
106 Серия: Естественные и технические науки № 6 июнь 2025 г.

Информатика, вычислительная техника и управление

Эргономический анализ менеджеров пакетов
в веб-разработке

Горячкин Борис Сергеевич
кандидат технических наук, доцент,

Московский государственный технический
университет им. Н.Э. Баумана

bsgor@mail.ru
Стрихар Павел Андреевич

Московский государственный технический
университет им. Н.Э. Баумана

p.strikhar@gmail.com
Бондаренко Иван Геннадьевич

Московский государственный технический
университет им. Н.Э. Баумана

ivan.frinom@gmail.com
Хижняков Вадим Максимович

Московский государственный технический
университет им. Н.Э. Баумана

vadimkhiz@mail.ru

Аннотация. Постановка проблемы. В современном мире программиро-
вания, особенно в контексте веб-разработки, язык JavaScript стал одним
из наиболее популярных и широко используемых. Пакетные менеджеры
являются инструментами, которые автоматизируют процесс установки, об-
новления и удаления библиотек и модулей, необходимых для работы при-
ложений. На сегодняшний день существует несколько популярных пакет-
ных менеджеров для JavaScript, среди которых npm, yarn и pnpm. Каждый
из них имеет свои особенности, преимущества и недостатки, которые будут
рассмотрены в данной статье.
Цель. Анализ и исследование различных пакетных менеджеров для
JavaScript, таких как npm, yarn и pnpm, с акцентом на их функциональность,
производительность и удобство использования. Исследование направле-
но на выявление преимуществ и недостатков каждого из инструментов,
а также на определение их влияния на эффективность разработки веб-
приложений
Результаты. В результате выполнения планируется получить комплекс-
ное представление о современных пакетных менеджерах для JavaScript,
их функциональности и влиянии на процесс разработки. Ожидается, что ре-
зультаты исследования помогут разработчикам сделать более обоснован-
ный выбор инструментов для управления зависимостями, а также внесут
вклад в дальнейшее развитие практик веб-разработки.
Практическая значимость. Изучение архитектуры вышеупомянутых ин-
струментов, измерение времени выполнения операций и использования
системных ресурсов позволит определить разницу между пакетными ме-
неджерами. Выбор наиболее подходящего менеджера пакетов позволит
заметно сократить ресурсы (особенно временные) при исполнении команд,
которые выполняются разработчиками интерфейсов на ежедневной основе.

Ключевые слова: пакетные менеджеры, npm, pnpm, yarn, архитектура,
сравнение производительности, метрики, управление зависимостями,
JavaScript, разработка программного обеспечения, оптимизация сборки.

Ergonomic analysis of package
managers in web development

B. Goryachkin
P. Strikhar

I. Bondarenko
V. Khizhnyakov

Summary. Problem statement. In the modern world of programming,
especially in the context of web development, JavaScript has become
one of the most popular and widely used languages. Package managers
are tools that automate the process of installing, updating, and removing
libraries and modules necessary for applications to work. Today, there are
several popular package managers for JavaScript, including npm, yarn,
and pnpm. Each of them has its own characteristics, advantages, and
disadvantages, which will be discussed in this article.
Goal. Analysis and research of various package managers for JavaScript,
such as npm, yarn, and pnpm, with an emphasis on their functionality,
performance, and usability. The research aims to identify the advantages
and disadvantages of each of the tools, as well as to determine their
impact on the effectiveness of web application development.
Results. As a result, it is planned to get a comprehensive understanding of
modern package managers for JavaScript, their functionality and impact
on the development process. It is expected that the results of the study
will help developers make a more informed choice of tools for dependency
management, as well as contribute to the further development of web
development practices.
Practical significance. Studying the architecture of the above-mentioned
tools, measuring the execution time of operations and the use of system
resources will determine the difference between package managers.
Choosing the most appropriate package manager will significantly
reduce resources (especially time) when executing commands that are
executed by interface developers daily.

Keywords: Package managers, npm, pnpm, yarn, architecture,
performance comparison, metrics, dependency management, JavaScript,
software development, build optimization.

DOI 10.37882/2223-2966.2025.06.15

107Серия: Естественные и технические науки № 6 июнь 2025 г.

Информатика, вычислительная техника и управление

Введение

JavaScript стал ключевым языком в веб-разработке,
что привело к необходимости эффективного управ-
ления зависимостями. Пакетные менеджеры авто-

матизируют процесс установки, обновления и удаления
библиотек и модулей, позволяя разработчикам сосредо-
точиться на написании кода. В крупных проектах может
использоваться множество пакетов с различными за-
висимостями, что делает выбор правильного пакетного
менеджера особенно важным.

Среди наиболее популярных пакетных менеджеров
для JavaScript выделяются npm, yarn и pnpm. Каждый
из них имеет свои особенности и преимущества, что тре-
бует от разработчиков понимания их различий для вы-
бора оптимального инструмента. Менеджеры пакетов
играют ключевую роль в сборке проектов, обеспечивая
автоматическую установку, обновление и управление за-
висимостями, что упрощает процесс разработки и гаран-
тирует совместимость библиотек [1]. Эргономика этих
инструментов также влияет на продуктивность програм-
мистов, поскольку удобство использования может уско-
рить процесс разработки и повысить качество кода [2].

Основные функции пакетных менеджеров

Пакетные менеджеры играют ключевую роль в раз-
работке программного обеспечения, позволяя разра-
ботчикам быстро устанавливать необходимые библи-
отеки и инструменты с помощью простых команд. Это
значительно ускоряет процесс разработки, устраняя не-

обходимость вручную загружать и настраивать каждую
библиотеку. Одним из основных преимуществ пакетных
менеджеров является автоматическое отслеживание за-
висимостей, что упрощает работу разработчиков [3].

В веб-разработке наиболее популярными пакетны-
ми менеджерами являются npm, Yarn и pnpm. Каждый
из них предлагает свои преимущества: npm предостав-
ляет доступ к обширной библиотеке пакетов, Yarn улуч-
шает скорость установки и управление зависимостями,
а pnpm экономит место на диске и повышает произво-
дительность установки.

Таким образом, пакетные менеджеры становятся не-
отъемлемой частью разработки, особенно в веб-сфере.
Они помогают эффективно управлять зависимостями,
ускоряют процесс разработки и минимизируют пробле-
мы с версиями библиотек [4]. В дальнейшем исследова-
нии будет рассмотрено влияние различных пакетных
менеджеров на продуктивность разработки и опыт ис-
пользования с точки зрения эргономики.

На схеме работы пакетного менеджера (рис. 1) разра-
ботчик начинает процесс, передавая файл package.json
в пакетный менеджер, который содержит информацию
о проекте, включая зависимости и версии пакетов. Па-
кетный менеджер анализирует этот файл, разрешает за-
висимости и загружает необходимые модули в локаль-
ную директорию проекта, создавая папку node_modules.

После завершения установки разработчик получает
доступ к директории node_modules и передает ее сбор-

Рис. 1. Диаграмма последовательностей процесса

108 Серия: Естественные и технические науки № 6 июнь 2025 г.

Информатика, вычислительная техника и управление

щику кода. Сборщик компилирует и объединяет исход-
ный код с зависимостями, выполняя такие действия, как
транспиляция и минификация, в результате чего форми-
руется скомпилированный файл или набор файлов, на-
зываемый bundle.

Этот bundle затем загружается на сервер, где при-
ложение становится доступным пользователям. Сервер
обрабатывает запросы и возвращает UI-страницу, ко-
торая отображает интерфейс приложения и готова для
взаимодействия с конечными пользователями.

Архитектурные особенности npm, yarn и pnpm

NPM (Node Package Manager) — это официальный ме-
неджер пакетов для Node.js, который упрощает интегра-
цию библиотек в проекты, используя централизованный
реестр для управления зависимостями [5]. Появление
NPM положило конец ручной установке зависимостей,
однако с выходом Yarn в 2016 году, который предложил
улучшенные функции, разработчики NPM были вынуж-
дены улучшать свой продукт. В пятой версии NPM была
внедрена функция кэширования, что значительно повы-
сило надежность установки пакетов.

Yarn, разработанный Facebook, поддерживает рабо-
чие пространства, позволяя устанавливать зависимости
для нескольких проектов одновременно, что актуально
для современных практик разработки, таких как моноре-
позитории. В 2016 году появился PNPM, который решает
проблемы объема дискового пространства и доступ-

ности зависимостей. Он выполняет операции с пакета-
ми атомарно и использует технологию «hard links», что
уменьшает объем занимаемого пространства и ускоряет
установку.

Процесс установки пакетов начинается с разрешения
зависимостей, где пакетный менеджер анализирует за-
висимости и подбирает актуальные версии библиотек.
Этот процесс становится рекурсивным, поскольку у за-
гружаемых библиотек могут быть свои зависимости.
Для экономии дискового пространства введено поле
devDependencies, которое содержит зависимости для
разработки, устанавливаемые только если они явля-
ются прямыми зависимостями проекта. Транзитивные
devDependencies пакетный менеджер игнорирует (зави-
симости зависимостей проекта называются транзитивны-
ми, на рисунке 2 будет проигнорирована «Библиотека 5»).

NPM имел «nested» модель установки, которая под-
разумевает, что для каждой зависимости проекта соз-
даётся своя директория node_modules, в которой изо-
лированно хранятся её зависимости — это позволяет
избежать конфликтов версий. Переход на «nested» мо-
дель установки привел к образованию глубокой иерар-
хии в директории node_modules, что занимало много
места на диске и вызывало проблемы с ограничением
длины путей на Windows. Хотя для бекенда это может
быть приемлемо, передача такого количества библиотек
на веб-сайт может быть слишком затратной, особенно
из-за возможных дубликатов.

Рис. 2. Установка зависимостей с devDependencies

109Серия: Естественные и технические науки № 6 июнь 2025 г.

Информатика, вычислительная техника и управление

В связи с этим в NPM 3 была введена новая «hoisted»
модель установки и механизм дедупликации пакетов.
Эта модель сочетает в себе элементы плоской и «nested»
моделей, позволяя хранить пакеты в верхней директо-
рии node_modules, а вложенности возникают только
при конфликтах версий.

Работа этой модели обеспечивается механизмом раз-
решения модулей в Node.js, суть которого заключается
в том, что при поиске пакета, указанного в require, Node.
js проходит по всем директориям node_modules снизу
вверх, то есть «всплывает» (аналогично всплытию пере-
менных в Javascript).

Рис. 3. Разрешение модулей в Node.js

Пакетный менеджер начинает установку с разреше-
ния зависимостей, которые часто задаются диапазона-
ми версий. Это создает неопределенность, так как две
последовательные установки могут давать разные ре-
зультаты. В процессе разработки разработчики могут
столкнуться с тем, что в системе непрерывной интегра-
ции (CI) пакетный менеджер обнаруживает возможность
установки более свежей версии транзитивной зависи-
мости, что может привести к неожиданным изменениям
в поведении кода.

Для решения этой проблемы был создан альтерна-
тивный пакетный менеджер Yarn. Он генерирует файл
локфайла (yarn. lock), который фиксирует конкретные
версии пакетов, выбранные при установке. При следу-
ющей установке Yarn проверяет соответствие между
package. json и yarn. lock, пропуская этап разрешения

зависимостей и загружая пакеты из заранее определен-
ного списка [6]. Это ускоряет процесс установки и обе-
спечивает предсказуемость результатов, так что две по-
следовательные установки дают идентичный результат,
даже на разных машинах. Этот подход позже был реали-
зован и в npm.

Помимо вышеописанного механизма фиксации
версий зависимостей Yarn также имел ряд других пре-
имуществ перед NPM. Основная причина быстроты
Yarn — кэш. Он позволяет создать на своей машине соб-
ственный реестр пакетов, чтобы в процессе установки
заменять сетевой запрос на копирование папок в фай-
ловой системе. Меньше сетевых запросов — меньше
времени занимает установка.

PNPM в отличие от NPM и Yarn не пытается сделать
структуру node_modules как можно более плоской, вме-
сто этого он скорее нормализует граф зависимостей. По-
сле установки PNPM создаёт в node_modules директо-
рию. pnpm, которая концептуально представляет собой
хранилище ключ-значение, в котором ключом является
название пакета и его версия, а значением — содер-
жимое этой версии пакета [7]. Такая структура данных

Рис. 4. Кэш пакетного менеджера

110 Серия: Естественные и технические науки № 6 июнь 2025 г.

Информатика, вычислительная техника и управление

исключает возможность возникновения дубликатов.
Структура самой директории node_modules будет по-
добна «nested»-модели из NPM, но вместо физических
файлов ней будут находиться симлинки, которые ведут
в то самое хранилище пакетов.

В node_modules каждого пакета будут находиться
только симлинки на те пакеты, которые указаны у него
в package.json. PNPM может создать директорию. pnpm
не только в node_modules проекта, но и глобально. В та-
ком случае node_modules у проектов будут содержать
только симлинки, за счёт чего ускоряется установка за-
висимостей (создание симлинка занимает меньше вре-
мени, чем копирование файлов) и экономится количе-
ство дискового пространства.

Эргономические критерии для оценки
пакетных менеджеров

Первый эргономический признак — время первич-
ной установки пакетов. Это один из самых критичных

факторов, так как разработчики часто сталкиваются с не-
обходимостью настраивать окружение для новых про-
ектов или обновлять существующие.

T T T Tnpminstall download install setup= + + (1)

T T T Tyarninstall download install setup= + + (2)

T T T T Tpnpminstall download install setup linking= + + + (3)

Где: Tdownload — время, затраченное на загрузку пакетов
из реестра.

Tinstall — время, затраченное на установку загружен-
ных пакетов в проект.

Tsetup — время, необходимое для выполнения началь-
ной конфигурации (например, создание структуры па-
пок).

Tlinking — время, затраченное на создание жестких
ссылок для общих зависимостей.

Рис. 5. Структура node_modules с PNPM

111Серия: Естественные и технические науки № 6 июнь 2025 г.

Информатика, вычислительная техника и управление

Npm и yarn имеют схожие подходы к скачиванию
и установке пакетов. Однако, yarn использует кэширо-
вание, что может ускорить процесс. Pnpm использует
уникальную стратегию хранения пакетов, что может
добавить время на связывание, но в целом его подход
к кэшированию может значительно ускорить повторные
установки.

Следующий признак — время переустановки паке-
тов. В процессе работы над проектом могут возникать
ситуации, когда необходимо переустановить опреде-
ленные пакеты, например, после обновления или при
возникновении конфликтов.

T T Tnpmreinstall download install= + (4)

T T Tyarnreinstall download install= + (5)

T Tpnpmreinstall linking= (6)

Где: Tdownload — время повторной загрузки пакетов.
Tinstall �— время повторной установки пакетов.
Tlinking — время, затраченное на создание жестких

ссылок для общих зависимостей.

Для переустановки пакетов, npm и yarn будут тратить
время на повторное скачивание, в то время как pnpm
может использовать существующие пакеты в кэше, что
делает его более эффективным. Поскольку pnpm ис-
пользует кэшированные версии пакетов, время пере-
установки включает только связывание.

Время установки дополнительных пакетов — это еще
один важный аспект. Веб-разработка требует гибкости
и быстрого реагирования на изменения требований
проекта.

T T Tnpmadd download install= + (7)

T T Tyarnadd download install= + (8)

T Tpnpmadd linking= (9)

Где: Tdownload — время загрузки пакетов.
Tinstall �— время установки пакетов.
Tlinking — время, затраченное на создание жестких

ссылок для общих зависимостей.

Время обновления версий пакетов является критич-
ным для поддержания актуальности проекта.

T T T Tnpmupdate checkversions downloadnewversions installne= + +� wwversions (10)

T T T Tyarnupdate checkversions downloadnewversions installn= + +� eewversions (11)

T T Tpnpmupdate checkversions linkingnewversions= + (12)

Где: Tcheckversions — время, затраченное на проверку до-
ступных обновлений.

Tdownloadnewversions — время, необходимое для загрузки
новых версий.

Tinstallnewversions — время на установку новых версий.
Tlinkingnewversions — время связывания обновляемых па-

кетов.

Обновление пакетов может занять больше времени
в npm и yarn из-за необходимости загрузки новых вер-
сий, тогда как pnpm может оптимизировать этот процесс
за счет использования ссылок на существующие пакеты.

Конечный размер дерева зависимостей также явля-
ется значимым аспектом. Чем меньше размер дерева
зависимостей, тем проще управлять проектом и меньше
вероятность возникновения конфликтов между пакета-
ми.

S S S Dnpm yarn= = =� (13)

S Spnpm  (14)

Где: D — общее количество зависимостей

Pnpm использует жесткие ссылки на общие зависи-
мости, что позволяет значительно уменьшить размер
дерева зависимостей по сравнению с npm и yarn.

Наконец, конечный размер установленных пакетов
на диске влияет на производительность системы в це-
лом.

M M M Pnpm yarn
i

N

i= = =
=
е� �

1

 (15)

M Mpnpm < (16)

Где: N — общее количество пакетов.
Pi — размер каждого установленного пакета. У pnpm

размер меньше благодаря общему хранилищу зависи-
мостей.

За счет использования общего хранилища для зави-
симостей pnpm позволяет существенно сократить за-
нимаемое пространство на диске по сравнению с npm
и yarn. Все перечисленные эргономические признаки
имеют прямое влияние на продуктивность разработки
и общий опыт использования пакетных менеджеров.

Результаты вычислительного эксперимента

Запуски производились на одной и той же машине,
чтобы нивелировать различия в производительности
устройств пользователей. Технические характеристики
машины, на которой проводились замеры:

112 Серия: Естественные и технические науки № 6 июнь 2025 г.

Информатика, вычислительная техника и управление

—— Наименование — Apple MacBook Pro, M1 Pro, 2021
—— ОЗУ — 32 Гб
—— ОС — MacOS Sonoma 14.2.1

После настройки стендов были проведены замеры
различных метрик (табл. 1). Каждая метрика была изме-
рена для каждого из пакетных менеджеров (npm, yarn
и pnpm). Для минимизации погрешности идентичные
замеры были проведены трижды и было взято среднее
значение (табл. 2).

Таблица 1.
Экспериментальные замеры эргономических признаков

Эргономические
признаки

Итерация npm yarn pnpm

Время первичной
установки пакетов, с

Итерация 1 49,602 47,456 18,747

Итерация 2 42,431 41,873 16,747

Итерация 3 56,221 48,794 17,899

Время переустановки
пакетов, с

Итерация 1 1,251 0,494 0,602

Итерация 2 1,193 0,297 0,613

Итерация 3 1,214 0,267 0,556

Время установки
дополнительных
пакетов, с

Итерация 1 1,235 0,842 1,379

Итерация 2 1,152 0,955 1,516

Итерация 3 1,193 0,947 1,378

Время удаления
пакетов, с

Итерация 1 1,177 0,878 1.203

Итерация 2 1,117 0,829 1,143

Итерация 3 1,183 0,826 1,048

Время обновления
версий пакетов, с

Итерация 1 1,231 0,742 1,238

Итерация 2 1,153 0,957 1,318

Итерация 3 1,109 0,841 1,257

Время запуска
скриптов, с

Итерация 1 0,116 0,161 0,153

Итерация 2 0,124 0,128 0,156

Итерация 3 0,124 0,159 0,158

Конечный размер
дерева зависимостей,
строк

Итерация 1 16146 7751 9879

Итерация 2 16146 7751 9879

Итерация 3 16146 7751 9879

Конечный размер
установленных
пакетов на диске, Мб

Итерация 1 301,617152 356,446 288,322

Итерация 2 301,617152 356,446 288,322

Итерация 3 301,617152 356,446 288,322

Pnpm показал наилучший результат по времени пер-
вичной установки пакетов, что делает его предпочти-

тельным выбором для проектов с большим количеством
зависимостей или для разработчиков, которые часто
создают новые проекты.

Yarn оптимизирует структуру зависимостей, умень-
шая количество повторяющихся зависимостей. Pnpm
также направлен на оптимизацию структуры зависимо-
стей, но его подход отличается от yarn — он использует
глобальный кэш и жесткие ссылки. Yarn показывает луч-
шие результаты и по другим признакам, таким как вре-
мя запуска скриптов, время обновления версий пакетов
и пр. (см. рисунок 9), однако необходимо упомянуть, что
в этих операциях, как правило, разница не превышает
одной секунды.

Результаты показали, что pnpm продемонстрировал
наилучшие показатели по времени первичной установ-
ки пакетов. Это делает его предпочтительным выбором
для проектов с большим количеством зависимостей.
Преимущества pnpm заключаются в использовании
глобального кэша и создании жестких ссылок на зави-
симости, что значительно ускоряет процесс установки
и экономит место на диске. Кроме того, pnpm устанав-
ливает зависимости параллельно и эффективно управ-
ляет версиями пакетов. Yarn же уменьшает количество
дублирующихся зависимостей за счет использования
файла yarn.lock, который фиксирует версии библиотек.
Алгоритм разрешения зависимостей в yarn помогает
избежать установки нескольких версий одной и той же
библиотеки.

Заключение

Таким образом, мы пришли к важным выводам о зна-
чимости выбора инструментального обеспечения для

Таблица 2.
Итоговая таблица с замерами эргономических

признаков

Эргономические признаки npm yarn pnpm

Время первичной установки пакетов, с 49,418 46,041 17,798

Время переустановки пакетов, с 1,219 0,353 0,59

Время установки дополнительных
пакетов, с

1,193 0,915 1,424

Время удаления пакетов, с 1,159 0,844 1,096

Время обновления версий пакетов, с 1,164 0,847 1,271

Время запуска скриптов, с 0,121 0,149 0,156

Конечный размер дерева зависимостей,
строк

16146 7751 9879

Конечный размер установленных паке-
тов на диске, Мб

301,617 356,446 288,322

113Серия: Естественные и технические науки № 6 июнь 2025 г.

Информатика, вычислительная техника и управление

Рис. 6. Сравнение времени первичной установки пакетов

Рис. 7. Сравнение конечного размера установленных пакетов на диске

114 Серия: Естественные и технические науки № 6 июнь 2025 г.

Информатика, вычислительная техника и управление

Рис. 8. Сравнение конечного размера дерева зависимостей

Рис. 9. Сравнение остальных временных признаков

115Серия: Естественные и технические науки № 6 июнь 2025 г.

Информатика, вычислительная техника и управление

управления зависимостями в веб-проектах. Рассмотрев
основные характеристики пакетных менеджеров, мы
отметили, что npm, будучи первым и наиболее распро-
страненным, имеет недостатки, такие как медленная
установка и проблемы с дублированием пакетов, что
снижает его привлекательность для оптимизации рабо-
чего процесса.

Yarn, появившийся как ответ на ограничения npm,
предлагает более быструю установку и предсказуемое
управление зависимостями благодаря lock-файлам. Од-
нако он также имеет недостатки, включая сложности

в управлении монорепозиториями. В отличие от них,
pnpm выделяется своей эргономичностью: его подход
к установке зависимостей с использованием жестких
ссылок и кэширования экономит дисковое простран-
ство и время.

Несмотря на преимущества pnpm, yarn остается се-
рьезным конкурентом с множеством полезных функций.
Правильный выбор пакетного менеджера может суще-
ственно повлиять на продуктивность разработки и каче-
ство конечного продукта.

Литература

1.	 Горячкин Б.С. Эргономический анализ систем обработки информации и управления // Вестник евразийской науки. 2017. Т. 9. №3.
2.	 Горячкин Б.С., Ханмурзин Т.И. Повышение эффективности работы с веб-ресурсом за счет инструментария системного программиста // Динамика слож-

ных систем — XXI век. 2022. Т. 16, № 3.
3.	 Diomidis Spinellis. Package Management Systems // IEEE Software (Volume: 29, Issue: 2, March-April 2012)
4.	 Package management basics [Электронный ресурс] — https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Client-side_tools/

Package_management?clckid=47cb7e23 (дата обращения 13.12.2024)
5.	 Документация npm [Электронный ресурс] — https://docs.npmjs.com/ (дата обращения 13.12.2024)
6.	 Документация yarn [Электронный ресурс] — https://classic.yarnpkg.com/en/docs (дата обращения 13.12.2024)
7.	 Документация pnpm [Электронный ресурс] — https://pnpm.io/motivation (дата обращения 13.12.2024)

© Горячкин Борис Сергеевич (bsgor@mail.ru); Стрихар Павел Андреевич (p.strikhar@gmail.com);
Бондаренко Иван Геннадьевич (ivan.frinom@gmail.com); Хижняков Вадим Максимович (vadimkhiz@mail.ru)

Журнал «Современная наука: актуальные проблемы теории и практики»

