
53Серия: Естественные и технические науки № 10-2 октябрь 2025 г.

Информатика, вычислительная техника и управление

МЕТОДОЛОГИЧЕСКИЕ ПОДХОДЫ  
К ОЦЕНКЕ КАЧЕСТВА ОБСЛУЖИВАНИЯ (QOS) 

И ПОЛЬЗОВАТЕЛЬСКОГО ОПЫТА (QOE) В ИНТЕГРИРОВАННЫХ 
CLOUD-FOG-EDGE ВЫЧИСЛИТЕЛЬНЫХ АРХИТЕКТУРАХ

Черепенин Валентин Анатольевич
Аспирант, Южно-Российский государственный 

политехнический университет (НПИ)  
имени М.И. Платова (г. Новочеркасск)

cherept2@gmail.com
Чебанов Илья Александрович

Аспирант, Южно-Российский государственный 
политехнический университет (НПИ)  
имени М.И. Платова (г. Новочеркасск)

ilia_cheb@gmail.com
Воробьев Сергей Петрович

кандидат технических наук, доцент, Южно-Российский 
государственный политехнический университет (НПИ) 

имени М.И. Платова (г. Новочеркасск)
vsp1999@yandex.ru

Аннотация. В  статье рассматриваются современные подходы к  оценке 
пользовательского опыта (QoE) и  качества обслуживания (QoS) в  распре-
делённых архитектурах Cloud-Fog-Edge. Особое внимание уделяется роли 
алгоритмов машинного обучения в прогнозировании субъективных оценок 
на основе объективных метрик. Анализируются преимущества гибридных 
моделей оценки, сочетающих технические и  поведенческие параметры. 
Обоснована необходимость интеграции интеллектуальных механизмов 
управления качеством в  условиях высокой нагрузки и  изменчивости тра-
фика.
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В прикладном контексте QoE представляет собой со-
вокупность субъективных и объективных ожиданий 
и впечатлений пользователя, формирующихся при 

взаимодействии с цифровыми сервисами в конкретных 
условиях. Этот подход учитывает не только технические 
характеристики, но  и поведенческие, психологические 
и  ситуационные факторы. Архитектуры, основанные 
исключительно на  облачных вычислениях, нередко 
оказываются неэффективными при необходимости ми-
нимизировать задержки и  обрабатывать данные почти 
в  реальном времени. Это особенно важно для систем 
управления производством и служб экстренного реаги-
рования. В таких случаях требуются распределённые мо-
дели, например Cloud-Fog-Edge, способные гибко пере-
распределять вычислительную нагрузку по уровням.

QoS включает объективные метрики, отражающие 
техническое состояние сети — задержки, потери паке-
тов, джиттер, пропускную способность. QoE же пред-
ставляет субъективную реакцию пользователя, основан-
ную на  восприятии качества цифрового сервиса. Хотя 
улучшенные параметры QoS могут способствовать по-
вышению QoE, между ними не всегда существует прямая 
зависимость: восприятие зависит от  контекста и  инди-
видуальных факторов. Как отмечают М.Х.Х. Омар и  со-
авторы, в последние годы активно развиваются модели, 
устанавливающие связи между объективными сетевыми 
показателями и  субъективной оценкой качества. Для 
этого применяются как статистические методы и регрес-
сии, так и современные подходы — машинное обучение, 
нейросети и гибридные алгоритмы, опирающиеся на по-
веденческие и контекстуальные данные [1]. Выбор мето-
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да зависит от типа услуги, структуры данных и целей ана-
лиза — от оптимизации ресурсов до персонализации.

QoE можно рассматривать как многомерную катего-
рию, объединяющую ожидания, эмоции, пользователь-
ский опыт и технические параметры. В этой системе QoS 
играет роль одного из компонентов, влияющих на ито-
говую оценку взаимодействия. QoE включает как объек-
тивные характеристики, так и субъективные восприятия, 
выступая надсистемным понятием по отношению к QoS 
[2, с. 170806]. Для измерения QoS в телекоммуникациях 
применяются такие метрики, как потери пакетов, за-
держки, джиттер и пропускная способность. Механизмы 
управления QoS охватывают приоритезацию пакетов, 
интеллектуальные маршруты передачи и динамическое 
распределение пропускной полосы [3], что позволяет 
адаптировать сеть к требованиям трафика и ожиданиям 
пользователей.

В рамках данного исследования основное внима-
ние уделено многоуровневым архитектурам Cloud-Fog-
Edge, которые становятся ключевыми для эффективного 
управления потоками данных в  IoT-среде. Эти архитек-
туры предназначены для решения задач масштабной 
и  чувствительной ко времени обработки информации, 
типичной для IoT-приложений. В  условиях стремитель-
ного увеличения объёмов данных и требований к скоро-
сти обработки они обеспечивают необходимую гибкость 
и вычислительную эффективность. Архитектура включа-
ет три уровня — облачный, туманный и периферийный — 
каждый из которых выполняет специфические функции 
с  учётом локализации, срочности и  объёма данных. Их 
интеграция создаёт единую вычислительную среду, где 
интеллектуальное распределение задач между уровня-
ми позволяет снижать задержки и повышать надёжность 
функционирования даже при высокой нагрузке [4].

Распределённые вычислительные решения всё чаще 
базируются на сочетании Cloud, Fog и Edge-подходов, что 
позволяет гибко адаптироваться к запросам пользовате-
лей. Одним из их главных достоинств является близость 
обработки данных к  источнику, что снижает задержки 
и положительно влияет на QoE. Однако QoE до сих пор 
недостаточно интегрировано в  архитектуры на  уровне 
планирования и управления ресурсами. В рамках данно-
го исследования компоненты, ориентированные на по-
вышение QoE, структурированы по  вычислительным 
уровням — от периферии до облака, включая техноло-
гии предсказания параметров QoE и методы управления 
пользовательским восприятием [5, с. 84580, 84588]. Для 
реализации таких подходов необходима новая экосисте-
ма, расширяющая традиционные IoT-модели.

Концепция fog computing в  данной архитектуре 
рассматривается как связующее звено между облачны-
ми ресурсами и  edge-уровнем. Её структура включает 

три слоя: терминальный (конечные устройства), fog-
уровень (локальные узлы) и  облачный центр (центра-
лизованная обработка) [6]. Такое построение позволя-
ет перераспределять задачи и  обрабатывать данные 
ближе к  их источнику, снижая задержки и  уменьшая 
нагрузку на центральные серверы. Модель П.Х.Ш. Пана-
хи, А.Х.  Джалилванд и  А. Дийанат использует алгоритм 
Random Forest для прогнозирования показателя MOS 
(Mean Opinion Score) на  основе объективных сетевых 
метрик: задержки, джиттера, потерь пакетов, пропуск-
ной способности и  битрейта. Эти параметры отражают 
работу сети и служат базой для моделирования пользо-
вательского восприятия. В  исследовании применяется 
адаптированная версия модели ITU-T P.1203, ориентиро-
ванная исключительно на  сетевые данные без анализа 
контента. Такой подход обеспечивает высокую точность 
при малых вычислительных затратах. Его ключевое до-
стоинство — возможность оценки QoE на  основе QoS, 
что особенно важно для динамичных систем Cloud-Fog-
Edge. Для эффективного управления в  таких условиях 
необходима быстрая настройка маршрутизации и  при-
оритизации трафика [7, c. 1655, 1666].

Прогнозирование QoE требует учёта типа трафика: 
видеопотоки обычно используют переменную скорость 
передачи (VBR), а голосовой трафик — постоянную (CBR) 
[3]. Это влияет на выбор оценочных метрик и подходов 
к обработке. Для проверки точности моделей применя-
ются показатели RMSE, MAE, precision, recall, F1 и общая 
точность (accuracy) [8]. Такой комплекс критериев позво-
ляет оценить, насколько надёжно модель отражает по-
ведение сети при изменяющейся нагрузке. Методология 
сочетает интеллектуальный анализ данных с  классиче-
ским мониторингом сетевых параметров, обеспечивая 
масштабируемый механизм оценки пользовательского 
опыта в распределённых архитектурах.

Edge Computing сегодня развивается как ключевое 
направление для эффективной обработки данных у ис-
точника их генерации. Такая архитектура снижает на-
грузку на  облако, минимизирует задержки, повышает 
приватность и улучшает показатели QoS и QoE, особен-
но в системах, критичных к отклику. Ключевым преиму-
ществом является возможность быстро обрабатывать 
локальные запросы и уменьшать объём передаваемого 
трафика. Однако ограниченные ресурсы и переменные 
нагрузки на периферии требуют применения интеллек-
туальных систем управления. Использование ИИ позво-
ляет адаптировать вычисления к  специфике приложе-
ний и  эффективно контролировать энергопотребление 
[8]. Интеллектуальные механизмы на  edge-уровне ста-
новятся необходимыми для поддержания стабильного 
качества в условиях нестабильной нагрузки.

Edge Computing представляет собой интеграцию 
вычислительных ресурсов, хранилищ и сетевой инфра-
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структуры вблизи источников данных, что обеспечивает 
высокую скорость отклика и сниженные задержки. Для 
компенсации ограниченных возможностей конечных 
устройств применяется offloading — перенос ресурсо-
емких задач на более мощные edge-узлы, что улучшает 
обработку и  соответствует параметрам QoS. При  этом 
облачные технологии сохраняют значение для центра-
лизованных операций, но страдают от задержек и пере-
грузки каналов [9, с. 54041, 54051]. В  этих условиях эф-
фективным промежуточным решением выступает Fog 
Computing — уровень между edge и cloud, обеспечива-
ющий маршрутизацию и  предварительную обработку 
информации.

Fog-уровень представляет собой распределённую 
архитектуру, где каждый узел обслуживает несколько 
периферийных устройств. Это позволяет компенсиро-
вать нехватку вычислительных ресурсов на  границе 
сети и  снижать нагрузку на  облачные центры [10]. Ту-
манные узлы выполняют предварительную обработ-
ку, фильтрацию и  агрегацию данных, что критично при 
ограниченной пропускной способности и высоких тре-
бованиях к скорости реакции. Интеграция fog— и edge-
вычислений в  рамках Cloud-Fog-Edge-подхода способ-
ствует повышению эффективности распределённых 
систем, обеспечивая сбалансированное распределение 
нагрузки между локальной обработкой и  централизо-
ванными ресурсами, что улучшает QoS и  стабильность 
пользовательского восприятия.

Вопрос оценки пользовательского опыта (QoE) актив-
но изучается в научной и прикладной среде, поскольку 
он критичен для надёжного функционирования цифро-
вых сервисов. Существующие методики включают субъ-
ективный, объективный и  комбинированный подходы, 
каждый из которых имеет свои достоинства и ограниче-
ния, что требует комплексного анализа при построении 
эффективной модели оценки.

Субъективные методы оценки QoE основаны на уча-
стии пользователей и  фиксируют их восприятие через 
опросы и  экспертные оценки. Они отражают реальные 
ощущения, но  требуют значительных временных и  ор-
ганизационных ресурсов, что ограничивает их приме-
нимость в автоматизированных системах. Объективные 
подходы используют формальные метрики, извлечённые 
из параметров сети (задержки, потери пакетов, пропуск-
ная способность), обеспечивая непрерывный контроль 
без участия человека. Однако такие модели не  всегда 
учитывают особенности пользовательского восприятия. 
В  связи с  этим всё большее распространение получа-
ют гибридные методики, сочетающие оба подхода. Они 
позволяют учитывать субъективные оценки и одновре-
менно применять аналитические инструменты для ав-
томатизации мониторинга и прогноза QoE, обеспечивая 
более точную связь с параметрами QoS [11].

Совершенствование гибридных моделей оценки QoE 
связано с  использованием методов отбора признаков 
(feature engineering), которые позволяют выделить клю-
чевые параметры, влияющие на  восприятие качества. 
Алгоритмы машинного обучения и  анализ данных вы-
являют зависимости между сетевыми характеристиками 
и  пользовательскими оценками, способствуя сокраще-
нию входных данных и  упрощению модели при сохра-
нении её интерпретируемости. Исследования подчёрки-
вают потенциал ИИ-технологий — нейросетей, деревьев 
решений, градиентного бустинга — в  создании адап-
тивных систем управления качеством взаимодействия 
[12, c. 19508, 19511]. Их интеграция в  Cloud-Fog-Edge-
инфраструктуру обеспечивает точность прогнозов QoE 
и  возможность адаптации сервисов под мультимедиа 
и интерактивные приложения. В целом гибридный под-
ход представляет собой перспективное направление, 
обеспечивающее баланс между точностью субъективной 
оценки и  эффективностью объективного мониторинга. 
Его развитие способствует формированию интеллекту-
альных систем управления качеством, способных учи-
тывать многомерную природу пользовательского опы-
та в  условиях распределённых вычислительных сред.

В гетерогенных Cloud-Fog-Edge-системах особую 
сложность представляет равномерное распределение 
ресурсов. Дисбаланс между уровнями архитектуры 
и типами ячеек может вызывать колебания пропускной 
способности и снижать стабильность QoE. Для решения 
этих задач используются интеллектуальные механизмы 
управления, обеспечивающие эффективное использо-
вание вычислительных и радиочастотных ресурсов при 
сохранении высокого QoS. Важное направление — вне-
дрение AI и ML-алгоритмов, позволяющих перейти к пре-
диктивным моделям управления, основанным на анали-
зе телеметрических данных и  выявлении устойчивых 
зависимостей, влияющих на  пользовательское воспри-
ятие. DRL-технологии, сочетающие обучение с  подкре-
плением и гибкость нейросетей, показали высокую эф-
фективность в  оптимизации распределения нагрузки 
и предотвращении перегрузок в сложных многомерных 
средах, характерных для Cloud-Fog-Edge-платформ [13, 
с. 37690, 37692, 37698].

Для управления пользовательским опытом в  Cloud-
Fog-Edge-средах требуется интеграция субъективных 
и  объективных методов оценки. Первые основаны 
на  взаимодействии с  пользователями через опросы 
и анкетирование, раскрывая индивидуальное восприя-
тие качества. Вторые опираются на  измерение сетевых 
параметров — задержек, потерь, пропускной способно-
сти, а при необходимости — и физиологических данных. 
Только сочетание этих подходов позволяет получить до-
стоверную и многогранную картину QoE. Использование 
платформ, способных параллельно собирать оба типа 
информации, становится ключевым элементом архи-
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тектур оценки. Такие решения обеспечивают адаптацию 
сервисов в реальном времени и позволяют прогнозиро-
вать отклонения качества на основе телеметрии и поль-
зовательских откликов [14, c. 1306].

Эффективное управление QoE в  Cloud-Fog-Edge-
системах требует не  только оптимизации сетевых ре-
сурсов, но  и создания интеллектуальных решений, 
способных учитывать индивидуальные предпочтения 
пользователей и быстро адаптироваться к изменениям 
инфраструктуры. Ключевую роль в этом процессе игра-
ют AI/ML-технологии, гибридные модели оценки и адап-
тивные платформы.

По мнению Н. Цеплиньска и  коллег, большинство 
исследований QoE проводится в  формате поперечных 
срезов — краткосрочных лабораторных или полевых 
экспериментов. Хотя такие форматы упрощают органи-
зацию, они не  всегда отражают реалии долгосрочного 
взаимодействия с  цифровыми сервисами, где пользо-
вательское восприятие меняется под влиянием опыта, 
привычек и  условий эксплуатации. Это обусловливает 
значимость длительных наблюдений, позволяющих от-
слеживать динамику удовлетворённости в естественной 
среде на протяжении времени [14].

Регулярное наблюдение за пользователями позволя-
ет выявлять устойчивые поведенческие шаблоны, ука-
зывающие на снижение QoE или риск отказа от сервиса. 
Это особенно важно в распределённых Cloud-Fog-Edge-
средах, где любое изменение может повлиять на  вос-
приятие. Долгосрочные исследования дают возмож-
ность учитывать широкий контекст — от  геопозиции 
и  сетевой нагрузки до  особенностей устройства, пове-
дения и  когнитивных характеристик. Учет таких пере-
менных способствует созданию более точных моделей 
QoE, применимых для адаптации и совершенствования 
цифровых сервисов.

Показатель QoE всё чаще рассматривается как ос-
новной критерий эффективности цифровых сервисов, 
особенно в  гетерогенных вычислительных и  коммуни-
кационных средах (HetNets). В  современных сетях он 
перестаёт быть второстепенной метрикой и становится 
инструментом стратегического управления, способству-
ющим росту удовлетворённости пользователей [1]. Это 
имеет особое значение для операторов и администрато-
ров, обеспечивающих стабильность работы при изменя-
ющейся нагрузке и трафике.

Одной из ключевых задач в гетерогенных архитекту-
рах остаётся организация потоковой передачи мульти-
медийного контента с минимальными задержками и ста-
бильным качеством. Нестабильность каналов, колебания 
трафика и  разнообразие пользовательских устройств 
затрудняют поддержание предсказуемого уровня QoE. 
Необходимы не  только постоянный мониторинг, но  и 

адаптивное управление на  всех уровнях распределён-
ной архитектуры. Используемые сегодня фиксирован-
ные шкалы битрейтов зачастую не отражают реального 
многообразия условий и устройств. Применение «лест-
ницы битрейтов» в  реальных потоковых системах без 
учёта контекста ограничивает возможности по улучше-
нию восприятия и снижает лояльность пользователей [2, 
с. 170804, 170814]. Это обосновывает потребность в ин-
теллектуальных подходах к динамической настройке ко-
дирования и доставки с учётом особенностей контента, 
сети и клиентского оборудования.

Одной из  перспективных стратегий является пара-
дигма fog computing — децентрализованная модель, 
при которой обработка и хранение данных осуществля-
ется ближе к их источникам. Такая архитектура способ-
ствует перераспределению нагрузки между облаком 
и периферией, снижая задержки и улучшая отклик при-
ложений. Однако её широкое внедрение осложняется 
неоднородностью устройств, что затрудняет универ-
сальное развертывание. Разнообразие сервисов и  раз-
личие в требованиях к качеству доставки также услож-
няют управление ресурсами [6].

Инструменты искусственного интеллекта и  ана-
лиза данных становятся ключевыми элементами fog-
инфраструктур, позволяя прогнозировать поведение 
пользователей и  эффективно управлять ресурсами. 
Интеллектуальные алгоритмы, встроенные в  fog-узлы, 
способны оперативно обрабатывать сетевые показате-
ли, учитывать контекст и  адаптироваться к  поведению 
пользователей, обеспечивая гибкое распределение 
ресурсов. Это способствует повышению QoE и устойчи-
вости Cloud-Fog-Edge-архитектур к нагрузкам и изменя-
ющимся условиям. Рисунок 1 содержит обобщение ме-
тодических подходов к  оценке качества обслуживания 
и пользовательского опыта.

Переориентация на пользовательский опыт (QoE) как 
основной критерий оценки цифровых услуг открывает 
возможности для повышения удовлетворённости поль-
зователей, особенно на фоне усложнения мультимедий-
ных сетей. При  росте объёмов трафика и  потребности 
в адаптивности цифровых решений возрастает значение 
субъективного восприятия качества. Однако долгосроч-
ные исследования динамики QoE пока остаются мало-
численными, что отражает недостаточную проработан-
ность этой области. Несмотря на признание концепции 
fog computing в научной и профессиональной среде, её 
внедрение осложняется отсутствием стандартов, фраг-
ментарностью решений и  ограниченной инструмен-
тальной поддержкой. Тем не  менее, растущий интерес 
к  периферийной обработке данных подтверждает пер-
спективность fog-подхода для дальнейшего развития.

На этом этапе особенно важно определить при-
оритетные направления дальнейших исследований. 
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Среди них — разработка архитектурных моделей, со-
ответствующих специфике распределённых цифровых 
систем, а  также стандартизация метрик QoS и  QoE для 
повышения сопоставимости и  объективности оценки. 
Также необходимы интегрированные платформы для 
управления мультиоблачной инфраструктурой с акцен-
том на  масштабируемость, надёжность и  чувствитель-

ность к  параметрам взаимодействия. Перспективным 
направлением остаётся развитие персонализированных 
и  контекстно-адаптивных подходов к  управлению QoE, 
включая интеллектуальные механизмы самообучения 
и самонастройки в условиях неопределённости и разно-
образных пользовательских сценариев.
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Рис. 1. Методологические подходы к оценке QoS и QoE
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