Журнал «Современная Наука»

Russian (CIS)English (United Kingdom)
MOSCOW +7(495)-142-86-81

IMPROVING THE ACCURACY OF IDENTIFYING ANOMALIES CRITICAL TO AN OBJECT USING A NEURAL NETWORK MODEL

Eremin Igor V.  (Perm State University)

The article proposes a two-stage method for accurately detecting anomalies in industrial process data using the CascadeForwardNet neural network. The first stage involves prediction, while the second focuses on error correction and architecture modification. This approach improves anomaly identification accuracy, aiding in the analysis of equipment failure causes.

Keywords:APCS, industrial automation, chemical-technological process, neural networks, models, systems approach, anomalies

 

Read the full article …



Citation link:
Eremin I. V. IMPROVING THE ACCURACY OF IDENTIFYING ANOMALIES CRITICAL TO AN OBJECT USING A NEURAL NETWORK MODEL // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и Технические Науки. -2025. -№06. -С. 134-139 DOI 10.37882/2223-2966.2025.06.21
LEGAL INFORMATION:
Reproduction of materials is permitted only for non-commercial purposes with reference to the original publication. Protected by the laws of the Russian Federation. Any violations of the law are prosecuted.
© ООО "Научные технологии"