращает возможности их использования в условиях открытой экосистемы.

Эти обстоятельства делают востребованными проведение научных исследований по поиску новых непатогенных

штаммов углеводородокисляющих бактерий, перспективных для очистки нарушенных экосистем от нефти и НП.

Целью работы являлось выделение из нефтезагрязненных экотопов и расширение номенклатуры бактерий, способных к утилизации нефти и нефтепродуктов.

Материалы и методы исследований

Материалом для исследований служили образцы мерзлотного грунта, загрязненного нефтепродуктами.

Для культивирования УОМ использовали метод жидких накопительных культур на минеральной среде Мюнца [9, С. 1024–1030].

В качестве единственного источника углерода использовали нефть Талаканского месторождения, с содержанием 0,82% парафиновых и 12,4% смолистых веществ [10, C. 165–170.].

Идентификацию выделенных УОМ проводили на основе изучения их морфологических, культуральных и физиолого-биохимических свойств, используя Определители бактерий [11, с. 800; 12, р. 408] с привлечением анализа нуклеотидных последовательностей гена 16S pPHK.

Ген 16S pPHK амплифицировали с универсальными эубактериальными праймерами 27f (5-AGAGTTTGATCCTGGCTCAG-3-) и 1492r (5-TACGGYTACCTTGTTACGACTT-3-) [13, P. 115–175].

ПЦР проводили на приборе GeneAmp PCR System 2700 ("Applied Biosystems", США).

Определение нуклеотидной последовательности генов 16S pPHK Секвенирование ДНК проводили с помощью набора реактивов ABI PRISM® BigDye™ Terminator v. 3.1 с последующим анализом продуктов реакции на автоматическом секвенаторе Applied Biosystems 3730 DNA Analyzer.

Предварительный анализ полученных нуклеотидных последовательностей фрагментов генов 16S рРНК проводили в программе BLAST банка генов национального центра биологической информации (NCBI — http://www.ncbi.nlm.nih.gov).

Определение нефтепродуктов в водной среде определяли спектрометрическим методом, с использованием концентратомера «ИКН-025».

Результаты и их обсуждение

Из образцов мерзлотного грунта, отобранного во время проведения очистных работ в шахте Шер-

гина и её прилегающей территории, расположенной по ул. Кулаковского, 18, г. Якутск выделен новый штамм бактерий, обладающий способностью к утилизации нефти и НП (дизельное топливо, масло моторное, масло гидравлическое, газовый конденсат). Штамм получен методом накопительных культур на среде Мюнца с нефтью с последующим пересевом на МПА.

Для этого 1,0 г мерзлого грунта с вышеуказанного объекта вносили в 250 мл минеральной среды Мюнца В качестве единственного источника углерода и энергии использовали нефть, которую вносили в среду Мюнца [9, С. 1024-1030] в количестве 1000 мг на 1,0 дм3 среды. Инкубация проводилась в термостатируемых качалочных условиях на установке «УВМТ-12-250» при 200 об/мин и температуре $+20\pm1$ °C. Рост бактерий наблюдали через 7 дней инкубации по образованию мутноватой эмульсии и дезинтеграции слоя нефти.

Чистая культура бактерий была получена путем культивирования при выше перечисленных условиях и многократных пересевов накопительной культуры на чашки Петри с мясопептонным агаром (МПА).

Далее посевы инкубировали в стационарных условиях при различных температурах от +4 до +30 °С. Через 48–72 ч. на поверхности МПА наблюдали появление пастообразных гладких колоний кремовото-розового цвета, диаметром 1–5 мм, которые по культурально-морфологическим и биохимическим признакам, а также по результатам проведенного анализа нуклеотидных последовательностей гена 16S рРНК и ключевых фенотипических признаков согласно таксономическим описаниям, приведенным в Определителе Берги [11, с. 800; 12, р. 408] идентифицированы, как штамм *Rhodococcus* sp.

Штамм депонирован во Всероссийской Коллекции Микроорганизмов (ВКМ) Федерального государственного бюджетного учреждения науки Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина Российской академии наук (ИБФМ РАН) под регистрационным номером ВКМ Ас-2626D.

Полученный штамм характеризуется следующими признаками.

Морфологические признаки

Грамположительные, неподвижные палочки. В односуточной культуре на минеральной среде Мюнца [9, С. 1024–1030] образует короткие толстые палочки. При делении наблюдается характерное расположение клеток под углом друг к другу.

Таблица 1. Дифференциальные свойства и биохимические тесты

Тест или субстрат	Реакции	Тест или субстрат	Реакции		
Рост в аэробных условиях	+	Маланат натрия	-		
Рост в анаэробных условиях	(+)	Уреаза	-		
Рост при температуре + 4 °C	+	Цитрат натрия	-		
Рост при температуре + 20 °C	+	Инозит	-		
Рост при температуре + 30 °C	(+)	Сорбит	+		
Рост при температуре + 37 °C	-	Фенил-аланин	-		
Лецитиназа	-	ß-галактозидаза	-		
Оксидаза	-	Индол	-		
Орнитин	+	Глюкоза	-		
Лизин	-	Лактоза	-		
<i>Примечание:</i> + тест положительный; — тест отрицательный; (+) слабоположительный					

Таблица 2. Степень утилизации нефтепродуктов штаммом Rhodococcus sp.

Вариант опыта		t°C	t°C		
Ксенобиотик, мг/дм3	Срок	+4	+20	+30	
Нефть	до опыта	1000,0	1000,0	1000,0	
	после опыта	809,2	502,3	568,0	
	% деструкции	19,8	49,77	43,2	
Дизельное топливо	до опыта	1000,0	1000,0	1000,0	
	после опыта	860,0	426,6	488,0	
	% деструкции	14,0	57,34	51,2	
Масло моторное	до опыта	1000,0	1000,0	1000,0	
	после опыта	822,0	409,9	463,0	
	% деструкции	17,8	59,1	53,7	
Масло гидравлическое	до опыта	1000,0	1000,0	1000,0	
	после опыта	809,0	501,4	466,0	
	% деструкции	19,1	49,86	53,4	
Газовый конденсат	до опыта	1000,0	1000,0	1000,0	
	после опыта	858,2	464,0	338,2	
	% деструкции	14,2	53,6	66,18	

Культуральные признаки

На питательном агаре на основе гидролизата рыбной муки промышленного производства формирует пастообразные блестящие колонии кремовото-розового цвета, диаметром 1–5 мм. Консистенция мягкая, легко снимаются с поверхности агара, легко размазываются.

На среде Сабуро промышленного производства формирует сметанообразные колонии кремовото-розового цвета, диаметром 1–5 мм. Консистенция мягкая, легко снимаются с поверхности среды, легко размазываются.

В мясопептонном бульоне промышленного производства вызывает диффузное помутнение.

На минеральной среде Мюнца с нефтью [9, С. 1024–1030] растет в виде пастообразных матовых мутных колоний диаметром 1 мм.

Физиолого-биохимические признаки

Штамм растёт при температуре $+4+30\pm1$ °C, в аэробных условиях и слабо в анаэробных условиях. Оптимум роста $+4+20\pm1$ °C.

Оксидазаотрицательный, не декарбоксилирует лизин, декарбоксирует орнитин, не способен расщеплять фенилаланин. Индолотрицателен. Сероводород не продуцирует. Не активен в отношении инозита. Уреаза отрицателен. Тест с ß-галактозидазой — отрицателен. Не ферментирует лактозу, глюкозу, цитрат натрия, малонат натрия (таблица 1).

Штамм устойчив к амоксиклаву, ампициллину, каотиму, амоксициллину, пефлоксацину, амосину. Слабоустойчив к левомицетину. Чувствителен к бензилпенициллину, мозивару, оксациллину, цефатоксиму, цефтриаксону, полимиксину, фуразолидону, метранидазолу. Использует в качестве источника энергии УВ нефти и НП.

Нефтеокисляющие свойства штамма *Rhodococcus* sp. изучены в условиях лабораторного опыта.

Для этого, клетки штамма *Rhodococcus* sp. со скошенного МПА смывали 0,9% раствором NaCl, готовили исходную микробную суспензию бактериального изолята, объемом 25 см3, с концентрацией 1 х 109 микробных клеток/см3 по оптическому стандарту ГИСК им. А.М. Тарасевича.

Биодеградацию нефти и НП определяли спектрометрическим методом, с использованием концентратомера «ИКН-025».

Данные эксперимента показывают, что в среде Мюнца предлагаемый штамм *Rhodococcus* sp. на 7-е сутки при температуре +4 °C утилизирует 14,0–19,8% — нефти и нефтепродуктов; при температуре +20 °C — 49,77–59,1%; при температуре +30 °C — 43,2–66,18%, в зависимости от типа ксенобиотика (таблица 2).

Таким образом, преимуществом штамма *Rhodococcus* sp. является то, что он обладает высокой утилизирующей способностью по отношению, как к нефти, так и к НП, в широком диапазоне температур от +4 до +30 °C, который может быть использован для очистки объектов окружающей среды от загрязнений нефтью и НП (дизельное топливо, масло моторное, масло гидравлическое, газовый конденсат).

ЛИТЕРАТУРА

- 1. Оборин А. А., Калачникова И. Г., Масливец Т. А., Базенкова Е. И., Плещева О. В., Оглоблина А. И. // Восстановление нефтезагрязнённых почвенных экосистем. М.: Наука, 1988. С. 140—159.
- 2. Бабаев Э. Р., Мовсумзаде М. Э. Преобразование нефти в процессе её микробиологической деградации в почве // Башкирский химический журнал, 2009. Т. 16. № 3. С. 80—87 Давыдова С. Л., Тагасов В. И. Нефть и нефтепродукты в окружающей среде: Учеб. пособие. М.: Изд-во РУДН, 2004. 163 с.
- 3. Киреева Н. А., Водопьянов В. В., Григориади А. С., Новоселова Е. И., Багаутдинова Г. Г., Гареева А. Р., Лобастова Е. Ю. Эффективность применения биопрепаратов для восстановления плодородия техногенно-загрязненных почв // Известия Самарского научного центра Российской академии наук, 2010.— Т. 12.— № 1(4).— С. 1023—1026.
- 4. Матенкова Е. А., Наплекова Н. Н. Состав микробных ассоциаций дерново-подзолистых почв с нефтяным загрязнением // Достижения науки и техники АПК, 2009. № 4. С. 20–21.
- 5. Середина В. П., Андреева Т. А., Алексеева Т. П., Бурмистрова Т. И., Терещенко Н. Н. Нефтезагрязненные почвы: свойства и рекультивация. Томск: Изд-во ТПУ, 2006. С. 167—183.
- 6. Нечаева И. А., Гафаров А. Б., Филонов А. Е., Пунтус И. Ф., Боронин А. М. Составление и отбор ассоциаций микроорганизмов, способных к деградации углеводородов нефти при пониженной температуре. Известия Тульского государственного университета. Серия Химия. 2006. Выпуск 6. С. 179—188.
- 7. Филонов А. Е., Нечаева И. А., Ветрова А. А., Овчинникова А. А., Власова Е. П., Петриков К. В., Гафаров А. Б., Пунтус И. Ф., Ахметов Л. И. Биоремедиация нефтеразливов в условиях холодного климата: разработка биопрепаратов и их применение. III Международная конференция «Микробное разнообразие: состояние, стратегия сохранения, биотехнологический потенциал». 28 сентября 5 октября 2008 г., Пермь Н. Новгород Пермь. 2008. С. 105—106.
- 8. Ерофеевская Л. А., Новгородов П. Г. К вопросу о выборе психрофильной микрофлоры для биологической рекультивации почв, загрязнённых нефтью в условиях Якутии // Биотехнология: состояние и перспективы развития: Материалы Y международного конгресса, часть 2 (Москва, 16—20 марта, 2009 г.). М.: 3AO «Экспо-биохим-технологии», РХТУ им. Менделеева, 2009. С. 192.
- 9. Керстен Д. К. Морфологические и культуральные свойства индикаторных микроорганизмов нефтегазовой съемки Микробиология, 1963, № 5 C. 1024—1030.
- 10. Чалая О. Н., Зуева И. Н., Лифшиц С. Х., Трущелева Г. С., Иванова И. К. Состав и свойства нефти Талаканского месторождения //Малотоннажная переработка нефти и газа в Республике Саха (Якутия): Материалы конференции (26—27 июля 2001 г., г. Якутск). Якутск, Изд-во ЯНЦ СО РАН, 2001. С. 165—170.
- 11. Определитель бактерий Берджи / под Ред. Д. Хоулта, Н. Крига, П. Снута и др. М.: Мир, 1997, т. 1—2. 800 с.
- 12. Bergey's Manual of Systematic Bacteriology Book Review Int. J. of Syst. Bact.; July 1985, p. 408.
- 13. Lane, D. J. 16/23S sequencing // Nucleic Acid Techniques in Bacterial Systematics /Eds. Stackebrandt E., Goodfellow M. Chichester: Wiley. 1991.—P. 115–175.

© Ерофеевская Лариса Анатольевна (ipog@ipng.ysn.ru), Чернявский Виктор Федорович (fbuz@fbuz14.ru). Журнал «Современная наука: актуальные проблемы теории и практики»